tion in the channel, which in tum deteriorates the current driving
capability of device.
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Fig. 1 Cross-section of Al 34Gp z6As [y ;Gay gAs double heterostructure
enhancement/depletion-mode p-FHEMT

Cross-hatched region under gate indicates deactivated donors afier SHT process
to fabricate E-HEMT

Table 1: Effect of RF power of hydrogen plasma on threshold
voltage Vry, gate-grounded drain current /g, cutoff
frequency fn maximum oscillation frequency fr. of

p-HEMT
RF [W) | Veg (V1] fpss tmA/mm] | f7 [GHz] | fnex [GHz]
Q 037 123 75 2336
30 —0.05 29 9 2334
LIOO 0.26 0.9 828 22.8

\pg, MAMM; G, MS/mm

gate bias, V

Fig. 2 Drain current Ipg and transconductance G, of EfD-HEMTs
measured at Vps=25V
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Fig, 3 RE performances of E/D-HEMTS measured at gate bias displaying
maximum transconductance and Vpg=2.5V

Conclusions: We have demonstrated E/D-mode HEMTs using selec-
tive hydrogen treatment composed of hydrogen exposure and RTA,
prier to the gate metallisation. The selective hydrogen treatment
method produced a large threshold shift without serious degradation

in DC and RF performance of the p-HEMT. These results are

attractive in various applications including fibre optic communication
systems and power amplifiers requiring E/D-mode HEMTs.
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Compensating additive noise and CS-CELP
distortion in speech recognition using
stochastic weighted Viterbi algorithm

N.B. Yoma, J. Silva, C. Busso and 1. Brito

A solution to the problem of speech recognition with signals corrupted
by additive noise and CS-CELP coders is presented. The additive
noise and the coding distortion are cancelled according to the follow-
ing scheme: first, the pdf of the clean coded-decoded speech is
estimared with an additive noise model; secondly, the pdf of the
clean yncoded signal is also estimated with a coding distortion model;
finally, the hidden Matkov model is compensated using the expected
value of observation pdf in the context of the stochastic weighted
Viterbi algorithm.

Introduction: lmproving robustness to noise is one of the most
important problems that need to be solved to make speech recognition
successful in real applications. Moreover, the cvelution and popularity
of mobile and TCP/IP networks have created the problem of improv-
ing the recognition accuracy for speech distorted by low-bit rate
coders. The distortion of coding schemes in speech recognisers cannot
be solved by applying conventional noise cancelling techniques [1].
Some of the techniques that have been proposed to cancel or
compensate additive or/and convolutional noise are: spectral subtrac-
tion {SS) [2]; RASTA [3]; parallel model combination (PMC) [4],
and, cepstral mean normalisation. A stochastic version of the
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weighted Viterbi [3] (stochastic weighted Viterbi (SWV)) algorithm
was proposed and successfully applied to a text-dependent spcaker
verification task with signals corrupted by additive noise [6]. In that
paper the observation parameters were considered as being random
variables with normal distributions, and the hidden Markov model
(HMM) observation pdf was replaced with its expected value. In this
Letter the coding—decoding distortion is modelled with a Gaussian
distribution. An HMM compensation method is then proposed by
considering the original and unseen uncoded cepstral parameter also
as a random variable and by estimating the expected value of the
output pdf as in [6]. Finally, the additive noise and the coding
distortion are cancelled according to the following scheme: the pdf
of the clean coded-decoded speech is estimated; the pdf of the clean
uncoded signal is then also estimated; and, the HMM is compensated
using the expected value of observation pdf. The approach leads to
reductions as high as 40 or 50% in word error rate (WER).

Stochastic weighted Viterbi (SWV} algorithm: In the ordinary HMM
topology the output pdf of observing the frame O, at state 5, b(0,), is
computed considering O, as being a vector of constants. In this Letter
the observation vector i1s composed of static, delta and delta-delta
cepstral coefficients, and according to [6] these parameters should be
considered as being random variables with normal distributions.
Therefore, to counteract this incompatibility, [6] proposes to replace
b0,y with E[b ()] in the Viterbi algorithm, where E[5,(12,)] denotes
the expected value of the output pdf. The expected value and the
uncertainty in noise cancelling variance of the static and delta cepstral
coefficients are estimated according to [6]. The same approach
employed with the delta cepstral parameters is applied to the delta-
delta cepstral coefficients in frame ¢ defined as the difference between
the delta parameters in ¢+ ) and (—1. [f the HMM output pdf, b,(0,),
is modelled with a mixture of Gaussians with diagonal covariance
matrices, E[b40,)] is [6]:
SOE Sl e Viol, . .,
(

where 5, g, n are the indices for the states, the Gaussian compoenents and
the coefficients, respectively; p, is a weighting parameter; O,=[0,,,
Or2, ..., O] is the observation vector; E; ; , and Karg g , are the HMM
mean and variance, respectively; the mean, £((,,), and the uncertainty
in noise cancelling variance, bar(0,,), are estimated as described
above; and

ths.g,n‘r = Vars.g.n +K- VHV(O,_,!) (2)

K is a constant that adapts the decrcasing rate of the output pdf
discrimination ability to the language model.

Compensation of CS-CELP coding distortion: The coding—decoding

distortion, D,, is modelled in the cepstral domain as an additive

random variable with Gaussian distribution fp, (D)= N(mS 2

where n, m? and v¢ denote the cepstral coefficient, the mean and

the variance, respectively. Therefore, the cepstral coefficient n in
1l

frame ¢ of the original signal, 07, is given by:
Xy =00+ D, 3

where 0, is the cepstral coefficient corresponding to the decoded-
coded speech signal. In a real application O;f,, is the observed cepstral
parameter. From (3), the expected value of OF,, is given by:

EO;,) = O, + mi] (4)

Censequently, the coding—decoding distortion scheme is represented by
the mean vector M = [m‘{, ma ., md ., mﬁ] and the variance vector
Wopd ve vl vi]. This distortion does not depend on the
phenetic class, and is consistent with the analysis presentad in [1]. The
origina! and unscen uncoded cepstral parameter (), is a random
variable, so the output pdf &, (0,) should also be replaced with its
expected value £]b(0,)] as in [6]:

G N )
E[p{0)] = leg 11
Py

n=l 2w Ve, ,

where E[(0,] is given by (4} and

o AR B Viotls (5

Vil , = Var, ., +V! (6)

sg.n 580

Joint compensation of additive noise and coding distortion: As can
be seen in Fig. 1, the problem presented here corresponds to a clean
signal s(f) firstly corrupted by additive noise in the temporal domain,
x(), and then coded and decoded, x(r). The observation parameter
vectors of the signals s(f), x(t) and xD(t) are 7Y, oFY and OFP,
respectively. § and X denote the clean and noisy signal, respectively;
U and D correspond to the signals before (uncoded) and after
(distorted) the coding-decoding process. As shown in Fig. 2, the
proposed method first compensates the additive noise by applying SS
and estimating the variance in noise cancelling with x°(#). As a result,
the pdf of the distorted clean speech, fpss (O%F), is generated. The
compensation in (5)(6), CDC {(coding-distortion compensation}, is
then applied generating the pdf of the clean uncoded signal, foso
(O*Y. Finally, by 1aking the expected value of the output pdf, the
compensation of the additive noise and the coding distortion will be
incorporated in the Viterbi deceding.

n{)

(1) —» coding |—>[ decoding ‘—b *Pe)
*(1)

Fig. 1 Additive noise and coding distortion

O‘S,U —_— O‘X-U — le‘D

coc J SWV-88
fgs‘ufos‘u) - !os.u Os‘ﬂ)

Fig. 2 Joint compensation of additive noise and coding distortion

foso (O%7) denotes pdf of clean distorted signal; foso (OS'U) corresponds to pdf of
clean uncoded signal

Table 1: WER (%) with signal corrupted with additive noise (car
noise) and coded by 8 kbit/s CS-CELP

SNR 18dB 1248
Baseline 107.0 | 1474
SWI-SS 6l 93.2

SH-SS-CDC | 53.0 sg.ﬂ

Table 2: WER (%) with signal corrupted with additive noise
(speech noise) and coded by 8 kbit/s CS-CELP

SNR 18dB | 12 dB
Baseline 1064 | 147.0
SWISS 57.1 90.4

SWISS-CDC | 52.0 87.0

Experiments: The compensation method was tested with speaker-
independent continuous speech recognition cxperiments using
LATINO-40 database [7]. This database is composed of 40 Latin
American native speakers, each reading 125 sentences from news-
papers in Spanish. The training utterances were 4500 uncoded clean
sentences provided by 36 speakers and context-dependent phoneme
HMMSs were employed. The vocabulary is composed of almost 6000
words. The testing database was composed of 500 utterances provided
by four testing speakers (two females and two males). Each context-
dependent phoneme was modelled with a three-state lefi-to-right
topology without skip transition, with eight multivariate Gaussian
densities per state and diagonal covariance matrices. Bigram language
madelling was employed, and X in (2} was made cqual to 10. The
band from 300 to 3400 Hz was covered with 14 Mel DFT filters, at the
output of each channel the energy was computed, 8§ was applied and
the log of the energy was estimated. The frame energy plus ten static
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cepstral cocfficients, and their first and second time derivatives were
computed. The noise was estimated using only 10 non-speech frames
before the beginning of the utterance. The 500 testing clean signals
were used to create the noisy utterances by adding car and speech
noise from the Noisex database. The noisy signals were then coded
and decoded using the 8 kbit/s CS-CELP (ITU-T G.729). The
coding—decoding distortion parameters M? and F¥ were estimated
by directly aligning uncoded and coded-decoded training utterances.
The techniques are indicated as follows: Baseline without any HMM
compensation; SWILSS, the SWV algorithm with S8; and, SW}-SS-
CDC, the SWV algorithm with both SS and CDC. The results are
shown in Tables [ and 2. The baseline system with clean signal gave a
WER equal to 38,9%.

Discussion and conclusion: As can be seen in Tables 1 and 2, the
additive noise and the coder dramatically degrade the word accuracy
of the system at SNR =18 and 12dB. SWV and SS substantially
reduced the WER, but the highest improvement was achieved when
CDC was also applied. Reductions as high as 50 and 40% in WER are
observed at 18 and 12 dB. Nevertheless, the degradation of the systemn
at 12 dB is still too severe. The additive noise has probably a more
significant effect on the increase of the WER. As a resuit, improving
the accuracy of the additive noise model [5] at low SNR should
certainly increase the effectiveness of the approach proposed here.
Finally, the coding distortion compensation should be applicable to
other speech compression schemes.
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Explicit multicast over mobile IP with
routing optimisation

Sung-Hee Kim and Ki-Jun Han

A new scheme is proposed, called explicit multicast over mobile IP
with routing optimisation (XMIPRO), to solve the probiem due to
triangle routing and serious packet losses during the registration delay
in explicit multicast over mobile IP (XMIP). Analytical and simulation
results show that the scheme offers more efficient routing and a greater
robustness than the existing schemes in mobile [Pv4 networks.

Introduction: Recently, explicit multicast over mobile IP (XMIP) (1]
was proposed to support the mobile multicast using explicit multicast
(Xcast) [2] in mobile IP networks. When the mobile node is away
from its home, however, Xcast packets are first routed to the home
agent. XMIP thus suffers from inefficient delivery due to triangle
routing and serious packet losses during the registration delay. To
solve this problem, we prepose a new mobile multicasting scheme
called explicit multicast over mobile IP with routing optimisation
(XMIPRO).

XMIPRQ: The XMIPRO is based on two-level, hierarchical mobility
managentent architecture as shown in Fig. 1. Xcast router (XR)
located at a higher level in the network hierarchy is the Xcast-capable
router and temporarily stores the binding information for the mobile
nede. When the mobile node roams to other networks, it performs a
general registration procedure, as in mobile IP. On receipt of a
registration reply message from home agent (HA), foreign agent
(FA) sends a redirection message to its XR as indicated by (1) (sce
below). Upon receiving the redirection message, the XR creates a
binding cache, temporarily storing the mapping information that
indicates the mobile node a new point of attachment and then
forwards the redirection request message to the correspondent
node’s mobility agent (CMA) as indicated by (2). If the XR has a
binding cache entry for the mobile node’s new point of attachment
when receiving an Xcast packet during the redirection delay, it can
send the Xcast packet directly to mobile node’s new care-of address
(COA). .mobility agent (MA) is the Xcast-capable mobility agent
which manages an individual subnet and temporarily stores the Xcast
packet received from correspondent node (CN). The routing table
maintained by MA is extended to directly send the Xcast packet, as
shown in Fig. 1. The Xcast binding cache temporarily stores the
binding information to indicate the mobile node’s new peint of
attachment. Upon receiving the redirection request message from
mobile node’s new FA, correspondent node’s mobility agent (CMA)
creates an Xcast binding cache entry for the mobile node. Since all
packets transmitted by mobile nodes are routed towards the destina-
tion via MA, if CMA has an Xcast binding cache entry for the
destination node when sending an Xcast packet to the mobile node, it
sends the Xcast packet directly to the COA as indicated in the cached
mobility binding. XMIPRO is also free from packet loss due to
roaming. Upon receiving the Xcast packet, mobility agent creates a
cache (buffer) and temporarily stores the Xcast packet received from
correspondent node (CN). Therefore, upon receiving the new Xcast
packet in a visited subnet, the mobile checks whether there is any
offset in the datagram sequence number of packets. If the Xcast
packets received in a newly visited subnet are ahead (in terms of
sequence number) of these in the old subnet due to network dynamic,
the mobile sends the clear messages with an offset block, say [a, 5], to
the old FA, where the offset block means the difference in data
sequence to be recovered between two adjacent subnets. Upon
receiving the clear message, the old FA first looks up the MN binding
cache bounded with mobile node’s home address. If the old FA has a
cache entry, it tunnels the Xcast packet in the cache to the mobile. In
this way, XMIPRO can solve the triangle routing problem and
guarantees no packet loss due to roaming.

Cost analvsis: We built a simplified analytical model for evaluation
of the average costs using the method presented in [3]. We assumed
that a CN generates Xcast packets at a mean rate of / and mobile
nodes move from one subnet to another at a mean rate of y. The
packet to mobility ratic (PMR) is defined as the mean number of
Xcast packets received by a mobile node from a CN per movement,
The PMR is denoted by p =/ /u. We introduced two cost components.
One was the transmission cost, measured by the number of hops, the
other was the processing cost, measured in processing time of the
control packets. The distances between the entities involved in our
proposed scheme are denoted by @, b, ¢, d, ¢ and fas shown in Fig. 1.
We defined some parameters to derive the network cost as shown
below:

2 average cost for processing a control packet at any node;

L: ratio of the length of a data packet 10 the length of an ICMP control
packet;

Ciy: cost of mobile IP registration at the new FA;
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