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ABSTRACT
The cleft lip condition arises from the incomplete fusion of oral and
labial structures during fetal development, impacting vital func-
tions. After surgical closure, patients commonly present with ab-
normal lip shape, which may require secondary revision surgery
for both aesthetic and functional improvement. However, a lack
of standardized evaluation methods complicates decision-making
for secondary surgery. To address this limitation, we propose a
transformer-based lip normalization approach that filters out abnor-
malities and achieves a standardized appearance while preserving
individual anatomy. An innovation of our approach is a lip transfor-
mation method using available face datasets to mimic repaired cleft
lip shapes, enabling the training of deep learning models without
using patients’ data. We employ a Siamese convolutional neural
network that processes pre- and post-normalization images to de-
tect lip abnormalities with an accuracy of 89%. We compare our
approach with a single-branch model without lip normalization,
which reached an accuracy of 60%. Our approach has the potential
to provide an impartial view to determine the need for revision
surgery while also assisting in the selection of healthcare tools
specialized for patients with repaired cleft lip. The code for this
work is available in our official repository 1.
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1 INTRODUCTION
Advances in computer vision have provided clear benefits in health-
care, leveraging various medical imaging modalities such as x-
rays, magnetic resonance imaging, ultrasound, and 2D and 3D pho-
tographs [22]. These images, when analyzed using computer vision
techniques, offer valuable insights to physicians, assisting in both
diagnosis and treatment planning for patients. By detecting subtle
abnormalities or patterns not easily discernible to the human eye,
computer vision aids in enabling early disease detection, including
cancers [5], and facilitating timely interventions, improving patient
outcomes. An important area in computer vision that is relevant
to healthcare is facial expression analysis, which has been applied
for the assessment of several conditions involving the face, such as
facial paralysis [3], epileptic seizures [10], and cleft lip [1].

The focus of this paper is on the cleft lip (CL) condition, with
or without a fissure in the palate. This congenital condition arises
from the incomplete fusion of oral and labial structures during fetal
development. The clinical manifestations of CL compromise vital
functions such as feeding, swallowing, breathing, and speaking [7].
Hence, pediatric patients typically undergo the surgical closure of
the cleft in the first months of life. Unfortunately, complications
such as lip scarring or abnormal lip shape commonly persist [21].
As a result, individuals with repaired CL often endure negative
social experiences and suffer from negative self-perception, espe-
cially during childhood and adolescence [2]. The severity of the
initial cleft influences the necessity for secondary revision surgery,
aimed at improving lip appearance or correcting velopharyngeal
incompetence [27]. However, the decision for lip revision is subjec-
tively based on clinical criteria, leading to disagreements among
clinicians regarding the necessity of such surgeries [28]. Since there
is no agreed gold standard to evaluate lip abnormality in patients
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with repaired CL [26], there is a need for a computational tool ca-
pable of detecting aesthetic outcomes that highly deviate from the
appearance of control subjects [24].

We present a novel system for lip abnormality detection specifi-
cally designed for patients with repaired CL. We propose a Siamese
neural network that operates by comparing a lip image displaying
an anomaly with a normalized version of the same image, which
filters out the existing abnormalities. By leveraging both versions of
the image, our model improves its ability to detect lip abnormalities
by explicitly contrasting their differences. The normalized version
of the image is obtained using a novel lip normalization strategy. We
employ a transformer-based prediction network designed for face
reconstruction. This network is trained on extensive open datasets
of facial images with no reported abnormalities, allowing it to cap-
ture typical facial appearances found within the control population.
Through this approach, the system can adapt the unique anatomical
features of each patient, particularly focusing on the region affected
by the sequelae of the repair surgery. Our deep learning model re-
quires facial images displaying lip abnormality to effectively learn
from them. However, the availability of such images from patients
with repaired CL is limited. To address this challenge, we propose
a lip transformation technique based on landmarks. This method
modifies the lip shape of control subjects to closely resemble the
characteristics of the target population while preserving the inher-
ent features of the control subject lips. By employing this approach,
we overcome the problem of insufficient training data for our model
to generalize to unseen subjects. We source control images from
openly available datasets of facial images, thereby ensuring a rep-
resentative sample set. Furthermore, by avoiding the use of patient
images to train our models, we protect their privacy, which is an
additional benefit of our methodology.

Our experimental results demonstrate the effectiveness of our lip
transformation approach along with the lip normalization stage for
accurate lip abnormality detection. We compare our approach with
a single-branch baseline model that does not incorporate the lip
normalization stage. Notably, our approach exhibits a remarkable
22.3% (absolute) point improvement in accuracy for detecting lip ab-
normalities compared to the baseline. These findings are evaluated
on 395 images from patients with repaired CL.

The contributions of our paper are as follows:

• A lip transformation approach for images of open available
datasets that imitates the lip shape of patients with repaired
CL.

• A lip normalization technique able to standardize images of
patients with CL displaying lip abnormalities.

• A Siamese neural network that compares the representations
of the images before and after normalization for improved
lip abnormality detection.

This paper is organized as follows: Section 2 presents previous
work related to this study. Section 3 describes the methodology
for our lip transformation and normalization approaches, and the
baseline that will be used for comparison. Section 4 describes the
experimental setup. Section 5 describes our experiments and results.
Finally, Section 6 summarizes the main findings and insights of our
work.

(a) Repaired cleft lip (b) Our lip normalization (c) INCLG normalization

Figure 1: Comparison of our proposed lip normalization ap-
proachwith the INCLGnormalizationmethod [6], illustrated
through images of three patients with repaired cleft lip.

2 RELATEDWORKS
Previous technological tools developed for patients with CL have
focused on diagnosing the condition before surgery. Agarwal et
al. [1] explored the detection and classification of unrepaired pe-
diatric cleft. The authors collected a training set of facial images
containing 136 bilateral cases, 412 unilateral cases, and 670 control
images. Later, they implemented data augmentation techniques
that do not distort the face. The pre-trained AlexNet architecture
[15] was used to extract features from the images after cropping
the orofacial area. Subsequently, a support vector machine (SVM)
classifier was trained for each of the 256 feature maps extracted
from earlier layers of the model. They achieved an accuracy of
84.12% on a testing set of 58 bilateral, 78 unilateral, and 97 control
images. Similarly, McCullough et al. [19] trained a convolutional
neural network (CNN) with 800 preoperative images of patients with
unilateral cleft lip. All images were manually annotated with cleft-
specific landmarks to rate the cleft severity. The model achieved
a correlation of 0.89 with the severity assessment performed by
expert reviewers. Both previously presented works used patients’
images to train the model, which is not ideal since limits the size of
labeled samples in the training set, and raises privacy concerns by
using images from the patients. In contrast, our approach does not
rely on images of patients. Instead, we develop a transformation
approach that uses images of control subjects for lip abnormality
detection on repaired CL.

Studies have proposed normalization approaches for patients
with repaired or unrepaired CL. Boyaci et al. [4] adapted a gener-
ative model to produce normalized versions of facial images con-
taining a congenital or acquired deformity. The generated images
filter out the face anomalies while preserving the identity and the
normal features of the patient. The StyleGAN [15] generator was
optimized to find a latent vector that results in a similarity loss that
preserves the identity, and an average loss that corrects the struc-
tural anomalies. However, this model presented an instability issue
across different predictions of the same image. Hayajneh et al. [9]
improved this problem by employing StyleGAN2 [12] to provide a
more realistic facial normalization and a more stable performance.

Chen et al. [6] proposed an inpainting technique for non-cleft
lip generation (INCLG) that predicts normalized facial images for
patients with CL. They employed a landmark guided face inpainting
framework [29] that consists of a convolutional encoder followed
by dilated ResBlocks and an attention layer that outputs a feature
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representation of an input image. Control images were masked to
define and condition the area to be synthesized. Since the model was
trained with only control images, the predicted facial landmarks
and the masked regions follow a distribution that aligns with the
typical patterns learned during training from control individuals.
The authors of this study made available the weights of this model
and the code needed to reproduce the findings so that we can mask
the lip area of any local image of the target population and predict
the normalized area. Figure 1 exemplifies the INCLG normalization
for three patients with repaired CL. The generated images display
low fine details and decreased correlation with the original lip
format compared with our lip normalization approach.

3 METHODOLOGY
Our work relies on three stages: 1) a lip transformation approach
that imitates the lip shape of patients with repaired CL using images
of openly available face datasets, 2) a lip normalization approach
applied to both control and modified images, and 3) a Siamese CNN-
based model that takes as input the control and modified images
before and after normalization. We elaborate on these stages in the
following sections.

3.1 Lip transformation
The first block in our approach is the lip transformation. The goal
is to modify the shape of control lip images to closely resemble the
lip characteristics of patients with repaired CL while preserving
the inherent features of the original subject. The approach takes
a repaired CL image and a random image from a control subject,
which can be obtained from openly available face datasets. The lip
transformation transfers the shape abnormally to the controlled
image. After CL repair surgery, typical outcomes often include:
lip scarring tissue, unilateral lip asymmetry with a raised peak
of the upper lip, or misalignment of the upper lip’s cupid’s bow
with the vertical plane of facial symmetry. These outcomes can be
identified by the human eye as abnormalities. Given the role of the
upper lip, our lip transformation approach is guided by the upper
lip landmarks extracted from images of patients with repaired CL
(Figure 2a).

After preprocessing the images following the indications of Sec-
tion 4.2, we extract the upper lip landmarks of the patient image
(blue dots in Figure 2a). Then, we scale these CL landmarks based
on the oral commissure points and displace them to the cupid’s
bow original midpoint to match the lip size of the control sample.
As the original CL landmarks undergo resizing and displacement,
their partial dependency on each control subject introduces vari-
ability to the transformations. The scaled CL landmarks are later
combined with the remaining face landmarks of the control subject.
Next, we triangulate the control facial image based on the control
landmarks and apply affine transformations to manipulate the geo-
metric properties of the lip area to satisfy the CL landmarks on
every small triangulated region (Figure 2b). This process affects just
the image region with modified landmarks (i.e., the upper lip). The
modification applied to control images is randomly selected from
the lip shapes extracted from images of patients with repaired CL.
Our lip transformation approach enables the generation of large

Repaired CL

Control lips Modified lips

Norm. control Norm. modified

CL landmarks

scale

transform

extracta)

b)

c)

Figure 2: Illustration of a) lip landmarks extraction from an
image of a patient with repaired CL, b) lip transformation
process, and c) lip normalization for a control and modified
image.

amounts of modified images needed for training accurate deep
learning models.

The transformation stage uses landmarks from 12 patients with
repaired cleft lip, chosen for clearly displaying common non-aesthetic
outcomes. Cleft lip landmarks are scaled and displaced before com-
bining with control landmarks, partially retaining inherent features
of the control subject. We will compare our lip transformation ap-
proach with a strategy presented in a previous study [23], which
aims to control images to recreate lip asymmetry in patients with
repaired CL. The strategy defined seven landmark transformations
by observing patients’ images, which were applied to the control
subjects. This baseline method is referred to as lip transformation
v1 (LT-v1), and our proposed approach is referred to as lip transfor-
mation v2 (LT-v2). We hypothesize that our proposed strategy will
result in modified control images displaying more naturalistic lip
shapes, as it not only draws inspiration from cleft lip shapes but
also transfers the exact upper lip shape to control lip images.

3.2 Lip normalization
The objective of the lip normalization stage is to filter out abnormal-
ities in the lips, aiming to make the lip’s appearance more similar
to patterns observed in control subjects while remaining congru-
ent with the patient’s anatomical structure. Figure 3 illustrates
our lip normalization process, comprising two stages: (1) an image
compression and decompression process, and (2) a face restoration
stage. These processes contribute to filtering out facial anomalies
and generating fine details for the facial image.

First, we utilized the pretrained ArcFace model [8] to generate
facial features from the input image (top diagram in Fig. 3). The en-
coded representations of ArcFace leverage substantial information
from the training distribution while preserving facial identity since
it is trained for face recognition using over 493K identities from
the IBUG-500K dataset. Subsequently, we employed the inverted
pretrained ArcModel, as detailed in [8], to decode the representa-
tion and reconstruct the original facial image. For this compression
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Figure 3: Lip normalization process consisting in an image
compression and decompression process (top figure), fol-
lowed by a face restoration process (bottom figure).

and decompression process, we utilized the InsightFace pipeline2,
based on the ArcFace model. This model was originally intended for
swapping faces of different identities. However, we use this strat-
egy to reconstruct the encoded representation of the same facial
image. The encoder-decoder process of images containing lip abnor-
malities smoothens characteristics not represented in the training
set, bringing us closer to our lip normalization goal. However, the
pretrained ArcModel is limited to recovering images with a resolu-
tion of 128 × 128 pixels. The process results in low-resolution and
slightly degraded images that maintain facial identity, and reduce
face abnormalities, similar to previous CL normalization solutions
[4, 6].

To address the resolution limitation, we rely on the face restora-
tion model, CodeFormer3 [31], which generates high-quality de-
tails in degraded input facial images without landmarks guidance
(bottom diagram in Fig. 3). The CodeFormer model was originally
trained for the self-reconstruction of high-quality images from the
FFHQ dataset [13]. Its first stage results in a trained encoder, a
learned codebook, and a decoder. In the second stage, low-quality
images with varying levels of degradation are used, and the encoder
is fine-tuned to learn features related to low-quality images. Nine
self-attention blocks and a linear layer are trained to sequentially
model the encoder representation and project the features into the
previously learned codebook space. Finally, the projected features
were passed through the frozen decoder, which outputs the restored
image with fine-grained details. This face restoration model learned
from 70,000 images of subjects, without reported facial deformities.
Consequently, we expect the reconstructed images to adhere to the
mean of the lip appearance across the population.

For the scope of our study, we cropped the lip area based on
landmarks, although the normalization process was performed for
the entire face. Figure 2 exemplifies the process of transforming a
control lip image to introduce an abnormality seen in patients with
repaired CL. We highlight how the lip normalization process on
the modified lips removes the unilateral asymmetry in the upper
lip. In contrast, the lip normalization applied to a control lip image
without transformation results in a representation very similar to

2https://github.com/deepinsight/insightface
3https://github.com/sczhou/CodeFormer

the original. Additionally, we draw attention to Figure 2c, which
shows the lip normalization results of control and modified images.
The high similarity between both results supports our goal of pre-
serving the idiosyncratic characteristics of the individual after the
normalization.

3.3 Siamese CNN for lip abnormality detection
We propose the use of a Siamese CNN architecture for the detection
of lip abnormalities, where one branch generates a representation of
the image before the normalization, and the other generates a repre-
sentation after the normalization. Subsequently, these embeddings
are concatenated and passed through a dense layer followed by a
final classification layer to determine the presence of abnormalities
in the lips. Figure 4 describes this process.

Backbone
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Figure 4: Siamese CNN for lip abnormality detection. The
network processes the original and normalized images to
determine the presence of any lip abnormality.

The backbone of our Siamese architecture is the MobileNetV2
network [25], renowned for its lightweight design suitable for
resource-constrained environments such as smartphones. The Mo-
bileNetV2 is constructed with blocks of lightweight depthwise sepa-
rable convolutions aimed at reducing the network’s computational
burden by facilitating feature reuse. The MobileNetV2 network
consists of 156 layers, including convolutional layers, batch normal-
ization, dropout, rectified linear unit (ReLU6), and pooling layers.
The detailed architecture of MobileNetV2 can be found in Sandler
et al. [25]. We adopted this backbone architecture for both branches
of the Siamese CNN. Following partial finetuning, these branches
are utilized to extract embeddings from the input images.

The Siamese CNN receives pairs of corresponding images, one
before and one after lip normalization. The model is trained on pairs
of control subjects, where minor differences are expected, and pairs
of modified images of control subjects, where differences are more
pronounced due to the removal of anomalies in the normalized
image. Despite the subtle differences in control pairs, the model is
anticipated to discern between normal variations and those indica-
tive of abnormalities. Both branches of the backbone share weights
and produce a 1,280D vector representation for each input. Upon
concatenation, the dimensionality is reduced to 256 before pass-
ing through a classification layer to make the final determination
regarding the presence of lip abnormalities.

https://github.com/deepinsight/insightface
https://github.com/sczhou/CodeFormer
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3.4 Baseline CNN for lip abnormality detection
We contrast our proposed method with a baseline that lacks the
normalized version of the lip image to evaluate the impact of incor-
porating two branches in the Siamese CNN network. The backbone
of the baseline model is the same as the MobileNetV2 network
to ensure a fair comparison. This baseline model is trained using
control images and modified control images without lip normaliza-
tion. Subsequently, the image embedding is condensed into a 256-
dimensional vector, which is then processed by a final classification
layer responsible for identifying the presence of lip abnormalities.

4 EXPERIMENTAL SETUP
This section outlines the datasets used for training both our Siamese
CNN and the baselinemodel.We also describe the images of patients
with repaired CL that we will use to evaluate the models on real data
from our target population. Additionally, we provide an overview
of the image preprocessing steps and training hyperparameters
employed in the study.

4.1 Datasets
Considering the age variability of our target population, we need to
include children, adolescents, and adult faces of different ethnicities
to make our model robust to high variability in the testing set. We
have selected two datasets: the Chicago face dataset (CFD) for adult
faces and the young labeled faces in the wild (YLFW) dataset for
children and adolescents. Further details are presented below.

4.1.1 Adult Faces. The Chicago face dataset, developed by the Uni-
versity of Chicago, comprises high-resolution, standardized frontal
photographs of individuals of various genders, ethnicities, and ages
ranging from 17 to 65. This dataset, available upon request for
scientific research, includes three subsets. The main CFD subset
[17] consists of images of 597 unique subjects representing Asian,
Black, Latino, or White ethnic backgrounds. These subjects were
photographed posing with a range of facial expressions, including
neutral, happy (with an open or closed mouth), angry, and fearful
expressions. The second subset, CFD-MR [18], expands upon the
main CFD by including images of 88 unique subjects with multira-
cial ancestry. Similar to the main subset, these individuals were
photographed displaying various facial expressions. The third sub-
set, CFD-INDIA subset [16], follows the same pose pattern as the
previous subsets and contains images of 142 unique individuals
representing the Indian population. In total, 1,235 images from the
Chicago Face Dataset were pre-processed for face detection and
landmark placement using the dlib library [14].

4.1.2 Children Faces. To mitigate bias towards adult faces, we
opted to incorporate images from the YLFW dataset [20]. YLFW
was specifically designed for children’s face recognition and offers
a balanced representation across African, Asian, Caucasian, and In-
dian ethnicities within the age range of 0-18 years. The benchmark
subset of YLFW, comprising 9,810 images from 3,069 unique iden-
tities, is available for research purposes. Given that these images
were sourced from the website, they exhibit a wide range of head
poses and facial expressions. For the scope of our study, we refined
the dataset by selecting only frontal images with yaw and pitch
angles inferior to 15◦. Additionally, we applied exclusion criteria

to filter out incomplete faces, lip occlusions, and facial expressions
that do not display the natural shape of the lips. Following these
criteria, we selected 456 frontal images for our proposed approach,
ensuring consistency in preprocessing steps for face detection and
landmark placement.

4.1.3 Faces with repaired cleft lip. We gathered 395 images of pa-
tients who had undergone CL repair from various sources, including
websites of CL-specialized surgeons, hospital websites, and non-
profit organizations dedicated to CL treatment. The selection of
images adhered to the same criteria applied to the YLFW dataset.
To ensure accurate landmark placement, we utilized the facial land-
mark detectors (FLD) developed by Rosero et al. [23] for the faces
of individuals with CL. This FLD has been specifically tailored to
improve landmark detection for our target population. Further-
more, the orofacial images of patients with repaired CL depicted in
Figures 1 and 2 were provided by Children’s Medical Center Dallas
with the consent of the patients involved.

4.2 Images preprocessing
We employ the ZFace toolbox4 [11] to filter images across all
datasets, ensuring that head positions exhibit less than a 15◦ de-
viation in both yaw and pitch angles. This restriction is crucial
as images with greater rotation may not fully capture the natural
shape of the lips, a critical consideration for our study. Once se-
lected, these images undergo an additional frontalization process
leveraging the dense mesh of 512 3D facial landmarks provided by
ZFace. This toolkit produces a normalized and frontalized version of
the 3D mesh, along with its fit to the facial image. We subsequently
apply affine transformations to small regions of the image, defined
by the 512 landmarks, to align them with the frontalized mesh.

The lip transformation stage relies on the 68-point standard
landmarks extracted using the dlib library [14]. In contrast, the lip
normalization process does not require landmarks; instead, they
operate on the entire face. After transformation and normalization,
we crop the lip area based on the dlib mouth landmarks. Finally,
the region of interest is reshaped into a 224 × 224 × 3 dimension to
ensure compatibility with the MobileNetV2 architecture.

4.3 Model hyperparameters
This study used PyTorch for implementation and training, leverag-
ing the computational power of an NVIDIA GeForce RTX 4090 GPU.
The training process involved a batch size of 16 samples and a learn-
ing rate set at 0.0001, with model optimization achieved through
the use of the cross-entropy loss function and Adam optimizer. To
prevent overfitting, a maximum training duration of 50 epochs was
established, incorporating early-stopping criterion with patience
of 5 epochs, continuously monitoring the development loss. For
the specific task of lip abnormality detection, fine-tuning was con-
ducted on the final dense and classification layers in conjunction
with the last 98 layers from the MobileNetV2 architecture. The rea-
son for modifying the last layers of the MobileNetV2 architecture is
that these layers provide task-specific high-level features, leaving
the early layers in the models frozen so they can extract general low-
level features. The specific number of retrained layers was selected

4https://github.com/AffectAnalysisGroup/AFARtoolbox/tree/master/zface

https://github.com/AffectAnalysisGroup/AFARtoolbox/tree/master/zface
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based on the study of Rosero et al. [23] for improved performance.
During training, the models are evaluated in the ‘development’ set
to save the best model and stop the training process.

5 EXPERIMENTS AND RESULTS
This section presents the experiments and results conducted to
demonstrate the superior accuracy of our proposed approach. Sec-
tion 5.1 explores the improvement introduced by the use of lip nor-
malization, Section 5.2 evaluates the lip transformation approach
outlined in this study. Section 5.3 presents visual interpretations of
the model’s attention, Section 5.4 demonstrates the relevance of in-
corporating children’s data into our model, and Section 5.5 analyzes
the impact of the image restoration stage in the lip normalization
process.

5.1 Siamese CNN vs Baseline CNN
In this experiment, we compare the performance of our Siamese
CNN with lip transformation (Siamese LT-v2) against the Baseline
CNN. Notably, the difference between these models arises from the
utilization of two branches in the Siamese model, each dedicated
to processing the input lip image before and after normalization,
as opposed to the Baseline model, which processes the lip image
without normalization via a single branch. Table 1 reports the mean
cross-entropy losses and accuracies for six data subsets, with stan-
dard deviations calculated from seven runs with the same setup.
The ‘training’ set comprises images of adults and children, with
and without lip transformations. This ensures a balanced train-
ing dataset, with 50% of images exhibiting lip abnormalities and
50% serving as control images without lip anomalies. Similarly, the
‘validation’ and ‘test’ sets maintain the same distribution while
ensuring different identities. The ‘test cleft lip’ set contains images
of patients with repaired CL, presenting lip anomalies, for which
the model is expected to classify all the samples as lip abnormalities.
Additionally, we assess the models’ performance on sets containing
images of adults and children without lip anomalies related to CL
repair. Therefore, perfect accuracy for the ‘test children’ and ‘test
adults’ is achieved when all the samples are classified as normal.

All metrics present statistically significant difference between
the Siamese LT-v2 and baseline models, except for the ‘training’ and
‘test adults’ subsets, for which values are comparable. Specifically,
for evaluation conducted on the ‘test’ set, the Siamese LT-v2 model
exhibited a 4% increase in accuracy on unseen subjects. Notably, the
most substantial enhancement is observed within the ‘test cleft lip’
subset, which encompasses lip images from our target population.
The Siamese LT-v2 model outperforms the Baseline model accuracy
by 29%. These results demonstrate the efficacy of incorporating a
second branch for processing the normalized version of the input
image, thereby enhancing the robustness and generalization capa-
bility of the model to real data within our target population. The
Siamese LT-v2 model learns more meaningful representations from
images before and after normalization compared to the Baseline,
which exclusively learns from lip images without normalization.

Furthermore, we evaluate the system performance on unseen
control data extracted from the general ‘test’ set, comprising just
adults or children without lip transformation. We highlight the
fact that control images from adults or children are anticipated to

Table 1: Comparison of the Siamese CNN approach with lip
normalization and the Baseline CNN model containing a
single branch for lip abnormality classification.

Set Experiment Loss ↓ Accuracy ↑

Training Siamese LT-v2 0.08* ± 0.04 0.97 ± 0.01
Baseline CNN 0.15 ± 0.03 0.95 ± 0.01

Development Siamese LT-v2 0.10* ± 0.03 0.97* ± 0.004
Baseline CNN 0.18 ± 0.02 0.93 ± 0.01

Test Siamese LT-v2 0.16* ± 0.03 0.96* ± 0.01
Baseline CNN 0.22 ± 0.05 0.92 ± 0.02

Test
Cleft Lip

Siamese LT-v2 0.38* ± 0.10 0.89* ± 0.03
Baseline CNN 1.23 ± 0.25 0.60 ± 0.06

Test
Children

Siamese LT-v2 0.33* ± 0.15 0.89* ± 0.05
Baseline CNN 0.43 ± 0.15 0.85 ± 0.06

Test
Adults

Siamese LT-v2 0.26±0.07 0.95 ± 0.02
Baseline CNN 0.27 ± 0.12 0.91 ± 0.06

The arrows ↑ ↓ indicate if the metric improves by increasing or decreasing, respectively.
Applying a one-tailed two-sample proportion t-test with 𝑝-value < 0.01, (*) indicates that

Siamese LT-v2 is significantly better than the Baseline.

exhibit minimal lip abnormalities; thus, the images before and after
lip normalization should closely resemble each other. As shown
in ‘test children’ and ‘test adults’ sets in Table 1, Siamese LT-v2
achieves an accuracy of 0.89 for children and 0.95 for adults with-
out lip abnormalities, demonstrating that it is not biased towards
the detection of lip abnormalities only. The Baseline model shows
comparable accuracy in children and adult images.

We evaluated the impact of replacing the MobileNetV2 backbone
in our Siamese LT-v2 model and baseline with a simpler three-block
CNN. For Siamese LT-v2, this change reduced accuracy on the cleft
lip test set from 0.89 to 0.62, while the baseline accuracy dropped
from 0.60 to 0.53. These results highlight the necessity of a more
complex model for effectively extracting high-level features.

5.2 Comparison of the lip transformation
approaches

The lip transformation technique aims to recreate lip abnormalities
associated with the lip shape commonly found in patients with
repaired CL. This method enables us to train deep-learning models
to discern patterns of lip abnormality without directly utilizing
patient images. Rosero et al. [23] tailored these lip transformations
based on values selected by experimentation to deform the lip shape
(LT-v1). The modifications were applied based on measurements
of the upper lip of control subjects. We propose an improved lip
transformation technique that distorts the upper lip shape of control
subjects based on lip landmarks extracted from images of patients
with repaired CL (LT-v2). This enhancement yields modified control
images displaying more naturalistic lip shapes.

Figure 5 presents a comparison of the accuracy between the lip
transformation techniques, evaluated on the same data subsets of
our prior experiment and trained using our Siamese CNN. Mean
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values across seven runs are shown on top with the standard devia-
tion as error bar. On the ‘training’ and ‘development’ sets, using
LT-v1 leads to better performance than LT-v2 with 2% gain in accu-
racy. Learning using images generated with LT-v1 is comparatively
easier than using images generated with LT-v2, which includes
more subtle changes. However, the real benefit of using LT-v2 is
observed when we compare the results on real CL images (i.e., the
‘test cleft lip’ set). Our LT-v2 strategy clearly outperforms LT-v1,
exhibiting a 11% increase in accuracy. The subtle changes created
with LT-v2 better represent the target anomalies observed in pa-
tients with repaired CL. Likewise, we observe comparable accuracy
in the subsets ‘test children’ and ‘test adults’ samples.
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Figure 5: Accuracy comparison between Siamese LT-v1 and
Siamese LT-v2. The asterisk (*) represents a statistically sig-
nificant difference between the models when applying a one-
tailed two-sample proportion t-test with 𝑝-value < 0.01.

5.3 Features visualization
This section aims at visualizing the specific areas of focus within an
image that the model relies on for prediction. We employed the class
activation mapping (CAM) technique [30]. This technique generates
heatmaps that accentuate the regions deemed most crucial for class
prediction by extracting feature maps of the model from the last
convolutional layer after the global average pooling layer. Figure
6a illustrates six examples evaluated by our Siamese LT-v2 model
on images of patients with repaired CL from the ‘test cleft lip’
subset. These images were correctly identified as containing lip
abnormalities. Based on their respective heatmaps (shown to the
right), themodel emphasizes regions displaying abnormal lip shapes
or scar tissue. The certainty of the model’s prediction is indicated at
the top of each example. Images showing more severe or noticeable
sequelae are recognized with higher certainty. The heatmaps of the
first five examples in Figure 6a attribute significant importance to
regions containing abnormalities. Conversely, in the sixth example,
which has a low certainty (i.e., 0.53), lip abnormality is imperceptible
even to the human eye, despite the patient belonging to our target
domain. In such cases, the model might shift its focus to differences
in teeth, as the lips do not exhibit apparent abnormalities. We
observe that ‘hard samples’, where abnormalities are not evident,
can lead to misclassifications by our model.

Figure 6b depicts four examples of images of patients with re-
paired CL classified as not having lip abnormalities, each with
varying certainties. In the first example, based on the heatmap,

(a) Samples correctly classified as containing lip abnormalities.

(b) Samples misclassified as lacking lip abnormalities.

Figure 6: CAM technique [30] applied to the Siamese LT-v2
model evaluated on images of patients with repaired CL. The
color progression in the heatmaps ranges fromblue, denoting
regionswith lowweights, to red, highlighting areas with high
weights.

the model correctly emphasizes the upper lip, where anomalies
are commonly found; however, as no anomalies were detected, the
sample was classified as normal. We emphasize that the outcome of
CL surgery can be highly satisfactory in some cases. Thus, it is un-
derstandable that our model misclassifies such samples as normal.
In the last example of Figure 6b, the heatmap primarily highlights
the upper lip, where an abnormality is identifiable on the left side.
Despite being misclassified, the model’s certainty is 0.57, indicating
that even in error cases, its certainty is affected. Therefore, samples
with low certainty can be cross-checked by an expert.

5.4 Importance of inclusion of children’s facial
images

We conducted an additional experiment to analyze the importance
of adding children’s images alongside adult samples in training
our Siamese CNN approach. Specifically, we excluded the children
samples from the ‘training’ and ‘development’ subsets to train the
Siamese CNN model without children data (referred to as Siamese
w/o C). Table 2 presents the corresponding metrics alongside those
achieved by our proposed approach, the Siamese LT-v2 model. Sim-
ilar to the experiment detailed in Section 5.2, the Siamese w/o C
model exhibits superior metrics on the ‘training’ subset since the
model is trained exclusively on adult faces, potentially leading to
overfitting to this population. Consequently, when evaluated on
the ‘test’ set, which includes images of both adults and children,
the Siamese w/o C model experiences a performance decrease due
to its limited generalization to an unseen age population that can
present slightly different facial characteristics.

When evaluating images of patients with repaired CL, the accu-
racy decreased 6% using the Siamese w/o C model instead of the
Siamese LT-v2model. The drop in performance is more severe in the
‘test children’ set, where the accuracy reduces from 89% (Siamese
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LT-v2) to 62% (Siamese w/o C). This drop in performance corre-
sponds to an absolute reduction of 27%. Given that the Siamese w/o
C model is exclusively trained with images from adults, a higher
accuracy is expected when evaluating the models on unseen adult
images without lip abnormalities. However, we observe that the
performances of both models are similar. All these results validate
the use of child data to increase the variability in our models.

Table 2: Ablation study on the exclusion of children’s data to
train our best model.

Set Experiment Loss ↓ Accuracy ↑

Training Siamese LT-v2 0.08 ± 0.04 0.97 ± 0.01
Siamese w/o C 0.05 ± 0.02 0.99 ± 0.0001

Development Siamese LT-v2 0.10 ± 0.03 0.97 ± 0.004
Siamese w/o C 0.13 ± 0.01 0.96 ± 0.01

Test Siamese LT-v2 0.16* ± 0.03 0.96* ± 0.01
Siamese w/o C 0.32 ± 0.02 0.91 ± 0.01

Test
Cleft Lip

Siamese LT-v2 0.38 ± 0.10 0.89* ± 0.03
Siamese w/o C 0.42 ± 0.10 0.83 ± 0.02

Test
Children

Siamese LT-v2 0.33* ± 0.15 0.89* ± 0.05
Siamese w/o C 1.37 ± 0.14 0.62 ± 0.05

Test
Adults

Siamese LT-v2 0.26±0.07 0.95 ± 0.02
Siamese w/o C 0.17 ± 0.02 0.96 ± 0.01

The arrows ↑ ↓ indicate if the metric improves by increasing or decreasing, respectively.
Applying a one-tailed two-sample proportion t-test with 𝑝-value < 0.01, (*) indicates that

Siamese LT-v2 is significantly better than Siamese w/o C.

5.5 Impact of the image restoration stage
This section evaluates the impact of the image restoration stage
within our two-stage lip normalization approach, explained in sec-
tion 3.2. We omitted the image restoration stage while only keeping
the image compression-decompression stage. With this modifica-
tion in the lip normalization procedure, we train our Siamese LT-v2
model, denoted as ‘Siamese LT-v2: No restoration’ in Figure 7. We
observe a statistically significant decrease across all test sets upon
the removal of the image restoration stage. Specifically, our target
‘test cleft lip’ set experienced a decrease of 10% in accuracy. This re-
sult highlights the importance of incorporating both stages within
the lip normalization approach.

6 CONCLUSIONS
This paper introduced a Siamese CNN for detecting lip abnormal-
ities, achieving an accuracy of 89% when evaluated on patients
with repaired cleft lip. Lip abnormality detection is enhanced by
incorporating a lip normalization stage, which filters out anomalies
to align the appearance more closely with patterns observed in
control subjects. The normalization process involves two stages:
image compression-decompression, which slightly degrades im-
age resolution while smoothing lip characteristics not represented
in the control data, and a face restoration model that generates
high-quality details in the degraded input facial images without
landmark guidance.
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Figure 7: Accuracy comparison between our best
Siamese LT-v2 approach and a variant lacking the im-
age restoration stage in our lip normalization technique. The
asterisk (*) represents a statistically significant difference
between the models when applying a one-tailed two-sample
proportion t-test with 𝑝-value < 0.01.

The use of a lip transformation technique to recreate lip abnor-
malities associated with the lip shape of patients with repaired CL
enables the training of deep learning models without relying on pa-
tient data. This advancement not only enhances privacy protection
but also overcomes the challenge of accessing a large volume of
patient images. Our lip transformation distorts the upper lip shape
of control subjects based on lip landmarks extracted from images
of patients with repaired CL, resulting in an 11% accuracy improve-
ment compared to a previous approach that tailored lip landmark
displacements through experimentation. We additionally offer a
visual interpretation of the areas used by our top-performing model
to predict lip abnormality, demonstrating that the model analyzes
the upper lip’s abnormal regions with precision. Furthermore, we
highlight the importance of incorporating data from both adults
and children to train our model, as excluding control children’s
data adversely affects the model’s generalization on unseen con-
trol children samples. Lastly, we analyze the impact of the image
restoration stage within the lip normalization procedure. We ob-
served that using only the image compression-decompression stage
negatively impacts the performance of our Siamese LT-v2 model,
reducing its accuracy in 10%.

For our future work, we envision our system as a first stage
for model selection, wherein models specialized in facial landmark
detection for patients with lip abnormalities can be chosen over
generic models for landmark detection that are prone to error in
our target population. We also plan to expand the model selection
for audio solutions by incorporating a specialized automatic speech
recognition system that can be selected for patients with repaired
CL who present speech disorders.
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