Ensemble of Students Taught by Probabilistic Teachers to Improve Speech Emotion Recognition

Kusha Sridhar & Carlos Busso
Scalability and Consistency of SER Models

- Application areas: Security and Defense, healthcare → mission critical
 - SER should generalize well to new conditions
 - Be scalable and provide high test-retest reliability
- Knowledge of uncertainty in model predictions
 - It introduces diversity in model prediction
 - It creates robust models that are stable across diverse inputs
- Knowledge transfer from deep to lighter models
 - Flexible approach for generalization
 - Train deep, complex models on huge training data
 - Use light, shallow models at inference → PREFERRED!
 - Adapt to new conditions by learning from unlabeled data

Bayesian Inference with a Teacher-Student (T-S) Framework
Related Works

Speech, Language & Image tasks

Image Classification ➔ Distilled Dropout Network (DDN) to transfer knowledge from T to S via MC samples of soft-targets generated by teacher

[Gaurau et. al. 2018]

ASR ➔ Multi-task ensembles of T to reduce WER on telephone speech

[Wong et. al. 2017]

NLP ➔ Multi-layer Knowledge distillation (KD) using embeddings from multiple intermediate layers of T (BERT) to train S

[Sun et. al. 2019]

Speech Emotion Recognition

Audio-visual SER with cross-modal distillation ➔ Learn facial embeddings from T to train S on SER task. Reduction in labels noise with KD from faces to speech and robustness to ambiguous annotations

[Albaine et. al. 2018]

Preprocessing with emotion distillation to detect emotionally salient regions in audio-visual inputs

[Mower Provost et. al. 2012]
Motivation

- **Three main motivations:**
 - Transfer knowledge to a shallow, flexible model during inference
 - Leverage T-S framework in speech emotion recognition
 - Teacher is a deep, complex model trained on large amounts of training data
 - Create probabilistic distribution of embeddings to train student models
 - Use of an ensemble of teacher models
 - Capture model’s uncertainty in its predictions
 - Use of MC dropout in T-S framework
 - Handle out-of-distribution inputs or inputs from sparse regions of the in-domain data
 - Obtain information about the reliability of the prediction
Monte Carlo Dropout

- DNNs with dropout regularization can be used to quantify prediction uncertainty [Gal et al., 2016]
 - Change the weights setup randomly by applying dropout
 - As such, different configurations of the network lead to slightly different prediction
 - Prediction uncertainty will be the variance of \(N \) step predictions
 - Multiple iterations through a network with dropout is analogous to obtaining predictions from an ensemble of thinner networks.

- We can estimate the posterior distribution on the predictions during inference by sampling weights in a Monte Carlo fashion

\[
p(x_{\text{test}}|X) \approx \int p(x_{\text{test}}|\omega)p(\omega|X)d\omega
\]

Posterior predictive distribution
Teachers and Students

Teacher
- N ($N = 5$) teachers with different dropouts (MC dropout)
 - Model diversity giving complementary information

Average 100 MC teacher embeddings
- Preserves mean of the ensemble as well as captured uncertainty in predictions

Student
- N ($N = 5$) students learn from feature representations learned by teachers
- Use unlabeled data + supervision from teachers
- Final prediction is the average of the student ensemble predictions
The MSP-Podcast Database

- Use existing podcast recordings
- Divide into speaker turns
- Emotion retrieval to balance the emotional content
- Annotate using crowdsourcing framework

Podcast recording

The MSP-Podcast Database

- **MSP-Podcast**
 - Collection of publicly available podcasts (naturalness and the diversity of emotions)
 - Interviews, talk shows, news, discussions, education, storytelling, comedy, science, technology, politics.
 - Creative Commons copyright licenses (*Available for sharing!*)
 - Single speaker segments, High SNR, no music, no phone quality
 - Developing and optimizing different machine learning framework using existing databases
 - Balance the emotional content
 - Emotional annotation using crowdsourcing platform

- **Podcast Audio**
 - 16kHz, 16b PCM, Mono

- **Diarization**
 - Duration filter 2.75s<...<11s

- **SNR filter**
 - Remove segments with music

- **Emotional Annotation**
 - Remove telephone quality
MSP-Podcast corpus version 1.6

With emotion labels: 50,362 sentences (83h, 29m)

Primary emotional classes

Arousal
Valence
Dominance
MSP-Podcast Database

- Version 1.6 of the **MSP-Podcast** corpus
 - 50,362 (83h,29m)
- Corpus partition with aims to reduced speaker overlap in the sets:
 - Test data
 - 10,124 samples from 50 speakers (25 males, 25 females)
 - Validation data
 - 5,958 samples from 40 speakers (20 males, 20 females)
 - Train data
 - Remaining 34,280 samples
Interspeech 2013 Feature set

- 65 low level descriptors (LLD)
- High Level Descriptors (HLDs) are calculated on LLDs resulting in total of 6,373 features
- HLDs include:
 - Quartile ranges
 - Arithmetic mean
 - Root quadratic mean
 - Moments
 - Mean/standard deviation of rising/falling slopes

<table>
<thead>
<tr>
<th>4 energy related LLD</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of auditory spectrum (loudness)</td>
<td>prosodic</td>
</tr>
<tr>
<td>Sum of RASTA-filtered auditory spectrum</td>
<td>prosodic</td>
</tr>
<tr>
<td>RMS Energy, Zero-Crossing Rate</td>
<td>prosodic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>55 spectral LLD</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>RASTA-filt. aud. spect. bds. 1–26 (0–8 kHz)</td>
<td>cepstral</td>
</tr>
<tr>
<td>MFCC 1–14</td>
<td>cepstral</td>
</tr>
<tr>
<td>Spectral energy 250–650 Hz, 1 k–4 kHz</td>
<td>spectral</td>
</tr>
<tr>
<td>Spectral Roll-Off Pt. 0.25, 0.5, 0.75, 0.9</td>
<td>spectral</td>
</tr>
<tr>
<td>Spectral Flux, Centroid, Entropy, Slope</td>
<td>spectral</td>
</tr>
<tr>
<td>Psychoacoustic Sharpness, Harmonicity</td>
<td>spectral</td>
</tr>
<tr>
<td>Spectral Variance, Skewness, Kurtosis</td>
<td>spectral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 voicing related LLD</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_0 (SHS & Viterbi smoothing)</td>
<td>prosodic</td>
</tr>
<tr>
<td>Prob. of voicing</td>
<td>voice qual.</td>
</tr>
<tr>
<td>log. HNR, Jitter (local & δ), Shimmer (local)</td>
<td>voice qual.</td>
</tr>
</tbody>
</table>
Implementation Details

- Train separate regression models each for arousal, valence and dominance

- Teacher:
 - 5 teachers → DNN with 4 dense layers, 512 nodes per layer
 - MC dropout models with dropout rates: 0.45, 0.5, 0.55, 0.6, 0.65
 - SDG optimizer with learning rate equals to 0.001
 - Cost function: (1 - CCC)
 - Input: 6,373D feature vector
 - Output: 100 MC samples of the feature embeddings from the 4th dense layer

- Student:
 - 5 students → DNN with 2 dense layers, 512 nodes per layer
 - NADAM optimizer with learning rate equals to 0.0001
 - Loss = supervised loss + unsupervised loss → \(\alpha \cdot (1 - \text{CCC}) + \beta \cdot \text{MSE} \)
 - Input: Feature embeddings from teacher (labeled) + Unlabeled data
 - Output: Predicted ensemble average CCC score for arousal, valence and dominance
Performance on T-S models

Frameworks
- Baseline = 1 T without MC dropout
- Teachers’ MC ensemble = 5 T MC ensemble without S
- T-S (test) = 5 T-S ensemble with test as unlabeled data
- T-S (unlabeled) = 5 T-S ensemble with true unlabeled data
- T-S (pseudo-label) = use S predictions on unlabeled data as labels and re-train S
- T-S (top 75%) = use 75% of samples with lowest std.dev in the predictions from MC ensembles

<table>
<thead>
<tr>
<th>Methods</th>
<th>Arousal</th>
<th>Valence</th>
<th>Dominance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.7045</td>
<td>0.3146</td>
<td>0.6336</td>
</tr>
<tr>
<td>Teachers’ MC ensemble</td>
<td>0.7217</td>
<td>0.3184</td>
<td>0.6480</td>
</tr>
<tr>
<td>T-S framework (test)</td>
<td>0.7345</td>
<td>0.3230</td>
<td>0.6652</td>
</tr>
<tr>
<td>T-S framework (unlabeled)</td>
<td>0.7322</td>
<td>0.3219</td>
<td>0.6625</td>
</tr>
<tr>
<td>T-S framework (Pseudo-Label)</td>
<td>0.7290</td>
<td>0.3213</td>
<td>0.6558</td>
</tr>
<tr>
<td>T-S framework (Top 75%)</td>
<td>0.7279</td>
<td>0.3205</td>
<td>0.6508</td>
</tr>
</tbody>
</table>

Observations
- Significant improvements ($p < 0.01$) over the baseline in terms of CCC with the use of unlabeled data at S training stage
- Relative increase in CCC:
 - 4.25% for arousal, 2.67% for valence & 4.98% for dominance
- Advantage of adding S (comparing row2 and row3)
 - Relative increase in CCC upto 1.77% for arousal, 1.44% for valence & 2.65% for dominance
Standard deviation (std.dev) in predictions to quantify consistency/uncertainty
- Teacher: select one MC sample per T and calculate std.dev across ensemble
- Student: calculate std.dev across ensemble

Observations
- Std.dev for T are higher and dispersed
- S predictions are more consistent
- MC dropout is effective in guiding the student ensembles to give consistent predictions
Ablation Studies

- Systematic removal of contributing factors for our model
 - Best with both labeled + unlabeled data, MC dropout and 5 T-S ensembles (row1)
 - Influence of unlabeled data on the generalization ability of our model (row2)
 - Importance of MC dropout ensembles → it contributes significantly to improvements over the baseline (row 3)
 - Usefulness of the ensemble approach (last 3 rows)
 - Without MC dropout & ensemble → loss in CCC between 6.4% and 17.2% across A, V & D

A → Unlabeled data
B → MC dropout
C → No. of teachers and students in the ensemble
Conclusions

- Novel T-S framework for SER that:
 - Improves prediction of emotional attributes
 - Gives consistent predictions
- Knowledge distillation from T to S via MC ensemble of probabilistic features embeddings of T
 - It leverages the learning of S on unlabeled data
- Overall improvements in performance, generalizability and consistency in predictions
- Power of using MC ensembles + unlabeled data → up to 5% increase in CCC
Release of the MSP-Podcast Corpus

- **Academic license**
 - Federal Demonstration Partnership (FDP) Data Transfer and Use Agreement
 - Free access to the corpus

- **Commercial license**
 - Commercial license through UT Dallas

https://msp.utdallas.edu
This work was funded by NSF CAREER Grant IIS-1453781

Questions or Contact: Kusha Sridhar
Kusha.Sridhar@utdallas.edu

Our Research: msp.utdallas.edu