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Abstract
Voice conversion (VC) research traditionally depends on
scripted or acted speech, which lacks the natural spontaneity
of real-life conversations. While natural speech data is lim-
ited for VC, our study focuses on filling in this gap. We in-
troduce a novel data-sourcing pipeline that makes the release
of a natural speech dataset for VC, named NaturalVoices. The
pipeline extracts rich information in speech such as emotion and
signal-to-noise ratio (SNR) from raw podcast data, utilizing re-
cent deep learning methods and providing flexibility and ease
of use. NaturalVoices marks a large-scale, spontaneous, expres-
sive, and emotional speech dataset, comprising over 3,800 hours
speech sourced from the original podcasts in the MSP-Podcast
dataset. Objective and subjective evaluations demonstrate the
effectiveness of using our pipeline for providing natural and ex-
pressive data for VC, suggesting the potential of NaturalVoices
for broader speech generation tasks.
Index Terms: Data pipeline, automatic data sourcing, voice
conversion

1. Introduction
VC aims to convert one speaker’s voice to sound like that of tar-
get speaker while preserving linguistic content [1]. It has var-
ious applications such as movie dubbing, intelligent dialogue
systems, real-time voice cloning, voice assistants, and conver-
sational agents.

Most VC frameworks [1, 2] are typically trained using
scripted or acted corpus [3, 4], resulting in the generation of
high-quality speech predominantly with a reading or acting
style. However, the process of collecting acted data for VC is
labor-intensive and time-consuming, often burdened with inef-
ficiencies. Real-life speech, in contrast, is spontaneous and en-
compasses various speaking styles [5], emotional expressions
[4], nonverbal cues [6] such as laughter, and lip smacks, as well
as dysfluencies like repetitions, hesitations or interruptions [7].
Therefore, the progress of VC models requires obtaining a more
diverse dataset that reflects the richness, complexity, and ex-
pressiveness of spontaneous human speech.

In this paper, we introduce an automated method for sourc-
ing data from podcasts for VC. Podcasts offer distinct advan-
tages over other in-the-wild data sources such as YouTube data.
Unlike the diverse and often noisy background of other data
sources, podcasts generally have higher-quality audio record-
ings with clearer speech, making them particularly suitable for
VC tasks. Additionally, podcasts provide a diverse range of
speakers, ensuring that there’s enough speech data for each
speaker to effectively model their identity. This abundance of
varied speakers and ample speech data for each speaker enables
the successful transformation of speaker identity for VC task.
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Figure 1: An illustration of our data sourcing pipeline with var-
ious modules.

The components of our pipeline are depicted in Figure 1.
Leveraging state-of-the-art deep learning techniques from vari-
ous speech tasks including diarization, automatic speech recog-
nition, speaker recognition, and speech emotion recognition,
our automated data sourcing pipeline presents an innovative so-
lution to the challenges of gathering spontaneous and naturalis-
tic data for VC. Applying this pipeline to the original podcasts
in the MSP-Podcast dataset [9], we release a subset optimized
for VC, known as NaturalVoices. Below, we outline several key
advantages of our approach and the NaturalVoices dataset:
Richness and Expressiveness: NaturalVoices comprises 3,846
hours of speech data from numerous speakers, capturing natural
emotional expressions, diverse communication styles, nonver-
bal vocal cues, and a variety of background sounds in authentic
recording conditions. Our pipeline provides transcripts, speaker
details (such as label and gender), signal-to-noise ratio (SNR),
emotion attributes (arousal, dominance, valence) and emotion
categories (neutral, angry, happy, sad), and sound event cate-
gories like laughter and animal sounds (e.g., rooster crowing).
With such rich and expressive data provided by our pipeline,
NaturalVoices can be utilized across a range of tasks in speech
synthesis.
Flexibility and Easy-to-Use : Our dataset and pipeline are pub-
licly accessible1. Utilizing our pipeline, users can easily fil-
ter NaturalVoices speech data based on specific criteria such as
SNR, emotion states and gender. This simplifies dataset utiliza-
tion across diverse applications.

The rest of this paper is structured as follows: Section 2
provides an overview of related work. In Section 3, we outline
the details of our proposed automatic data-sourcing pipeline.
Section 4 introduces the NaturalVoices dataset and explores its
potential applications in other speech tasks. Experimental re-
sults are presented in Section 5. Finally, Section 6 summarizes
our findings and concludes the study.

1https://NaturalVoices.github.io/NaturalVoices/
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Table 1: A comparison of the NaturalVoice dataset with other common VC datasets. The NaturalVoice dataset marks as the first large-
scale, spontaneous, expressive, and emotional speech dataset for VC.

Speech Type Total Hour # of Speakers SNR Sound Event
Categories

Emotion TextCategories Attributes
VCTK [8] Read 44 110 No No Neutral Speech Transcript
ESD [4] Read 15 10 No No Yes No Transcript

NaturalVoices Spontaneous 3846 >2467 Yes Yes Yes Yes ASR

2. Related Work
2.1. Emotional Speech Datasets

Emotions play a vital role in human communication, yet un-
derstanding and synthesizing emotional speech remains chal-
lenging due to the nuanced and intricate expressions found in
real-life conversations. Speech emotion recognition (SER) is
an important task for emotion understanding. Existing emo-
tional speech datasets for SER [10, 11] often rely on scripted
recordings, resulting in overemphasized emotions that differ
from authentic emotional nuances found in natural conver-
sation. Alternatively, collecting other SER datasets [12, 13]
through conversational improvisations for spontaneous speech
is labor-intensive and costly [4]. However, as highlighted by
Zhou et al. [4], these SER emotional datasets often lack lexi-
cal variability and may contain external noise and overlapping
speech, making them unsuitable for VC.

Lotfian et al. [9] introduced the MSP-Podcast dataset for
SER, consisting of retrieved speech segments with annotated
emotion categories and attributes from podcast recordings.
These podcasts contain natural conversations among diverse
speakers discussing various topics. This diversity ensures large
lexical and speaker variabilities, crucial for VC datasets. In-
spired by this, we applied our pipeline to create NaturalVoices
for VC task, without relying on annotations or labels from MSP-
Podcast.

2.2. Datasets for Voice Conversion

VC frameworks require data from multiple speakers to model
various aspects of speech, including speaker identity [1, 2],
speaking style [14], and emotional information [5].VC datasets
often consist of read speech, lacking natural spontaneity. For
instance, the CSTR VCTK corpus [8] contains recordings from
110 English speakers, and similarly, other VC datasets [15–18]
primarily provide only neutral speech. The ESD dataset [4] in-
cludes emotional speech from 10 speakers with various emo-
tional states, and has been used widely in VC. However, ESD
is limited in size and consists solely of acted speech. To ad-
dress the need for more diverse datasets reflecting spontaneous
human speech, this paper introduces NaturalVoice, a large, nat-
ural, and emotional dataset for VC applications.

3. Automatic Data Sourcing Pipeline
In this section, we introduce our automatic data-sourcing
pipeline inspired by [19]. Initially, our pipeline divides each
podcast from the MSP-Podcast dataset into segments of appro-
priate duration. Subsequently, it automatically annotates these
segments with transcripts, speaker details, SNR, emotion at-
tributes, and sound event categories using different modules, as
illustrated in Figure 1. Our pipeline offers users the ability to
easily and flexibly filter our dataset according to their prefer-
ences.
Diarization and ASR Module: We utilize the Faster Whis-
per model, an accelerated version of Whisper [20] combined
with CTranslate2, to segment the audio of each episode into

short segments (4-6 seconds) and provide accurate transcripts
for each segment. However, minor misalignments persist in the
model at segment start and end times. To resolve this, we ad-
just segment durations based on intervening silence: extending
adjacent segments by 0.25 seconds each if silence exceeds 0.5
seconds, or merging segments for shorter silences. We then use
the Montreal Forced Aligner (MFA) [21] to align audio sam-
ples with transcriptions, generating phone-level alignments us-
ing word-to-phoneme mappings.
Speech Detection Module: Some audio segments contain mu-
sic instead of speech, which is usually undesired in many VC
and speech synthesis applications, as the music can act as noise
during training these models. We employ a temporal convolu-
tional network [22] to distinguish between speech and music.
Speaker Recognition Module: A crucial aspect of training VC
models is maintaining a unique and distinct speaker set to accu-
rately represent speaker characteristics. We address this in two
steps: Firstly, we utilize PyAnnote [23, 24] to identify ’local
speakers’ within individual audio files. Secondly, we consoli-
date ’local speakers’ from different files into ’global speakers’
through manually annotating a single segment per file. This
process creates a unique ’global speaker’ set for overlap-free
applications and offers flexibility with ’local speakers’.
Gender Classification and Age Module: We employ a model
[25] for age and gender prediction, providing additional infor-
mation for the speaker in each segment.
Emotion Attribute and Category Module: We employ two
high-performing emotion detection models. The first, PEFT-
SER [26], is a categorical model based on WavLM and LORA,
trained to identify primary emotion classes within speech ut-
terances, including neutral, happiness, sadness, and anger. The
second is a regression-based WavLM model [27], designed to
assess the emotional spectrum of valence (ranging from nega-
tive to positive), arousal (from calm to excited), and dominance
(from weak to strong) in each audio segment, thus providing a
broader emotional context.
SNR Module: SNR quantifies the level of desired signal rela-
tive to background noise in an audio recording. We estimate the
SNR value for each audio segment using WADA-SNR [28].
Sound Event Detection Module We use the AST model [29]
to predict over 500 different sounds (e.g., honking, alarm, ani-
mal noises, etc) for each segment. By using this model we can
filter the data to include or exclude any type of background or
abnormal sounds.

4. NaturalVoices Dataset
Our research introduces a novel pipeline and the creation of
publicly available, large-scale speech dataset, named Natu-
ralVoices. NaturalVoices includes 3.8k hours of speech with
over 2 million utterances, averaging 6.67 seconds each. Within
this, 2.6k hours contain single-speaker speech, with 1.3k hours
labeled for 2,467 speakers. The dataset includes 1,115 female
speakers and 1,338 male speakers. All data is down-sampled
to 16kHz. For each utterance, we provide other automatically
annotated information obtained from the pipeline that are 1)
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Figure 2: Emotion attribute (arousal, dominance, valence)
and category (neutral, sad, angry, happy) distribution in Nat-
uralVoices versus VCTK.

Signal-to-Noise Ratio, 2) emotion attributes (arousal, domi-
nance, valence), 3) emotion categories (neutral, angry, happy,
sad), 4) speech or music classification, and 5) sound event cat-
egories. With this dataset, we aim to facilitate advancements in
speech processing, in particular in expressive speech synthesis
and VC.
4.1. Analysis

In our study, we conducted a comparative analysis between
our dataset, NaturalVoices, and two widely used VC datasets:
ESD [4] and VCTK [8], as summarized in Table 1. The results
indicate that our dataset contains more natural and spontaneous
speech, along with additional automatically annotated informa-
tion. Compared to ESD, our dataset has a larger scale, includ-
ing more speakers and greater lexical variability. Compared to
VCTK, our dataset is more expressive, larger in scale, and in-
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Figure 3: SNR distribution in NaturalVoices and VCTK.
cludes more speakers. In the following sections, we provide a
detailed comparison of VCTK from various perspectives.

Figures 2a, 2b, and 2c provide visual representations of
the distribution of emotion attributes – arousal, dominance, and
valence – within both the VCTK and NaturalVoices datasets.
Arousal reflects the degree of excitement or calmness, dom-
inance indicates the intensity of an emotion, and valence de-
notes the positivity or negativity of an emotion [30]. As illus-
trated in Figures 2a, 2b, and 2c, NaturalVoice exhibits a broad
range across these three emotion attributes, indicating a higher
level of expressiveness and the presence of stronger emotions.
Conversely, VCTK demonstrates less variation, predominantly
skewing towards negative attributes.

Moreover, categorical analysis highlights our dataset’s
wider spectrum of emotions in Figure 2d, including a higher
prevalence of neutral, angry, and happy expressions, alongside
a significantly larger dataset compared to VCTK. The SNR dis-
tribution in Figure 3 highlights the diversity of NaturalVoices in
terms of background noise and varied environments, with seg-
ments below 40 SNR and at high SNR levels of 100. Compared
to VCTK, our dataset contains more samples in the high SNR
range (above 100) and a broader distribution across SNR lev-
els, including more samples in the 0-20 SNR range. VCTK, on
the other hand, predominantly focuses on the 20-40 dB range,
with fewer samples in the extreme SNR values. This diversity
underscores our dataset’s wide range of recording scenarios, in-
cluding instances with challenging background noise levels and
those with optimal signal-to-noise ratios.

4.2. Possible Applications

Our dataset presents a wealth of opportunities for diverse ap-
plications in speech processing and machine learning. In this
section, we explore its potential impact on speech synthesis and
other speech tasks.
Expressive Speech Synthesis and VC: Our dataset clearly fa-
cilitates speech synthesis and VC research. Furthermore, it can
be used for expressive VC [5] and emotional VC [4]. While
expressive VC focuses on converting speaker identity for emo-
tional speakers, emotional VC specifically targets the conver-
sion of emotional states. By providing a rich collection of nat-
ural speech data with diverse emotional attributes, our dataset
enables VC models to capture and model nuanced emotional
expressions. Additionally, with additional automatically anno-
tated text, researchers can leverage this dataset to enhance the
expressiveness and emotional fidelity of synthesized speech by
developing text-to-speech (TTS) models.
Noisy-to-Noisy VC and Noise Robust VC: Our dataset’s di-
verse range of SNRs makes it ideal for exploring noisy-to-noisy
VC, where the goal is to conduct identity conversion while
preserving background sounds [31]. Researchers can use this
dataset to develop robust VC models that are capable of han-
dling noisy input conditions, leading to improved performance
in real-world scenarios with varying levels of background noise.



Spontaneous Speech Modeling and Generation: Understand-
ing, modeling and generating spontaneous speech pose ongoing
challenges. Our dataset encompasses a diverse range of conver-
sational styles, pauses, and speech disfluencies, capturing the
natural variability present in spontaneous speech. Researchers
can leverage this dataset to train models for spontaneous speech
generation, as well as for tasks such as spontaneous speech
recognition and understanding.
Weakly-Labeled Supervised Training: Given that all anno-
tations in our dataset are generated by deep learning models,
the presence of weakly-labeled data offers a unique oppor-
tunity for weakly-labeled supervised training approaches. In
such cases, labels may be incomplete or noisy, yet researchers
can effectively leverage this data using techniques like semi-
supervised learning and self-training. By doing so, they can im-
prove model performance and generalization on various tasks,
including ASR, speaker diarization, and SER.

5. Experiments for VC
In this work, our primary focus to explore the use of Natu-
ralVoices in VC under various settings. We demonstrate the
effectiveness of NaturalVoices across a range of VC scenarios.
5.1. Experimental Setup and Evaluation Metrics

In this study, we employ TriAANVC [32] as our chosen VC
model. Employing an encoder-decoder architecture, it effec-
tively disentangles content and speaker features. Through the
Triple Adaptive Attention Normalization (TAAN) block, the
model extracts detailed and global speaker representations via
adaptive normalization, ensuring preservation of source con-
tent with siamese loss and time masking. TriAANVC show-
cases state-of-the-art performance in non-parallel any-to-any
VC tasks, as evidenced by evaluations on the VCTK dataset.

We trained TriAANVC on our dataset, and compared the
results with those obtained from the VCTK dataset. For train-
ing details, we utilized a batch size of 100, conducted training
over 500 epochs, employed the Adam optimizer with a learning
rate of 10−5, and set model parameters to H = 256, C = 512,
and L = 6, with CPC utilized as features. And we used the Par-
allelWaveGAN [33] vocoder trained on our dataset to generate
utterances. For the VCTK dataset, we employed the pre-trained
model 2. We randomly selected six speakers as seen speakers
and six speakers as unseen speakers from their demo page.

For objective evaluation, we focus on two key metrics:
speaker similarity and intelligibility, which are both crucial as-
pects in assessing the effectiveness of VC systems. Speaker
similarity is measured using the acceptance rate from a Speaker
Verification (SV) model, based on cosine similarity between
embedding vectors of target and converted speech. The thresh-
old is determined using the equal error rate from our Natu-
ralVoices dataset. Word Error Rate (WER) and Character Error
Rate (CER) assess script discrepancies, with the script for con-
verted utterances obtained using a pre-trained Whisper model
[20]. For subjective evaluation, we conducted a Mean Opinion
Score (MOS) [5] listening test to evaluate speech quality and
intelligibility. A total of 12 subjects participated in all experi-
ments.

5.2. Experimental Comparisons and Results

We utilized automatic annotations from our pipeline to filter
training data from NaturalVoice, aiming for settings similar

2https://github.com/winddori2002/TriAAN-VC

Table 2: Objective results for TriAANVC with VCTK and Natu-
ralVoices in S2S and U2U settings.

Training Data SV(%)↑ CER(%)↓ WER(%)↓
S2S U2U S2S U2U S2S U2U

VCTK [8] 71.10 80.30 16.42 12.38 25.74 19.82
NaturalVoices 93.65 89.16 17.01 18.55 27.20 30.43
NaturalVoicesvctk 80.75 82.76 19.31 19.26 30.70 31.02
NaturalVoices−Large 96.78 73.80 19.68 22.26 30.37 33.31

Table 3: Objective results for TriAANVC across varying SNR
levels in a S2S setting.

SV(%) ↑ CER(%)↓ WER(%)↓
Low SNR 85.11 32.69 46.91
High SNR 93.65 17.01 27.20

Table 4: MOS results for NaturalVoices with 95% confidence
interval.

Quality↑ Intelligibility↑
Generated Speech 3.17±0.23 3.77±0.36

NaturalVoices 4.38±0.16 4.79±0.18

to VCTK: multiple speakers with neutral speech. This por-
tion of our dataset was then employed to train TriAANVC.
Since our dataset is out of distribution compared to VCTK,
we also trained a vocoder with our dataset to enhance per-
formance. Consequently, we obtained speech samples gener-
ated by two vocoders: one pre-trained on VCTK (denoted as
NaturalVoicesV CTK ), and the other trained on our dataset (re-
ferred to as NaturalVoices). The results presented in Table 2
demonstrate that NaturalVoices achieve better performance in
terms of speaker similarity and comparable performance for
CER and WER, underscoring the efficacy of our dataset for VC
tasks. Furthermore, training the vocoder on our dataset yields
performance improvements, a noteworthy consideration given
the dataset’s out-of-distribution nature relative to VCTK. Sub-
jective evaluation results in Table 4 also affirm that our datasets
are suitable for VC.

We examined the benefits of dataset size expansion by fil-
tering a larger training dataset, denoted as NaturalVoice−Large,
to train TriAANVC. Table 2 reports that a larger dataset en-
hances speaker identity conversion in the VC model. Given the
spontaneous nature of NaturalVoices, increasing the size of the
training data presents a challenge for the model designed for
acted speech, particularly in modeling linguistic information for
spontaneous speech.

Additionally, we explored the effect of different SNR levels
on the VC model. We filtered our data into two settings: Low
SNR (0-20 dB) and high SNR (80-100 dB). As demonstrated in
Table 3, we can observe that the performance of the VC model
is affected by background noise. Our dataset contributes to the
development of robust VC models by providing valuable train-
ing data.

6. Conclusion
In our paper, we introduce NaturalVoices, a novel large-scale
spontaneous speech dataset comprising over 3,800 hours of di-
verse and emotional speech sourced from podcast data, lever-
aging an innovative data-sourcing pipeline. The pipeline oper-
ates concurrently to predict multiple labels relevant to speech
synthesis and is designed to accommodate expansion as new
and improved models emerge. Experiment results show VC
model can generate natural and intelligible speech by using Nat-
uralVoices, indicating its potential for broader speech genera-
tion applications. We will explore other expressive speech syn-
thesis tasks with NaturalVoices in future work.
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