\[z_{-} = 1 + j 0.5 \]
\[z_{L} = 0.5 - j 1 \]
\[z_{L^{*}} = 0.5 + j 1 \]
Normalized Impedance and Admittance Coordinates

\[Z_0 = 50 \, \Omega \]

\[f = 1 \, \text{GHz} \]

\[R_L = 80 \, \Omega, \quad C_L = 2.65 \, \text{pF} \]

\[Z_L = R_L - j\omega C_L = (80 - j60) \, \Omega \]

\[Z_L = 1.6 - j1.2 \]

\[Z^* = 1 \]

\[Z^* = 1 \]

Series L

\[L = \frac{X_L Z_0}{W} \]

\[\text{Shunt L} \]

\[L = -\frac{Z_0}{W} \]

Series C

\[C = -\frac{1}{Z_0} \, \text{in fr } \]

\[C = \frac{1}{j} \, \text{fr } \]

\[C = \frac{1}{j} \, \text{fr } \]

Nodal \[Q \text{ at point } B \]

\[Q_n = \frac{X_L}{R_L} = \frac{12}{1} = 12 \]

Radially Scaled Parameters

Final Value C 0.03 pF Series L + j1.2
Single-stub matching network example

For example 8-8

\[z_1 = (60 - j45) \, \Omega \]

\[z_{in} = (75 + j90) \, \Omega \]

\[z_0 = 75.52 \]

We are using topology A from the text.
Case A

1. Plot \(Z_L, Z_{in} \), record value of \(Y_L \)

 \[Z_L = 0.8 - j0.6 \quad Y_L = 0.8 + j0.6 \]
 \[Z_{in} = 1.0 + j1.2 \]

2. Draw a VSWR circle for \(Z_{in} \)

3. From position of \(Z_L \), travel along constant \(q \) (down) until you intersect \(VSWR \) circle. This is position A.

 Record \(Y_A \) \(\Rightarrow Y_A = 0.8 + j1.1 \)

4. Determine stub susceptance values by subtracting \(Y_A \) from \(Y_L \)

 \[jb_{SA} = Y_A - Y_L = (0.8 + j1.1) - (0.8 + j0.6) \]
 \[jb_{SA} = j0.5 \]

 This is the amount of susceptance that puts you on the VSWR circle.

5. From point A and \(Z_{in} \), draw lines extending through center of SC through points. Measure distance from \(Z_{in} \) to \(Y_A \) in wavelengths

 \[l_{UA} = [(0.5 - 0.404) + 0.167] \lambda = 0.263 \lambda \]

Case B

1. \(Z_L = 0.8 - j0.6 \)
 \[Y_L = 0.8 + j0.6 \]
 \[Z_{in} = 1.0 + j1.2 \]

2. Same

3. The arrow has been drawn for you in position B.

 Record \(Y_B \) \(\Rightarrow Y_B = 0.8 - j1.08 \)

 \[jb_{SB} = Y_B - Y_L = 0.8 - j1.08 - (0.8 + j0.6) \]
 \[jb_{SB} = -j1.68 \]

 \[(0.25 + 0.084) \lambda \]

 \[l_{SB} = 0.334 \lambda \]

 \[(0.167 - 0.094) \lambda \]

 \[l_{SB} = 0.673 \lambda \]
Normalized Impedance and Admittance Coordinates

\[z_l = 0.8 - j0.6 \]
\[z_{in} = 1 + j1.2 \]
Path B
\[y_B = 0.8 - j 1.68 \]

\[l_B = 0.073 \lambda \]

\[l_B = (0.25) \lambda + (0.084\lambda) = 0.33 \lambda \]