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ABSTRACT
Video-based learning has become a popular, scalable, and effective
approach for students to learn new skills. Many of the challenges
for video-based learning can be addressed with machine learning
models. However, the available datasets often lack the rich source
of data that is needed to accurately predict students’ learning ex-
periences and outcomes. To address this limitation, we introduce
the MSP-GEO corpus, a new multimodal database that contains
detailed demographic and educational data, recordings of the stu-
dents and their screens, and meta-data about the lecture during the
learning experience. The MSP-GEO corpus was collected using a
quasi-experimental pre-test/post-test design. It consists of more
than 39,600 seconds (11 hours) of continuous facial footage from
76 participants watching one of three experimental videos on the
topic of fossil formation, resulting in over one million facial im-
ages. The data collected includes 21 gaze synchronization points,
webcam and monitor recordings, and metadata for pauses, plays,
and timeline navigation. Additionally, we annotated the recordings
for engagement, boredom, and confusion using human evaluators.
The MSP-GEO corpus has the potential to improve the accuracy
of video-based learning outcomes and experience predictions, fa-
cilitate research on the psychological processes of video-based
learning, inform the design of instructional videos, and advance
the development of learning analytics methods.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; • Applied computing→ Learning management systems;
Distance learning; E-learning.
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1 INTRODUCTION
Collecting and analyzing large-scale video-learning data of a di-
verse set of students and interactions is valuable for designing
educational materials, strategies, and tools. Such holistic data is
also critical for developing individualized intelligent tutoring sys-
tems (ITSs) supported by machine learning (ML) models to predict
learning experiences and outcomes [34]. Video-based learning ini-
tiatives have resulted in important advances in different digital
learning environments[1, 2, 6, 21, 40]. However, most of the re-
sources used to understand cognitive and emotional states are not
tailored toward education or a learning environment (e.g., the Af-
fectNET corpus [28]). Moreover, the existing databases used to train
models in a learning environment mainly deal with perceived emo-
tions or attention (e.g., DaiSEE [10]). These databases are helpful
in training models to predict the learners’ visible reactions, such
as sleepiness or tiredness, but not enough to understand or predict
deeper learning experiences from the learners, such as cognitive
and engagement changes, satisfaction, or real learning outcomes.
As mentioned by some researchers [42], the combination of tradi-
tional and novel methods should consider both pedagogical and
educational designs. However, currently available databases often
lack such a design, so they can rarely provide full and reliable infor-
mation about the learning input and the learners. Some important
learner information is not well reported, including backgrounds,
learning styles, experiences, and outcomes.

This study presents the new MSP-GEO dataset, which was col-
lected to provide the ML community a resource to answer profound
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learning questions and advance AI solutions to video-learning ex-
periences. The MSP-GEO dataset contains recordings of 76 students
watching educational geoscience videos. Collectively, theMSP-GEO
dataset includes the learners’ data, assessment data of the educa-
tional videos, learners’ recordings, and annotation data for training
ML models. Following a standard procedure, participants were
asked to finish pre-video questions, watch an assigned geoscience
educational video about how fossils form, and finally answer some
post-video questionnaires. This whole video-watching process was
conducted with software that we created and installed on their
computers to collect facial data and matching learning logs. The
facial data of the learners was collected using their webcams as
they watched the videos. The corpus also has rich educational data
about the learners. Traditional methods incorporated in the data
collection protocol include concept inventory questions and sur-
veys. While these traditional methods cannot provide continuous
data in daily learning activities and are hard to scale [29, 32], we use
these methods to collect reliable and detailed data about the back-
ground of the learners, their learning outcomes, and their overall
learning experience. The interface designed for the data collection
extracts useful information from the digital learning environments,
providing rich multimodal data in a continuous fashion. The ex-
periment was conducted in each participant’s preferred learning
environment(e.g., home, library, coffee shop, or labs) and preferred
time. Therefore, the videos show video learning in the learners’
natural learning environments on their personal laptops, without
device requirements.

The MSP-GEO dataset considers three specially designed geo-
science educational videos, where each learner was randomly as-
signed to one of them. The MSP-GEO database includes more than
39,600 secs (11 hours) of continuous facial footage of 76 learners
watching the three educational videos (over 1 million facial im-
ages). The corpus includes annotations for the perceived level of
engagement, boredom, and confusion. It also contains learners’
demographic information, educational information, and learning
style preferences. The pre-test and post-test contain information
about video learning satisfaction, personal interest, prior knowl-
edge, engagement, and learning outcomes.

The recordings were collected using a rigorous educational ex-
perimental design. We carefully processed and organized the infor-
mation so it can be directly used to explore problems in learning
analytics. We envision the MSP-GEO database as a key resource to
develop ML algorithms not only to recognize the perceived learning
states of the students, but also to study deeper learning questions
about the relationship between students’ behaviors and video learn-
ing experience outcomes. Moreover, the database can be used to
improve educational video designs, understand video learning ex-
periences, and predict video learning outcomes.

2 BACKGROUND
Researchers and institutions often collect educational datasets.
However, they traditionally focus on collecting and analyzing struc-
tured data (e.g., course enrollment and test grades). The area of
educational data science (EDS) has been actively explored in recent
years, due to the development of learning analytics and educational
data mining technology. The higher potential of computational
models to analyze big data effectively and efficiently have added

new dimensions to static and structured data, focusing on more
dynamic and unstructured data (e.g., logs during interactions and
multimedia recordings) [26]. Fischer et al. [8] provided a framework
to classify unstructured data into three categories: microlevel data,
mesolevel data, and macrolevel data. Microlevel data has a tempo-
ral component associated with fine-grained interaction data with
closely tied learner interactions that can capture individual data
(such as recordings and activity logs). Mesolevel data contains in-
formation on the assessment of learners and learning environments
(such as discussions showing cognitive ability or processes, or social
relationships in learning). Lastly, macrolevel datasets for EDS can
include both static information (e.g., student demographics) and
dynamic data (e.g., pre- and post-video personal interest changes).
Most of the data collected by researchers contains only one or at
most two types of data. For example, learning analytics datasets
often contain clickstream, such as play, pause, skip, and rewind,
log datasets (microdata), or a combination of logs and assessment
scores (micro and macro data). Even the databases containing all
three levels of data [14] rarely have fine-grained and complete
data about the learners, learning input, assessment results, learning
experience data, and learning environment.

Most current studies focus on the learning management system
data. The MOOC learning platform has used these types of data
to predict and understand course level features, such as learning
engagement, and drop-out rates [30]. Focusing solely on learning
analytics can be problematic, as it oversimplifies the complex na-
ture of learning. Metrics-based systems, while useful in pattern
analysis, often lack direct, detailed information about the learners’
experiences and outcomes, hindering a deeper understanding of
the learning process [12]. Furthermore, despite the importance of
having the complete fine-grained learning experience outcome data,
educational datasets rarely include all three levels of meaningful
information about learners and their learning processes [31, 37].

The concept of engagement has been studied in the context of
learning analytics, where several databases have been published. Ta-
ble 1 provides an overview of some of these databases. The dataset
for affective states in e-environments (DAiSEE) [11] is a dataset
that captures videos of learners while they watch educational and
recreational videos. During the task, the faces of the learners were
recorded using a webcam. The corpus includes annotations at the
video level for boredom, confusion, engagement, and frustration.
Following a similar approach, Kaur et al. [15] created a database
to measure the learner’s intensity of engagement while watching
educational videos. The learners were asked to provide feedback
on the tasks. In contrast, Whitehill et al. [41] collected a database
in a controlled environment where the learners played a cognitive
skill game. The participants’ faces and engagement levels were
recorded during the game. Delgado et al. [5] introduced the student
engagement database in a controlled environment where students’
faces were recorded while they solved math problems. This data-
base measures the level of engagement by annotating whether the
learner is watching the screen or is distracted in some other way.

Due to the limitations of current learning analytics and tradi-
tional educational methods, researchers have gradually realized
the importance of using microlevel, mesolevel, and macrolevel data
to get insights into the students’ learning experiences [30]. The
MSP-GEO database has all three categories of unstructured and
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Table 1: Databases to study engagement during the learning
process. We mark with the symbol “-” when a specific de-
scription was not provided by the authors.

Database Video data Environment Size [hrs] Number of
subjects

DAiSEE [10] Participant face Wild ≈ 25.18 112
Kaur [15] Participant face Wild ≈ 16.25 78

Student Engagement [5] Participant face Controlled ≈ 5.2 19
Whitehill [41] Participant face Controlled - 34

proposed corpus Participant face
Task recording
Eyes calibration

Wild ≈ 11 76

structured data directly related to the a learning topic, used as a
case study.

3 THE MSP-GEO VIDEO LEARNING CORPUS
It is important to consider macrolevel, mesolevel, and microlevel
data to obtain a more comprehensive understanding of the expe-
rience of video-based learning. We propose the MSP-GEO video
learning corpus, which addresses this issue by providing a more
complete dataset. Over a period of three years, we recruited 76
participants from The University of Texas at Dallas (UTD) campus
using flyers, online advertisements, and class advertisements. Some
participants completed the experiment online, while others were
able to complete the experiment in-person on the UTD campus. As
a case study, we consider video lectures on fossil formation. During
the experiment, participants were first asked to complete a pre-
survey, which provided demographic information, major, personal
interests, and a test on the topic of fossil formation. Afterward, we
provide a graphical user interface (GUI) (Sec. 3.1), which played a
pre-selected video lecture. Prior to the start of the video lecture,
participants are asked to adjust their webcams, and provide data to
calibrate appearance-based gaze models. The gaze model is used for
later attention analysis. The GUI records the face of the learners,
the monitor with the educational video, and the viewing actions
used by the learner (e.g., play, pause, and rewind). Once the lecture
was completed, the participants were able to exit the application
and complete a post-video survey that measure their satisfaction,
learning outcome, and engagement. The macrolevel data includes
demographic information and surveys. Themicrolevel data includes
video recordings, activity logs, and annotations of engagement,
boredom, and confusion. The mesolevel data includes pre-test and
post-test questions to assess the understanding of the learners on
fossil formation after watching the videos. We describe the key
components of the data collection. The study is approved by UTD’s
institutional review board (IRB-21-59), and all participants were
informed and signed consent forms. The dataset will be available
for the interested party or research community if requested.

3.1 Graphical User Interface
We are interested in collecting as much information during the
video-learning experience. For this purpose, we create a graphical
user interface (GUI) with powerful capabilities. The program was
built in Python. The GUI was provided to the participants. Upon ini-
tiation, the application displays the webcam feed of the participants,
allowing them to adjust their seating position and environment

(a) Webcam Test (b) Webcam Recording

(c) Screen Recording (d) Calibration

Figure 1: Illustrations of the videos collected in the corpus.
(a) The webcam test set, where participants can adjust their
webcam and the lighting condition, (b) an example of the
webcam recordings during a lecture, (c) an example of the
screen recording captured during a session, and (d) an illus-
tration of a randomly placed calibration point.

lighting condition to ensure optimal visibility of their faces. Figure
1a illustrates this process. Once the participants completed this
preliminary step, the application begins recording their webcam
feed at a target frame rate of 30 frames per second (FPS) and their
monitor at a target rate of 2 FPS. Figures 1b and 1c show examples
of the webcam recordings and screen recordings, respectively. The
frame rate of webcam recordings can vary significantly across de-
vices. In our corpus, we observe an average of 29 FPS with only
one video with a FPS below 24FPS (19FPS). Our GUI also records
the time associated with each frame of the webcam and monitor,
facilitating the synchronization between the recordings.

The data collection application also includes a gaze calibration
feature, which serves as reference data to train appearance-based
gaze approaches [18, 19]. This feature involves the random place-
ment of 21 buttons around the screen in sequential order, asking the
participants to click on each point as they appear. Figure 1d shows
an example of this step. When a button is clicked, the application
records the button and mouse location and the corresponding time
to facilitate synchronization between screen location, and the frame
displaying the eye-gaze. Additionally, once a button is clicked, it
remains on the screen for additional 500 milliseconds before it dis-
appears and the next button appears. This delay before the next
point appears has been found to encourage participants to maintain
their gaze directed to the target location, resulting in a more accu-
rate synchronization between the time the button is clicked and
the frame with the eye appearance captured by the webcam record-
ing. To provide a more diverse distribution of the button locations,
the application window is divided into 7 horizontal and 3 vertical
regions, resulting in a total of 21 rectangles. Each button appears
in each of these 21 rectangles in random order. The placement of
the button within the rectangle is also random.

After the completion of the gaze calibration process, the lecture
starts playing using the VLC application programming interface
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(API) for Python. This API provides the participants the ability to
control the lecture playback, including features such as play, pause,
and rewind. Importantly, each time a participant engages with
these playback controls, the application records the corresponding
time and location within the lecture. This information is valuable
in analyzing participant behavior, particularly in instances where
a student revisits particular sections of the lecture. Furthermore,
recording this microlevel information allows us to synchronize the
lecture playback location with the webcam recordings, facilitating
future analysis of the participants’ engagement with the lecture
material.

3.2 Educational Videos
We use three different educational geoscience videos, which were
designed and created by UTD Geoscience Studio. The videos were
created under the supervision of paleontologists and geology pro-
fessors to ensure their scientific accuracy. The three videos describe
how fossils form. Video #1 is 4 mins 33 secs long, video #2 is 6
mins 58 secs long, and video #3 is 6 min 27 secs long. All these
videos were designed with animations, static photos, and real-world
footage. Videos #2 and #3 were created based on video #1 so that
they have the same video style and the same educational content on
how fossils form. The only differences between these videos are the
number of real examples of fossils discussed in the lecture, where
videos #2 and #3 have more real examples of fossils than video #1.
Video #2 gives these extra examples in a section at the beginning
of the video. In contrast, video #3 separates the same examples into
segments and embedded them into different sub-sections within
the video.

3.3 Participants
We recruited 101 participants during 3 years (2019-2022) using
posters and online advertisements at the UT Dallas. The first part
of the dataset was collected using computers provided by the MSP
Laboratory, where everything was carefully prepared for the partic-
ipants. Participants schedule a time slot in which they can use the
provided hardware and software to collect the data. In the middle
of our effort, the COVID-19 pandemic started, which changed our
strategy. Our experiment was forced to be remote using the laptops
of the learners. About 40% of the data in the MSP-GEO database
were remotely collected. Since this part of the data collection was
conducted in the wild, not all videos were good enough for further
analysis. For example, some learners wore masks while watching
the videos or used dual monitors. Our software was not designed
for dual monitors, resulting in recordings of the wrong screen. In
total, we encounter problems in the data of 25 subjects. Therefore,
the corpus only includes high-quality data from 76 learners that
can be used for ML research purposes. Out of the 76 learners, 21
participants watched video #1, 44 participants watched video #2,
and 11 participants watched video #3.

We obtain consent forms for all the participants. Video research
can easily generate ethical issues, which is important since many
studies lack a thoughtful consent process with an appropriate data
protection plan [17]. For the collection of this corpus, we created
a relatively complex consent process with the help of the UTD’s
IRB staff (IRB-21-59). The process included in-person and remote
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Figure 2: Demographic information of the participants, in-
cluding ethnicity, gender, and age.
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Figure 3: Educational information of the participants, includ-
ing school year, and major.

consent forms, a description of the protocol, confirmation questions
to the participants to assess their understanding, and the opportu-
nity for the participants to ask questions. We used REDCap [13] to
collect the data to reduce the risk of leaking the identity of the par-
ticipants. After the data collection, we encrypted and anonymized
the raw data.

4 EDUCATIONAL INFORMATION OF
PARTICIPANTS

One of the important strengths of the MSP-GEO Video Learning
Dataset is the inclusion of educational information from the partic-
ipants. We refer to this information as Ed-Info data, which includes
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Figure 4: Distribution of the estimated interest level of learn-
ers on Earth science. The metric is obtained according to the
answers of learners to reasons for taking geoscience-related
classes.

the demographic and learning background of the learners. The
Ed-Info data was collected via traditional educational experiments
under a quasi-experiment design. The Ed-Info data has a total of
18 fields, with the first two including the participant’s ID and their
assigned lecture. The remaining 16 fields are educational informa-
tion, which can be further categorized into six categories. The first
category is demographic information, which includes age, ethnic-
ity, hometown, and gender (Fig. 2). The second category is school
information, which includes school year, major, and learning style
(Fig. 3). The third category is personal interest and contains two
fields that capture the participant’s interest in the general video
subject (i.e., Earth Science) and the specific video subject (i.e., fossil
formation). The fourth category is prior knowledge and consists
of two additional fields that capture prior training in the general
subject and knowledge of the specific video subject. The fifth cate-
gory is learning outcome, which is a score obtained after completing
open-ended questions. The sixth category is learning experience,
which contains the last four fields. These fields comprise self-report
metrics from the participants, including satisfaction, engagement,
virtual learning output, defined as the effectiveness of the provided
video compared to in-person lecture, and the overall learning out-
come, which is defined as the effectiveness of the provided video
lecture to convey the target concept. The Ed-info data, which covers
the mesolevel to macrolevel information of learners and their video
learning experiences was collected from each learner.

4.1 Personal Interest
The participants were asked about their reasons for taking past
Earth science courses. We provided the 12 most common general
reasons that students take a course. Half of the answer reasons
suggest that the student may be personally interested in learning
Earth science (e.g., “content seems interesting”). The rest of the
answers do not indicate a particular interest in Earth science (e.g.,
“It is an easy elective”). We coded the positive answers with a ‘+1’
and negative answers with ‘-1.’ We use the sum of the coded an-
swers for individuals to indicate their relative personal interest
level compared to other participants in the study.

Figure 4 shows the distribution of the interest level of the par-
ticipants. The mean of the personal interest metric is -0.17. On
average, the participants do not show particular interest in learning

about Earth science. The standard deviation is 1.66, with a range
of 9, a maximum of 4, and a minimum of -5. The skewness is 0.15.
In the post-video survey, students also reported if they liked the
subject matter of the assigned video. The results show that most
students like the subject matter (70 of 76). The pretest result about
personal interests in Earth sciences shows that the interest level
of participants is randomly distributed. This almost normal dis-
tribution of the interest levels in the general domain knowledge
demonstrates good diversity, allowing us to observe how interest
levels of students change while watching the video.

4.2 Prior Knowledge
We estimated participants’ prior knowledge on fossil forming and
general geoscience. We used the geoscience concept inventory (GCI)
to evaluate their knowledge on fossil formation. GCI is a multiple-
choice assessment tool [20]. The GCI v.3.0 includes 73 questions
covering topics related to general physical geology concepts, and
fundamental concepts in physics and chemistry that are integral to
understanding the conceptual Earth (e.g., gravity and radioactivity).
We only selected the three questions related to fossil formation,
since our study only includes videos describing this topic (questions
#38, #40, and #53 in version 3 of GCI). Each question has a difficulty
level on the Rasch scale. For these three questions, the scale is zero,
indicating that the level of difficulty is average. These questions
can identify participants with prior knowledge on fossil formation.

Table 2 shows the result of the participants for the three CGI
questions. Few participants obtained either zero correct answers
(7.9%) or all correct answers (15.8%). 27 learners obtained one correct
question (35.5%), and 31 learners obtained two correct questions.
These results show that around 43.4% of the learners had limited
prior knowledge about fossil formation.

The prior knowledge on the learning domain, in our case, Earth
science, is estimated by collecting information about the number of
Earth science classes taken in the past. Figure 5 shows the statistics
of how many earth science courses participants have previously
taken before participating in this data collection. The majority of
the participants (61 of 76, 80%) had taken no more than two geo-
science classes in the past. Taking one or two Earth science classes
gives a basic intro-level knowledge about this subject. However, it
is expected that they will know more than students without any
Earth science class. The participants with more than two classes
may have learned more advanced concepts about geology and fos-
sils, especially the people who have taken more than five courses.

Table 2: Summary of the pre-test evaluation using the three
GCI questions on fossil formation. This evaluation assesses
the prior knowledge of the learners.

Frequency Percent [%] Cumulative
Percent [%]

0 Correct 6 7.9 7.9
1 of 3 Correct 27 35.5 43.4
2 of 3 Correct 31 40.8 84.2
3 of 3 Correct 12 15.8 100.0

Total 76 100.0
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Figure 6: Post-survey for satisfaction, engagement, learning
outcome, and effectiveness of video lecture. (a) Overall, I
was satisfied with this instructional video, (b) I think the
video is engaging, (c), overall, I feel I was able to learn the
information from this instructional video as I would have
had in an in-person face-to-face class presentation, and (d)
this video helped me to understand the topic discussed in
the video.

Therefore, we classify the 76 participants into three groups: begin-
ner (taken 0 courses, 25 people), intermediate (taken one or two
courses, 36 people), and advanced (taken more than three courses,
15 people).

4.3 Learning Experience
We assess the learning experience of the participants with self-
report surveys at the end of the evaluation. We consider video
satisfaction (Fig. 6a), video engagement (Fig. 6b), learning outcome
compared to in-person lectures (Fig. 6c), and educational effective-
ness of the video (Fig. 6d). The learners answered questions in the
post-video survey using a 5-item Likert scale where the extreme
values were 1 strongly agree and 5 strongly disagree. These questions
are extremely useful as they can be used as target labels to train
ML algorithms to improve learning analytics.

The statement in the survey for satisfaction is Overall, I was sat-
isfied with this instructional video. Figure 6a shows that 67 out of 76
students were satisfied with the video, with 28 learners answering

strongly agree and 39 learners answering agree. The was only one
learner that answered this question with a disagree. The results
show that the learning experience of the students was mostly posi-
tive, in spite of the diversity in their demographic and educational
backgrounds.

The statement in the survey for engagement is I think the video
is engaging. The results for the self-report level of engagement,
Figure 6b, show that 59 out of 76 students found the video learning
experience engaging, with 19 learners answering strongly agree
and 40 learners answering agree. Three learners answered this en-
gagement question with disagree. Most of the students felt engaged
during the video learning experience.

One approach that we use to determine the learning outcome is
to ask the participants to self-report their video learning experience
compared to the in-person learning experience. The statement for
the survey for the virtual learning outcome is Overall, I feel I was
able to learn the information from this instructional video as I would
have had in an in-person face-to-face class presentation. Figure 6c
shows the results, which show that 50 out of 76 students think the
video learning experience can equal an in-person learning session
on the same topic. 22 learners answered strongly agree and 28
learners answered agree. Nine learners answered either disagree
or strongly disagree. These results confirm the potential for online
video learning.

The statement for the survey for the educational effectiveness of
the video is this video helped me to understand the topic discussed in
the video. Figure 6 shows the results. We found that the videos were
perceived as very effective with 72 out of 76 learners answering
this question as either strongly agree or agree.

4.4 Learning Outcome
The self-report questions are useful to understand the learning
outcome. However, they are subjective. After watching the video,
we conduct a post-video test to objectively assess their understand-
ing of the fossil-forming process. We use the open question please
explain the fossils formation process. We created a rubric with three
criteria: completeness of the fossil-forming process mentioned in
the video, correctness of the statements based on the video content,
and depth of the answer (the number of video details mentioned
on each topic). For each criterion, the evaluation score range of
a participant’s learning outcome is from level 0 to 3. A score ‘0’
or ‘1’ indicates a relatively poor performance for that criterion. A
score ‘2’ indicates that the learner’s performance is acceptable. A
score ‘3’ shows a very good (almost perfect) answer for the corre-
sponding criterion. The completeness of the video topics is graded
based on the completeness of the potential fossil-forming method
considering any missing important topic. The three score levels
are complete (level 3), mostly complete (level 2), and missed most
of the topics (level 1). The second criterion, ’Accuracy’, indicates
the correctness and relevance of statements about fossil forming,
which is evaluated based on the number of wrong statements: level
3 indicates there are no wrong statements; level 2 indicates a few
wrong statements; and level 1 indicates that there are many wrong
statements in the answer. Lastly, the third criterion, ’depth’, indi-
cates that the participants give enough details or clear explanations
about the video topics. Level 3 of this criterion means the answer
is very detailed and gives enough explanations; level 2 means that
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Figure 7: Post-test evaluation of learning outcomes. The ob-
jective scores were obtained by rating the open question
please explain the fossils formation process. The range of the
final score is from ‘0’ to ‘9’.

participants give a general framework with few details, and level 1
indicates a very blurred and general answer. The final score is the
addition of the scores assigned to the three criteria (e.g., a number
ranging from ‘0’ to ‘9’). With this number, we estimate and quantify
the learning outcome of each participant. The detailed method is
in the footnote of the supplementary educational factors table.

Figure 7 shows the distribution of the learning outcomes. The
learners obtained different results, where 41 out of 76 achieved a
score above 5. This distribution with good and bad scores is ideal to
study the relationship between learning states, such as engagement,
boredom, and confusion, and learning outcomes.

5 LEARNING STATE
5.1 Annotations of Learners’ State
After the webcam and screen recordings are collected, they are
synchronized and presented to a team of annotators. We are in-
terested in cognitive and emotional states related to learning. We
select engagement, boredom, and confusion. Seven annotators par-
ticipated in the evaluation. An important difference between the
annotations of this corpus with other related corpora is the use
of time-continuous annotations. Each annotator used a joystick
to annotate each of the target learning states using the CARMA
software [9]. The participants watch a synchronized video of the
webcam showing the facial expression of the learners, and a video
of the monitor recordings to better annotate the data.

The graphical interface has a bar where the extremes represent
the extremes of the target learning state (e.g., low engagement ver-
sus high engagement). As the evaluator watches the video, she/he
moves the joystick to represent the level of the attribute perceived
for that particular segment in the video. The interface records traces
of the learning state, where the values range from -100 to 100, with
-100 indicating a lack of engagement, boredom, or confusion, and
100 indicating a high degree of engagement, boredom, or confusion.

While this annotation method has been used for emotional
databases [24, 27, 33], this is the first time this approach has been
used to assess learning states to the best of our knowledge. Previous
studies have pre-segmented the recordings, providing a global score
for each video [10, 15, 41], or provided annotations for some frames
[5, 41]. With time-continuous traces, the researcher can determine
the temporal unit in the analysis. This approach facilitates the anal-
ysis and recognition of learning states at different resolutions. The
traces can also provide information to identify the learning states
associated with specific segments in the educational video. Figure
8 shows an example of the traces for one recording.

Table 3: Cronbach’s Alpha to assess inter-evaluator agree-
ment.

Engagement Boredom Confusion

All 0.44 0.46 0.35

Ann Incl Excl Incl Excl Incl Excl
1 0.44 0.34 0.46 0.41 0.35 0.42
2 0.46 0.47 0.59 0.51 0.39 0.29
3 0.44 0.56 0.46 0.45 0.35 0.29
4 0.44 0.34 0.46 0.38 0.35 0.30
6 0.44 0.33 0.45 0.30 0.34 0.21
7 0.44 0.30 0.46 0.36 0.35 0.19

We evaluate the inter-evaluator agreement of the annotations in
the corpus by taking the Cronbach’s alpha coefficient [3]. We esti-
mate the agreement over the annotations of each video, reporting
the average results over the whole corpus. The mean Cronbach’s
alpha coefficients for the annotations are 0.435 for engagement,
0.457 for boredom, and 0.348 for confusion. We evaluate our cur-
rent annotators using the inter-evaluator agreement. We take the
average Cronbach’s alpha coefficient for all the videos a particular
annotator has rated, and then we took the same calculations but
excluded the ratings of that particular annotator. We expect that for
a good annotator, the agreement scores will decrease when their
ratings are excluded. Table 3 shows the agreement results for each
annotator. In the analysis, we exclude Annotator 5 for a low number
of annotations. In most cases, we observe that the agreement drops
when an evaluator is removed.

5.2 Learners’ State Baselines
We evaluate the corpus as a dataset for dynamic emotion recog-
nition. We build a model to predict the traces, assigning a value
for each “frame.” We build models for engagement, boredom, and
confusion. To facilitate the reproducibility of these results, we rely
on a simple model consisting of two bidirectional long short-term
memory (BiLSTM) layers with a dropout layer between them and an
output linear layer. As input to our model, we extract the EMOCA
[4] facial features for each frame in the videos. Then, we average
the EMOCA features for the 30 video frames centered at each anno-
tation value. The BiLSTM layers have a hidden size of 32, we use a
drop rate of 0.5, and the linear layer has a node size of 1. We predict
one attribute at a time. Additionally, we use subject independent
splits for train, development, and test sets.

The raw annotations we collected using CARMA have inconsis-
tent sample rates, so we first smooth all the annotations using a
moving mean filter with a window size of 250ms and a stride of
200ms. Then, we average the annotations for each video. To account
for any annotator reaction lags, we shift the mean annotations by 3
seconds into the past, as proposed in Mariooryad and Busso [22, 23].
For training, we use the stochastic gradient descent optimizer with
a learning rate of 0.00001 and a momentum of 0.9. Our loss function
is the concordance correlation coefficient (CCC) loss, i.e. 1−𝐶𝐶𝐶 , and
our testing metric is the CCC. We train our engagement model for
100 epochs, and our boredom and confusion models for 150 epochs.
We test the model at the last epoch. We obtain a test CCC of 0.552
for engagement, 0.181 for boredom, and 0.119 for confusion.
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Figure 8: Example of time-continuous annotations for en-
gagement, confusion, and boredom (subject 17). The figure
includes frames with facial expressions extracted using the
Dlib library [16]. The x-axis represents the time of the record-
ing in seconds, and the y-axis shows the average annotation
for each frame.
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Figure 9: Distribution of learning states in the corpus (engage-
ment, boredom, and confusion). The y-axis is the number of
frames, and the x-axis is the value of the attribute.

5.3 Distribution of Learners’ States
This section analyzes the distribution of the learning states an-
notated by the evaluators. We first averaged the time-continuous
traces provided by different evaluators to a recording. Then, we
plot the distribution of the frame-based values for each learning
state. Figure 9 depicts the distribution for each learning state. For
engagement, Figure 9a shows that the distribution is predominantly
positive, indicating that most subjects were engaged with the lec-
tures. Figures 9b and 9c show the distributions for boredom and
confusion. They have higher variance, with many frames above
and below 0. These results indicate that while the majority of sub-
jects were not bored or confused, a significant portion of the data
contains instances of perceived boredom and confusion. These re-
sults match the overall distribution of the survey results of video
satisfaction and engagement (Figs. 6a and 6b). However, as reported
in previous studies, self-reported results commonly mismatch with
test results or other objective data-based analysis metrics [7, 35].
Therefore, we expect that there could be a mismatch in the engage-
ment results between self-reported data, test data, and physiological
data. We will explore this direction in our future research directions.

6 CONCLUSIONS
The MSP-GEO corpus is a unique and comprehensive dataset that
provides detailed dimensions and rich learning experience data.
With more than 39,600 seconds (11 hours) of continuous facial
footage from 76 participants, the dataset contains over 1 million
facial images, providing a significant amount of data for evaluat-
ing how users interact with instructional videos. Additionally, the
dataset includes annotated facial videos for engagement, boredom,
and confusion, as well as robust learning evaluation data. Moreover,
the MSP-GEO corpus has detailed learner information and learning
experience data, including demographic information and a sum-
mary of self-reported engagement and learning experience results.
With the microlevel, mesolevel, and macrolevel data provided, this
corpus is ideal for exploring learning analytics solutions using ML.

In the study of cognitive science and multimedia learning, the
multi-level features provided in the MSP-GEO corpus are well-
suited for understanding the ontological elements and structures
within complex knowledge models. These models can be analyzed
through ontology design patterns [36] to represent explanations in
specific domains, such as psychology and learning sciences. Conse-
quently, the MSP-GEO corpus holds the potential for developing
a quantitative understanding of the multimedia learning process.
This capability could significantly contribute to advancing theo-
retical frameworks, such as the Cognitive Theory of Multimedia
Learning [25], and support the analysis of video design frameworks,
such as the geoscience educational video model [38] and complex
system interactive designs [39].

This dataset can be used to develop more accurate video-based
learning outcomes or learning experience predictions. The cor-
pus can be valuable for discovering the psychological processes
of video learning, optimizing instructional video design, and de-
veloping video-based intelligent tutoring systems. Furthermore,
domain-based educational researchers could test how place-based
examples affect learners’ experience and performance. Using this
data, learning analytics researchers can explore the correlation
between facial analysis and self-report data (using test data as a
baseline), evaluate users’ preferences about different design ele-
ments (e.g., real footage and animation), and test the multimedia
design cognitive load-related principles. The MSP-GEO corpus is a
valuable resource for researchers in video-based learning.

Data collection in uncontrolled environments has certain lim-
itations. The experiment design has a weak control on the data
quality, which results in discarding 1/4 of the subjects’ data (25 of
101). The estimation of gaze and video frame is not as accurate as
the one obtained in controlled experiments with a given computer
and with subjects in the same position and pose. However, the
flexibility offered by the corpus due to its rich naturalistic data can
open opportunities to advance the area of video-based learning.

In this corpus, we decided to focus on a single educational topic
(fossil formation), collecting data from several learners with diverse
backgrounds, interests, and expertise. The protocol and GUI used to
collect this corpus are flexible. They can be used to collect similar
recordings in other domains, broadening the scope of our effort.
Likewise, a future research direction is explore ways to use this
infrastructure to collect learning data during longitudinal video
learning experiences.
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