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Abstract—Driving anomaly detection aims to identify objects,4
events or actions that can increase the risk of accidents, reducing5
road safety. While supervised approaches can effectively identify6
aspects related to driving anomalies, it is unfeasible to tabulate7
and address all potential driving anomalies. Instead, it is appeal-8
ing to design unsupervised approaches that can automatically9
identify unexpected driving scenarios. This study formulates the10
detection of driving anomalies as a binary-discrimination task11
between expected and unexpected driving behaviors. We propose12
an unsupervised contrastive method using conditional generative13
adversarial networks (GANs) implemented with the attention model14
and the triplet loss function. A feature of our framework is its15
scalability, where it is easy to add new modalities. We consider16
five different modalities: the vehicle’s CAN-Bus signals, driver’s17
physiological signals, distance to nearby pedestrians, distance to18
nearby vehicles and distance to nearby bicycles. Our approach19
trains a conditional GAN to extract latent features from each of20
the five modalities. An attention model combines the latent rep-21
resentations from the modalities. The entire framework is trained22
with the triplet loss function to generate effective representations to23
discriminate normal and abnormal driving segments. We conduct24
experimental evaluations on the driving anomaly dataset (DAD),25
achieving improved performance over alternative approaches.26

Index Terms—Driving anomaly detection, conditional generative27
adversarial networks, attention mechanism, triplet loss function.28

I. INTRODUCTION29

IDENTIFYING abnormal driving behaviors is an important30

research area with significant societal impact as lives can be31

saved by increasing road safety. Multiple rule-based and pattern-32

based methods have been proposed for driving anomaly detec-33

tion, including monitoring of road conditions [1]–[3], aggressive34

driving behaviors [4]–[9], risky driving patterns [10]–[16] and35

unusual driving styles (e.g., fatigue and meandering) [17]–[24].36

A typical challenge in those driving anomaly detection methods37

is that the vehicle’s driving conditions can vary significantly38

under different scenarios, which make driving patterns and rules39

hard to reliably establish. Furthermore, it is nearly impossi-40

ble to exhaustively tabulate all possible actions or situations41

that lead to hazardous scenarios. Fig. 1 shows four relevant42
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Fig. 1. Examples of abnormal driving scenarios where driver’s maneuvers are
affected by other vehicles or pedestrians: (a) a car drives in the wrong lane in
front of the car, (b) a pedestrian suddenly crosses the street, (c) a bicyclist rushes
across the street, and (d) a vehicle cuts into the vehicle’s lane.

examples of driving scenarios, illustrating the difficulty in build- 43

ing rule-based systems to detect anomalous scenarios, or creat- 44

ing specialized approaches to deal with each case. An appealing 45

approach is to use unsupervised multimodal approaches to detect 46

driving anomalies by discriminating expected driving behaviors 47

as normal cases and unexpected driving behaviors as abnormal 48

cases. 49

This study proposes an unsupervised contrastive framework 50

to identify driving anomalies using multiple modalities. The key 51

principle in our formulation is that anomalous driving scenarios 52

are characterized by deviations from expected behaviors. Our 53

approach creates predictions of future frames, conditioned on 54

the values of these signals observed in previous frames. Then, 55

it contrasts the predictions with the actual signals, quantifying 56

their differences. The core feature extraction module relies on 57

conditional generative adversarial networks (GANs), follow- 58

ing the ideas presented in our previous study [25]. We build 59

one conditional GAN per modality, where its generator creates 60

the predictions of the signals from upcoming frames and the 61

discriminator determines if the data is real or synthesized by the 62

generator. Then, we extract the embedding of the penultimate 63

layer of the discriminator, which is used as the representation 64

for the modality. A novel contribution in this study is the 65

fusion of the modalities, where we rely on the self-attention 66

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-6377-229X
https://orcid.org/0000-0002-6398-9245
https://orcid.org/0000-0002-4075-4072
mailto:yxq180000@utdallas.edu
mailto:busso@utdallas.edu
mailto:TMisu@honda-ri.com
https://doi.org/10.1109/TIV.2022.3160861


2 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 00, NO. 00, 2022

mechanism [26]. The weights assigned to the modalities by the67

attention mechanism indicate the relative importance of each68

modality. A strength of the approach is the contrastive loss used69

to train the proposed formulation in an unsupervised manner. We70

rely on the triplet loss function [27], where the goal is to reduce71

the distance between the predicted data and the observed signals,72

while increasing the distance between the predicted data and73

the data from a randomly selected segment. After pre-training74

the individual conditional GANs, the approach can be jointly75

trained, creating effective end-to-end solutions.76

The proposed formulation is scalable, with separate GAN77

models applied to each of the modalities, avoiding dimension78

explosion. The feature embeddings extracted from the GAN79

models are fused by the attention model. An advantage of80

seamlessly incorporating more modalities is that the system81

can respond even when the driver is not aware of hazardous82

scenarios. Our previous work only considered the driver’s phys-83

iological data and the vehicle’s CAN-Bus data [28], [29]. In84

daily urban traffic, unexpected reactions and maneuvers can be85

caused by either a pedestrian rushing across the road, another86

vehicle abruptly cutting into the lane or mistakes made by the87

drivers (see real examples in Fig. 1). If the driver is not aware88

of these anomalies, her/his physiological reactions and maneu-89

vers will not reflect the anomaly. Therefore, we incorporate90

environmental information from vision-based object detection91

systems applied to the road. In addition to physiological signals92

and CAN-Bus signals, we add three modalities: distances to93

nearby cars, pedestrians and bicycles. Our proposed system still94

perceives these driving anomalies even though the driver might95

have neglected them.96

We rely on the recordings from the driving anomaly dataset97

(DAD) [28] to evaluate our proposed scalable multimodal ap-98

proach. Experimental results show that recordings annotated99

with possible abnormal incidents (such as avoiding pedestrians,100

bicycles, or other vehicles) have higher anomaly scores than101

recordings without events. To validate the results, we implement102

perceptual evaluations of video segments, where human annota-103

tors were asked to assess the risk level, familiarity level, anomaly104

level, and causes of the anomalies of the driving scenarios. We105

evaluate our approach with three baselines. The first baseline106

is the CNN-LSTM based conditional GAN model proposed by107

Qiu et al. [25], which is trained with 2 modalities: the vehicle’s108

CAN-Bus signals and the driver’s physiological signals. The109

second baseline is the BeatGAN framework proposed by Zhou110

et al. [30], which is an unsupervised method using GANs also111

trained with CAN-bus and physiological signals. The third base-112

line is our proposed attention model trained only with the afore-113

mentioned two modalities to further quantify the effectiveness of114

adding the three modalities describing external information. The115

results show that when trained with CAN-Bus and physiological116

data, the proposed attention model leads to better performance117

than the CNN-LSTM based conditional GANs and the BeatGAN118

models. The discriminative performance of our model increases119

when we add contextual information about the road, modeling120

the distances to nearby pedestrians, bicycles and vehicles. This121

model leads to the best results observed for this task. The main122

contributions of our study are:123
� Scalable formulation for driving anomaly detection that124

seamlessly incorporates new modalities using an attention125

model.126
� Modeling of contextual information derived from vision-127

based object detection systems applied to the road, where128

our approach can react even when the driver is unaware of 129

potential anomalous scenarios. 130
� Exhaustive evaluations of the proposed approach using 131

objective and perceptual evaluations on naturalistic record- 132

ings collected in real road environments. 133

This study is organized as follows. Section II presents related 134

studies addressing the detection of driving anomalies. It also 135

describes background information to understand the proposed 136

architecture. Section III discusses the details of our proposed 137

model. Section IV introduces the dataset to train and evaluate 138

our proposed model, and the implementation details. Section V 139

evaluates the discriminative performance of our proposed model 140

with objective and subjective comparisons. Finally, Section VI 141

summarizes the contributions of this work, discussing future 142

research directions. 143

II. RELATED WORK 144

A. Driving Anomaly Detection 145

Studies have proposed methods for anomaly detection in 146

several domains. In the area of in-vehicle safety systems, many 147

approaches have been proposed for abnormal driving condition 148

detection, either based on driving rules [1]–[4], [6], [7], [10]– 149

[16], [18] or driving patterns [5], [8], [9], [17], [19]–[24]. Most of 150

these studies use the vehicle’s driving information (e.g., speed, 151

acceleration and yaw angle) to describe the vehicle’s driving 152

conditions. The approaches based on driving rules detect target 153

events by either setting a threshold on the vehicle’s driving 154

information [1]–[4], [6], [7], [10], [14], [16], [18], or calculating 155

the driving behavior key performance indicators (KPI) using pre- 156

defined formulas [11]–[13], [15]. The approaches based on driv- 157

ing patterns determine abnormal conditions utilizing machine 158

learning methods, including support vector machine (SVM) [8], 159

[17], [21], [31], neural networks (NN) [20], [23], hidden Markov 160

models (HMM) [22] and Bayesian classifiers [5]. Chen et al. [8] 161

extracted statistic features from the vehicle’s acceleration and 162

orientation, using these features to train a SVM that identifies 163

six different abnormal driving patterns (i.e. weaving, swerving, 164

sideslipping, fast U-turn, turning with a wide radius, and sudden 165

braking). Some studies have utilized the driver’s information, 166

such as physiological signals [28], [29], [32], eye gaze infor- 167

mation [33], [34], facial expressions [35], [36], and driving ges- 168

tures [37], [38] to identify driving anomalies. Köpüklü et al. [38] 169

used the videos recorded by a frontal camera facing the driver 170

and a top camera facing the steering wheel to detect the driver’s 171

abnormal behaviors. To extract spatial-temporal features of the 172

driver’s behaviors, the authors trained a 3D-convolutional neural 173

network (CNN) with contrastive loss to maximize the similarity 174

between normal driving events, and minimize the similarity be- 175

tween normal and abnormal driving samples. During inferences, 176

the feature representations of all the normal driving training 177

clips are normalized using the l2 normalization, using this 178

representation as a template vector describing normal driving. 179

For each testing clip, the authors extracted a feature vector using 180

the 3D-CNN model and calculated the cosine similarity between 181

the feature vector and the normal driving template vector. The 182

testing clips with a cosine similarity score with a value below a 183

preset threshold were considered as anomalies. 184

With the development of computer vision, many studies have 185

proposed methods to detect and identify driving anomalies by 186

using a camera to collect information about the surrounding 187
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traffic environment [39]–[42]. Yao et al. [41] proposed a vision-188

based approach to detect traffic accidents in videos recorded by189

a dashboard-mounted camera. The approach localizes detected190

traffic participants (e.g., other vehicles and pedestrians) using191

bounding boxes, making predictions on their trajectories based192

on previous frames. They train their model with only normal193

driving videos to detect deviations from predicted behaviors,194

under the assumption that moving trajectories in traffic accidents195

deviate from expected trajectories. Our study proposes an unsu-196

pervised driving anomaly detection system by combining the ve-197

hicle’s driving information, driver’s physiological information,198

and vision-based surrounding traffic environmental information199

to improve the performance of the system.200

B. Conditional GANs for Anomaly Detection on Time Series201

Generative adversarial networks (GANs) [43] have demon-202

strated effectiveness for time series data anomaly detection [28],203

[44]–[46]. A GAN consists of a generator (G) that creates204

synthetic data from noise, and a discriminator (D) that deter-205

mines whether the data is real or produced by the generator. By206

training the generator and discriminator with an adversarial loss,207

the model creates realistic synthetic data. As a state-of-the-art208

generative approach, GANs have been used to detect anomalies209

mostly in other domains. Zhou et al. [30] proposed BeatGAN,210

which is a GAN-based system that was used for two problems:211

to detect anomalous beats from electrocardiogram (ECG) sig-212

nals, and to identify unusual human motions (e.g., hopping and213

jumping) from normal activities such as walking. The approach214

builds a generator with an encoder-decoder structure, using the215

reconstructed signals as the generated fake signals to confuse216

the discriminator. After training, they used the reconstruction217

error between the real signal and the generated fake signal as218

the anomalous metric to detect abnormal beats in ECG signals.219

Other alternative approaches relying on GANs to detect anoma-220

lies in other domains include the methods presented by Hyland221

et al. [47], Akcay et al. [48], and Zenati et al. [49].222

C. Attention Mechanism for Multimodal Fusion223

Our study uses attention networks [26] implemented with the224

triplet loss function [27] to jointly learn discriminative embed-225

dings for driving anomaly detection. Hori et al. [50] proposed226

an attention-based feature fusion approach to incorporate audio,227

motion and image features to describe the content of videos. The228

approach calculates the attention weights of the input features229

from different modalities, estimating the linear combination of230

the embeddings of individual modalities using these attention231

weights. The attention mechanism allows the relative weights of232

each modality to change based on the context, showing that this233

combination approach is effective to improve the description234

accuracy. Chen et al. [51] utilized the self-attention mecha-235

nism to fuse audiovisual features for an affect recognition task.236

Song et al. [39] combined attention mechanism and triplet loss237

function to learn effective representations from speech audio238

for speaker diarization. The authors used an attention model to239

calculate feature embeddings directly from Mel-frequency cep-240

stral coefficients (MFCCs) obtained from the speech segments.241

Then, they input the extracted features to the subsequent network242

to learn a similarity metric with the triplet loss function. The243

triplet loss function [27] has been widely used in discrimination244

tasks facilitating contrastive learning solutions to learn more245

Fig. 2. Training procedure of the conditional GAN model. The generator G
predicts plausible data of the upcoming driving segment based on the observed
signals. The discriminator D determines if the data is real or created by G.

discriminant representations. Inspired by these studies, our pro- 246

posed methods combine the attention models with the triplet loss 247

function. 248

D. Relation to Prior Work 249

In our previous work [52], we found that features extracted 250

from the vehicle’s CAN-Bus signals and the driver’s physiolog- 251

ical signals can be used to discriminate different driving maneu- 252

vers. Utilizing the driver’s physiological data and the vehicle’s 253

CAN-Bus data, we proposed an unsupervised driving anomaly 254

detection approach based on conditional generative adversarial 255

networks (GANs) [25], [28], [29]. The driving anomalies were 256

defined as the events that deviate from normal or expected driv- 257

ing patterns that may lead to dangerous situations. Fig. 2 shows 258

the strategy for detecting driving anomalies using a conditional 259

GAN. We used the generator of the GAN to make predictions 260

on the vehicle’s CAN-Bus signals and the driver’s physiological 261

signals, conditioned on the data from previous driving segments. 262

The discriminator of the GAN was trained to identify whether the 263

input data was real or synthesized by the generator. The absolute 264

value of the difference between the discriminator outputs of 265

the predicted data and the upcoming real signal was regarded 266

as the anomaly metric, manomaly , which indicates the abnormal 267

level of the driving condition. An abnormal driving condition 268

was expected to have a higher value for manomaly than a normal 269

driving condition. Qiu et al. [29] extended the approach by 270

defining a new metric based on the triplet loss function. Based 271

on the conditional GAN model, the study proposed a triplet-loss 272

neural network which took the intermediate layer embeddings 273

of the discriminator as the input [29]. This triplet network was 274

trained to decrease the distance between the embeddings of the 275

prediction and real data, while increasing the distance between 276

the embeddings of the real data and an unpaired prediction 277

(i.e., predicted from unrelated segments). Compared with the 278

conditional GAN-based model, the triplet-loss neural network 279

increases the discrimination performance by contrasting the 280

differences between predicted and real features. This process 281

requires no label, leading to an appealing unsupervised approach 282

to detect driving anomalies. 283

Our previous approaches have two major limitations [25], 284

[28], [29]. First, the system responds only when the driver is 285

aware of the anomalies. The driver’s physiological signals and 286

the vehicle’s CAN-Bus data describe the driver’s reactions. The 287

system would fail to detect potential anomalies when the driver is 288

not aware of them (e.g., presence of a pedestrian on the road that 289

the driver has overlooked). Second, it is not easy for the system to 290

extend the approach to include more modalities. Increasing the 291
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Fig. 3. Proposed unsupervised, scalable, multimodal architecture to detect driving anomalies. The feature representations are obtained with a conditional GAN
for each of the modalities. In the figure, the variable Gi represents the generator of the i modality, and Di represents the discriminator of the i modality. The
attention model weights the modalities using a triplet loss function.

dimension of the inputs would prevent the convergence during292

the training process of the GAN model.293

Building upon our previous work, this study addresses these294

two challenges by proposing an unsupervised scalable multi-295

modal driving anomaly detection system. The modalities are296

fused using an attention model, which provides a principled297

approach to scale our formulation to include more modalities.298

We can seamlessly incorporate information about nearby pedes-299

trians, bicycles and other vehicles. This is a contrastive approach300

implemented with the triplet loss function, which does not re-301

quire labeled data. These features are fundamental contributions302

that make our approach more appealing for real applications.303

III. PROPOSED MODEL304

This study proposes a novel unsupervised driving anomaly305

detection framework that has three main blocks. Fig. 3 shows an306

overview of our framework. The first block extracts embeddings307

from multiple modalities with conditional generative adversar-308

ial networks (GANs). The second block fuses the modalities309

with the attention mechanism, learning from the data how to310

weight the representations from each modality. The third block311

is the triplet loss function that is used to train the model, learning312

a contrastive-based metric that indicates the anomaly level of the313

target recording.314

Our proposed implementation has five modalities: the vehi-315

cle’s CAN-Bus signals, the driver’s physiological signals, the316

distances to nearby vehicles, the distances to nearby bicyclists317

and the distances to nearby pedestrians. By combining the318

conditional GAN models, self-attention mechanism and triplet319

loss function, we aim to create a framework that is (1) scalable,320

making it easy to add more modalities if needed, and (2) ef-321

fective, learning representations of the features extracted from322

different modalities. This section describes the details about the323

three building blocks of our proposed method.324

A. Feature Extraction Using Conditional GANs325

The first block in the system extracts a discriminative feature326

representation for each of the modalities. This feature extraction327

module is implemented with the conditional GANs used in the328

unsupervised driving anomaly detection system proposed by329

Qiu et al. [25]. Instead of adopting an early fusion approach by330

building one GAN model that takes all the multimodal signals331

as input, we adopt a model-level fusion approach by building332

separate GANs for each modality, which are later combined 333

using the attention mechanism. As mentioned in Section II-D, 334

the key purpose of using a GAN for this task is to generate 335

predictions that are compared with the observed signals. Fig. 3 336

shows the architecture of the generator and discriminator of the 337

conditional GANs, which is the same architecture proposed in 338

Qiu et al. [25]. We use CNNs and recurrent neural networks 339

(RNNs) implemented with long-short term memory (LSTM) 340

cells [53]. The CNNs extract feature embeddings from the orig- 341

inal input signals without relying on hand crafted features. The 342

output of the CNNs are then processed by the LSTM network to 343

leverage temporal information in the time series sequence. For 344

each modality, the generator (G) predicts plausible data of the 345

upcoming 6-second driving segments based on the previous 30 346

seconds signals, and the discriminator D determines whether the 347

data is real or fake. Equations 1 and 2 show the cost function of 348

this adversarial task, where x is the data sample, z is the noise 349

sample, pdata is the distribution of data and pz is the distribution 350

of the noise. 351

max
D

V (D) = Ex∼pdata(x) [logD(x)]

+ Ez∼pz(z) [log(1−D(G(z)))] (1)

min
G

V (G) = Ez∼pz(z) [log(1−D(G(z)))] (2)

From each conditional GAN model, we extract the embedding 352

of the penultimate layer of D as the feature embedding of the 353

modality. By building separate GANs for each modality, our 354

proposed system is easy to scale when more modalities are avail- 355

able. Section IV-B discusses implementation details, including 356

pre-training each GAN before jointly training the entire system. 357

B. Self-Attention Model for Multimodal Fusion 358

The combination of features from multiple modalities is 359

expected to effectively improve the model performance. This 360

section describes the self-attention network used to implement 361

the fusion of N modalities, each of which has its own feature 362

embedding, extracted from the penultimate layer of its D. The 363

key idea is to linearly combine the individual embedding by 364

dynamically defining the modality weights using the attention 365

mechanism. For a driving segment, the attention model takes 366

N embeddings as input features. Fig. 4 shows the structure of 367

the attention network used in this work. The core component 368

of the attention network is the multi-head module from the 369
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Fig. 4. Details of the architecture used for the attention module. The output of this model is the output embedding used for the triplet loss function.

self-attention mechanism [26]. More specifically, we stack the370

features of each modality as the input of the attention model,371

which we denoted X . For each head, we estimate the matrices372

WQ, WK and WV . These matrices are trainable parameters373

to map the input X into Q (query), K (key), and V (value),374

respectively. We map X into these three subspaces by mul-375

tiplying these matrices with X (i.e., Q = XWQ, K = XWK376

and V = XWV ). We compute the scaled dot-product attention377

based on the attention matrices. Then, the dot product of Q and378

K are activated by the softmax function as the attention weights.379

The matrix of attention representation is computed as:380

W = softmax

(
QKT

√
dk

)
(3)

Attention(Q,K, V ) = WV (4)

where dk = 256 is the dimension of the attention matrix K.381

The attention weight matrix W describes the interaction among382

the N input modalities by computing the scaled inner prod-383

uct between pairs of modalities. The number of multi-head384

attentions is denoted by H . The attention representations are385

computed using H parallel sets of attention matrices, denoted386

as heads. The reason for assigning different matrices to each387

attention head (WQ, WK , WV ) is that the model pay attention388

to the relationship among different modalities. We concate-389

nate the resulting H attention representations together as an390

ensemble of attention representations. Multi-head attention pre-391

vents the model from focusing on only one modality by jointly392

considering information from multiple representations. This393

multi-head attention module can be stacked multiple times for394

a deeper structure. We denote the number of stacked attention395

modules by L. The connection between two modules is a feed396

forward network (FFN) implemented with two fully connected397

layers, where the activation function of the first layer is the398

rectified linear unit (ReLU). In (5), W1 and W2 are the weight399

matrices, and b1 and b2 are the bias terms of the FFN.400

FFN(x) = max(0, xW1 + b1)W2 + b2 (5)

C. Triplet Loss for Metric Learning401

Inspired by the work of Qiu et al. [29], the representations402

from the attention model are then used to learn a similarity403

metric with the triplet loss function. The use of this contrastive404

loss aims to build embeddings that are discriminative for the405

driving anomaly detection task using an unsupervised strategy.406

In a triplet network, each input is constructed as a set of three407

samples: sp, sa, and sn. The sample sa denotes an anchor, sp408

denotes a positive sample belonging to the same class as sa, and409

sn denotes a negative sample from a different class. The goal of410

the triplet loss function is to create an embedding that minimizes411

the distance between the anchor and the positive sample while412

increasing the distance between the anchor and the negative413

Fig. 5. Attention network trained with the triplet loss function. The penul-
timate layer embeddings of the discriminators are extracted as input of the
attention model. During inferences, we estimate the absolute difference between
EActual and EPredicted, which is used as the anomaly score.

sample. This study considers the real data to be predicted 414

as the anchor example sa, and the prediction conditioned on 415

the previous frames as the positive example sp. The negative 416

example sn corresponds to the predicted data from another 417

randomly selected driving segment (i.e., unpaired data). Fig. 5(a) 418

shows the training procedure. The samples are processed by the 419

separate GAN models (Section III-A) and the attention model 420

(Section III-B). The corresponding outputs are referred to as 421

Ea for the anchor, Ep for the positive sample, and En for the 422

negative sample. We use the Euclidian distance between these 423

vectors to estimate the cost function, which is defined in (8). The 424

distance between Ea and Ep is minimized, while the distance 425

between Ea and En is maximized to be larger than a preset 426

margin α. 427

Dap = ‖Ea − Ep‖2 (6)

Dan = ‖Ea − En‖2 (7)

LTriplet = max(0, D2
ap −D2

an + α) (8)

This loss function maps the embedding of the predicted data, 428

closer to the embedding of the corresponding actual data and 429

far away from the embedding of the unpaired data. This whole 430

process is fully unsupervised, requiring no labels. 431

Fig. 5(b) shows the inference procedure. For a driving seg- 432

ment, we process the real data, obtaining EActual and the pre- 433

dicted data by the generator, obtaining EPredicted . Equation 9 434

shows the final anomaly score, which consists of the difference 435
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between EActual and EPredicted . A high value of Sanomaly in-436

dicates that the driving segment is more unexpected, suggesting437

a higher degree of anomaly.438

Sanomaly = |EActual − EPredicted| (9)

IV. EXPERIMENTAL SETTING439

A. Driving Anomaly Dataset (DAD)440

The experiments in this study rely on the driving anomaly441

dataset (DAD) [28] collected by Honda Research Institute (HRI)442

in an Asian city. The dataset contains 250 hours of naturalistic443

driving recordings, where 84 hours are used in this study. The444

data is collected during day time, and most of the driving scenar-445

ios are under urban driving environments, including residential,446

school area, and downtown area. The data includes very little447

segments with highway driving. We rely on the vehicle’s CAN-448

Bus signals, which consist of the vehicle’s speed, yaw angle,449

steer angle, steer speed, pedal pressure and pedal angle (6D450

vector). We also use the driver’s physiological signals, which are451

collected using a chest band (heart rate and breath rate - Zephyer452

BioHarness 3 chestband) and a wristband (skin conductance453

and sphygmus - Empatica E4). From these sensors, we use the454

following three signals: heart rate (HR), breath rate (BR), and455

electrodermal activity (EDA). We also leverage road information456

extracted with a vision-based object detection system. The object457

distance information includes the distance to nearby vehicles,458

pedestrians, and bicyclists. The objects are detected by a smart459

camera mounted on the interior side of the windshield, utilizing460

Mobileye technology. This system measures the distances to461

nearby pedestrians, bicyclists, vehicles and lane markings. Mo-462

bileye’s algorithm can simultaneously detect multiple objects.463

For this study, we only consider the two closest pedestrians,464

bicyclists, and vehicles. Each of these modalities is represented465

with a 4D vector including the horizontal and vertical distances466

from the car of the two closest pedestrians, bicyclists, or vehicles.467

All the considered signals are synchronized at the sampling rate468

of 30 Hz.469

The dataset is manually annotated using the camera recording470

of the road. The annotation process followed the same protocol471

used in the collection of the Honda Research Institute driving472

dataset (HDD) [54], [55]. The annotation includes the presence473

of several events and maneuvers. Regular driving maneuvers,474

such as turns and lane changes, are defined as goal-oriented475

operations, while the maneuvers that are influenced by other476

traffic participants are defined as stimuli-driven operations (e.g.,477

avoid pedestrian near ego lane and avoid on-road bicyclist).478

More detailed information about this dataset is provided by479

the studies of Qiu et al. [28], [29]. In this work, we group480

the driving segments into two sets according to the annotations481

provided by the annotators. The driving segments that overlap482

with no annotations are considered as the normal set. The driving483

segments that overlap with stimuli-driven operation, driver’s484

error and traffic rule violation annotations are grouped as the485

candidate set. These segments can potentially be associated486

with driving anomalies. Table I shows the details with the487

annotations included in these two sets. The candidate driving488

set represents only 1.69% of the recordings. This ratio is similar489

across partitions with 1.57% for the train set, 1.53% for the490

development set and 2.44% for the test set. This study considers491

89 sessions, which correspond to approximately 84 hours of492

urban driving recordings. We split these recordings into 3 sets:493

TABLE I
DEFINITION OF CANDIDATE AND NORMAL SETS. THE ANNOTATIONS

CORRESPOND TO THE LABELS INCLUDED IN THE DAD CORPUS

train (72 sessions, approx. 70 hours), development (3 sessions, 494

approx. 4 hours), and test (14 sessions, approx. 10 hours) sets. 495

B. Implementation Details 496

This section introduces the implementation details of our 497

approach. Our proposed model includes the conditional GANs, 498

to derive discriminative feature representations, and the self- 499

attention networks, to fuse the modalities. We implement the 500

conditional GANs with convolutional neural networks (CNNs) 501

and recurrent neural networks (RNNs). The generator consists 502

of six convolutional layers, implemented with 64, 64, 128, 128, 503

64 and 1 channels, respectively. We use batch normalization 504

and a leaky ReLU function [56] for each layer except the output 505

layer. The output of the CNNs is fed into the RNNs, which 506

are implemented with two layers of long short-term memory 507

(LSTM) cells. The number of units in each LSTM cell is 64. The 508

output of the LSTM cells goes through a single fully connected 509

layer, where its dimension is equal to the corresponding input 510

modality. Similarly, the discriminator consists of four convolu- 511

tional layers, implemented with 64, 128, 128 and 64 channels, 512

respectively, followed by two layers of LSTM cells. Each LSTM 513

layer is implemented with 64 units. The output of the LSTM 514

is fed into the feed forward networks, which has three layers 515

with dimensions 1024, 1024, and 1, respectively. The first two 516

layers are activated with the leaky ReLU function, while the last 517

layer is activated with a sigmoid function. The 1024-dimensional 518

embedding of the second layer will be extracted as the unimodal 519

feature representation of each modality. 520

During the training process, we train the generator and dis- 521

criminator for 20 epochs. We use the Adam optimizer, with a 522

learning rate set to 0.001. After training the GANs, we freeze 523

the GANs’ parameters and extract an unimodal feature rep- 524

resentation for each modality, which we denote zCAN−Bus , 525

zphysiological , zpedestrian , zvehicle , and zbicyclist . We map these 526

vectors into a subspace with a trainable projection implemented 527

with the Tanh activation to produce the vector representations 528

xCAN−Bus , xphysiological , xpedestrian , xvehicle , and xbicyclist . 529

These transformations compensate for the differences in magni- 530

tude. Then, we stack the vector embeddings of the five modalities 531

as the input of the attention networks. We denote this matrix as 532

X ∈ RN×dmodel , whereN = 5 and dmodel = 512. As introduced 533

in Section III-B, we apply multi-head attention mechanism to 534

attend to information from different representation subspaces as 535

following: 536

MultiHead(Q,K, V ) = Concat(head1, . . ., headH)WO (10)

headi = Attention(XWQ
i , XWK

i , XWV
i )

(11)

where the parameter matrices are WQ
i ∈ Rdmodel×dQ , WK

i ∈ 537

Rdmodel×dK , WV
i ∈ Rdmodel×dV , and WO

i ∈ Rdmodel×dV . We 538
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use five heads (i.e., H = 5), setting the dimensions of the query,539

key and value to 256 (i.e., dQ = dK = dV = 256). Section V-A540

discusses results with different number of heads. The attention541

module is stacked L times, setting L = 2. The feed forward542

network in the attention model is implemented with three fully543

connected layers with dimension equal to dmodel to facilitate the544

residual connections.545

The parameters of the attention networks are trained with546

the triplet loss function introduced in Section III-C. We use the547

Adam optimizer with a learning rate equal to 0.001. After ten548

epochs, we jointly train the parameters of the GANs and the549

attention networks for another five epochs, where all the param-550

eters are optimized to improve the proposed driving anomaly551

detection system (i.e., end-to-end solution). We use a constant552

margin for the triplet loss function (α in (8)). The value of α553

needs to be adjusted during training. On the one hand, the loss554

of the model will be very large if the margin is too large. Under555

this setting, the model may not converge during the training556

process. A benefit of having a large margin is that the model557

will be more confident distinguishing similar samples. On the558

other hand, the loss easily converges to 0 if the margin is too559

small, which makes it more difficult for the model to distinguish560

between similar samples. We implement the training process561

with different values for this margin, varying α from 2 to 25.562

We evaluate the results on the development set, using the binary563

classes normal and candidate sets. We set α = 8, which led to564

the best performance on the development set.565

V. EXPERIMENTAL RESULTS566

This section describes the experimental results of our pro-567

posed unsupervised scalable multimodal driving anomaly de-568

tection system. We also use subjective perceptual evaluation to569

evaluate the model performance.570

A. Driving Anomaly Detection571

We evaluate model performance by comparing the anomaly572

scores of the driving segments in candidate and normal sets573

(Sec. IV-A). The annotations included in the videos from the574

candidate set suggest something abnormal in the video, due to575

the driver’s maneuvers, or the presence of other people, objects576

or events (e.g., pedestrian crossing the street). Therefore, the577

segments from the candidate set are expected to have higher578

anomaly scores than the segments from the normal set, which579

do not overlap with any annotation.580

We compare the performance of our proposed model with581

three baseline models. The first baseline is the CNN-LSTM con-582

ditional GANs proposed by Qiu et al. [25], which is trained with583

two modalities: the vehicle’s CAN-Bus signals and the driver’s584

physiological signals. We refer to this method as CNN-LSTM585

GANs with 2 modalities. This model concatenates the modalities586

training a single conditional GAN model. This formulation587

increases the dimension of the embeddings since it uses a single588

concatenated representation. As we increase its dimension, the589

model will require more data to effectively train this high di-590

mensional feature representation. The convergence of the model591

during training is compromised, as the dimension of the input592

increases. Therefore, the approach is not scalable. In contrast, the593

proposed method builds a separate GAN model for each modal-594

ity, making it easier to train. It adopts an attention mechanism to595

fuse separate embeddings from each modality. This formulation596

Fig. 6. DET curves for the models by formulating the problem as a binary
classification task using the candidate and normal sets.

allows us to include more modalities if needed. The second 597

baseline is the BeatGAN proposed by Zhou et al. [30], which 598

is a GAN-based unsupervised method (see Sec. II-B). The gen- 599

erator of the BeatGAN model is built with an encoder-decoder 600

structure, and is trained to reconstruct 6-sec long signals as fake 601

data to confuse the discriminator. The discriminator is trained 602

to discriminate the real 6-sec signals and the generated fake 603

6-sec signals, following the regular adversarial training strat- 604

egy of GANs. For inference, the reconstruction error between 605

the real and fake signal is regarded as the anomalous metric 606

to discriminate abnormal events. In this work, for each 6-sec 607

long driving segment, we implement the BeatGAN framework 608

using the CAN-Bus and physiological data as input, using the 609

reconstruction error as the anomalous metric of the driving 610

segment. We refer to this method as BeatGAN 2 modalities. The 611

third baseline is the proposed attention model implemented with 612

only the CAN-Bus and the physiological signals. This baseline 613

is implemented to evaluate the effectiveness of the additional 614

modalities describing the external information. We refer to this 615

method as attention with 2 modalities. For the evaluation, we 616

formulate the driving anomaly detection problem as a binary 617

classification task. We calculate the false positive rate (FPR) and 618

false negative rate (FNR) as we change the decision threshold, 619

creating detection error tradeoff (DET) curves of the proposed 620

model and baseline models. This curve uses the FPR and FNR 621

as its axes. A DET curve that lies closer to the axes indicates 622

lower errors, and, therefore, better binary classification results. 623

Fig. 6 shows the DET curves of the proposed model and the 624

three baselines. The dashed line represents the operation point 625

where the FPR and FNR are equal. Fig. 6 indicates that the 626

proposed approach based on the attention model, implemented 627

with either two or five modalities, achieves better discriminative 628

performance than the CNN-LSTM GANs and BeatGAN models 629

for most of the operation points. Our proposed approach imple- 630

mented with the five modalities achieves the best performance, 631

indicating that adding the contextual information about the 632

road is extremely useful to improve the detection of driving 633

anomalies. 634
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B. Subjective Perceptual Evaluation635

This section relies on subjective perceptual evaluations to636

assess more precisely the performance of the proposed approach.637

Collectively, the videos from the candidate set are expected638

to have more anomalies than the videos from the normal set.639

However, it is possible that some of the videos in the normal set640

may present some level of driving anomaly, while samples from641

the candidate set may be normal. Therefore, we select videos in642

the corpus to be directly annotated with anomaly scores.643

We randomly select 200 segments from the candidate set and644

200 segments from the normal set. The recording of each seg-645

ments is six seconds long. Three annotators joined the perceptual646

evaluation, who were asked to judge all the recordings after647

watching the camera recordings showing the road. In addition648

to annotating the driving anomalies, we are also interested on649

the level of risk and familiarity perceived in the recordings.650

Fig. 7 shows the graphical user interface (GUI). For each651

driving segment, the annotators answered four questions about652

the driving scenario shown in the video: (1) how risky is the653

driving condition in the video? (safe; slightly risky; risky; very654

risky), (2) how often do you see similar driving condition on the655

road? (never; almost never; sometimes; quite often; regularly),656

(3) Is the driving condition in the video normal or abnormal657

(normal; abnormal), and (4) what causes the anomaly in the658

video? (pedestrian; bicyclist; motorcyclist; other vehicle; bad659

maneuver of our driver; no anomalies). The first three questions660

consider a single choice. We estimate the inter-evaluator agree-661

ment using the Krippendorff’s Alpha Coefficient, since these662

questions have interval options. The agreement across the three663

evaluators are 0.737 for question one (risky level), 0.509 for664

question two (familiarity level), and 0.895 for question three665

(normal/abnormal). The last question allows the annotators to666

provide multiple choices as possible causes of the anomalies.667

We estimate the inter-evaluator agreement using the Cohen’s668

Kappa coefficient, since this question is multiple choice. This669

metric is calculated between two raters, so we average the results670

calculated from the three pairs of raters as the final agreement671

level. The agreement for question four (possible causes) is 0.759.672

These levels of agreements are considered very high. According673

to the answers of the third question (i.e., Is the driving condition674

in the video normal or abnormal?), we regroup the selected675

400 driving segments into two sets: normal and abnormal. We676

aggregate the responses of the annotators using the majority vote677

rule, assigning a class if two out of the three evaluators select678

that class. In total, we have 175 segments labeled as abnormal,679

and 225 segments labeled as normal.680

We analyze the risk level perceived in the annotated videos.681

From the 400 segments, we select the top 100 segments with the682

highest anomaly scores and the bottom 100 videos with the low-683

est anomaly scores. A more discriminative model should have684

more segments evaluated as very risky with fewer safe segments685

in the Top 100 group, and more safe segments with fewer very686

risky segments in the bottom 100 group. Table II shows that the687

top 100 group for the proposed attention model implemented688

with five modalities has 45 segments labeled as either risky689

or very risky. This number is higher than the corresponding690

segments identified by the baselines: 38 for CNN-LSTM GANs,691

42 for BeatGAN, and 40 for Attention with 2 modalities. Only692

34 segments are selected as safe, which is less than the number693

of segments selected by the other methods.694

Fig. 7. User interface of the subjective perceptual evaluation. After watching
the video, the evaluators answer four questions to assess the risk, familiarity and
anomaly levels (single choice). The questionnaire also asks for possible causes
of anomalies (multiple choice).

TABLE II
ANALYSIS OF THE RISK LEVEL OF THE TOP 100 VIDEOS WITH THE HIGHEST

ANOMALY SCORES AND THE BOTTOM 100 VIDEOS WITH THE LOWEST

ANOMALY SCORES (IN BRACKET). THE ANALYSIS CORRESPONDS TO THE

RESPONSES TO THE FIRST QUESTION IN THE PERCEPTUAL EVALUATION

(FIG. 7). WE INDICATE IN BOLD THE MOST DESIRABLE

RESULTS FOR THE EXTREME CASES



QIU et al.: UNSUPERVISED SCALABLE MULTIMODAL DRIVING ANOMALY DETECTION 9

Fig. 8. DET curves for the models by formulating the problem as a binary
classification task using the labels from the perceptual evaluations. The analysis
relies on the responses to the third question in the perceptual evaluation (Fig. 7).

We also evaluate the familiarity level assigned to the annotated695

videos. We expect that videos with high anomaly scores are696

perceived as less frequently observed on the roads. From the697

top 100 videos with the highest anomaly scores, we observe698

that the proposed model implemented with five modalities has699

49 videos labeled as either never or rarely. This number is700

also higher the corresponding values for the baselines: 38 for701

CNN-LSTM GANs, 46 for BeatGAN, and 39 for Attention with 2702

modalities. The proposed approach is also the method with teh703

lowest number of videos perceived as regularly observed on the704

roads (31 segments).705

Fig. 8 shows the DET curves using the normal and abnormal706

labels obtained from the perceptual evaluation. In contrast to707

results on Fig. 6, which rely on annotations indirectly linked to708

driving anomaly, the results in Fig. 8 leverage the annotations709

conducted in this study to directly assess driving anomaly. The710

figure shows that our proposed model achieves the best per-711

formance. The proposed attention-based approach implemented712

with two modalities is better than the baseline method using713

only the conditional GAN model. These results confirm the714

observations made in Section V-A.715

C. Ablation Study716

This section presents an ablation study to understand the717

contributions of different parts of the proposed model in the718

overall results. We report the performance by using the results719

from the perceptual evaluations, formulating the task as a binary720

classification task (i.e., normal versus abnormal).721

A key component of the proposed approach is the attention722

model used to fuse the modalities. A parameter of the model723

is the number of heads (H). This parameter is important, since724

it helps the system to attend to more than one modality. We725

implement the proposed approach with either one, five, or ten726

heads. Fig. 9 shows the corresponding DET curves. The model727

gets the best discriminant performance with five attention heads728

H = 5. The performance is clearly lower when we use a single729

head. In this case, the model can only attend to one of the730

modalities at a time, which is not optimal for this task. Adding731

Fig. 9. DET curves to compare the discriminant performance of the proposed
model based on attention implemented with different numbers of heads.

Fig. 10. DET curves to compare the discriminant performance of the proposed
approach with and without attention model.

too many heads also is not optimal, especially since we only rely 732

on five modalities. 733

To illustrate the effectiveness of the attention module in 734

our approach, we remove the attention model, replacing the 735

value with the average of the discriminator embeddings of each 736

modality. Fig. 10 shows the results of this system with our 737

full system with the attention model. The model with attention 738

module outperforms the model without attention. 739

We explore the contribution of each of the modalities used 740

in this study by adding one environmental modality to the 741

proposed model trained with only CAN-Bus and physiological 742

signals. Fig. 11 shows the corresponding DET curves. Adding 743

environmental information to this baseline system improves 744

the discriminative power of the system. Adding the pedestrian 745

distances leads to more improvements. The figure also shows 746

that we obtain the best performance when we consider the five 747

modalities. 748
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Fig. 11. DET curves to compare the discriminant performance of the proposed
model based on attention implemented with different modalities.

TABLE III
ANALYSIS OF THE FAMILIARITY LEVEL OF THE TOP 100 VIDEOS WITH THE

HIGHEST ANOMALY SCORES AND THE BOTTOM 100 VIDEOS WITH THE

LOWEST ANOMALY SCORES (IN BRACKET). THE ANALYSIS CORRESPONDS TO

THE RESPONSES TO THE SECOND QUESTION IN THE PERCEPTUAL EVALUATION

(FIG. 7). WE INDICATE IN BOLD THE MOST DESIRABLE RESULTS FOR THE

EXTREME CASES

TABLE IV
NUMBER OF MILLIONS OF PARAMETERS WHEN ADDING MORE MODALITIES

(UPTO SIX) TO THE BASE MODEL TRAINED WITH CAN-BUS AND

PHYSIOLOGICAL SIGNALS

D. Scalability of the Model749

This section focuses on the scalability of the proposed ap-750

proach. We focus on the number of parameters in the models751

as we increase the number of modalities. We assume that the752

modalities that we add have input dimension equal to four,753

similar to the distances to pedestrian, bicycles and other vehicles.754

Table IV lists the number of millions of parameters when we add755

more modalities to the base model trained with the CAN-Bus756

and Physiological signals. Even though we considered three ad-757

ditional modalities in this study (distances to pedestrian, bicycles758

and other vehicles), we include in the analysis adding up to seven759

extra modalities, each of them having a 4D representation. The760

table lists the total number of parameters of the entire model,761

and the number of parameters of the attention module. As a762

reference, we also include the hypothetical scenario in which763

we implement the CNN-LSTM GAN model [25] with more 764

modalities. 765

When we add four or more modalities, the results show that 766

the number of parameters is less than the model proposed by Qiu 767

et al. [25]. Most of the parameters added to our proposed model 768

correspond to the parameters needed to train a new separate 769

GAN model. The increase in the number of parameters of the 770

attention module is very small, as shown in the table. As a 771

result, the training of this model is scalable. We just need to 772

train a separate GAN model and retrain the attention model 773

block, which is minimally impacted by the new modality. In 774

contrast, the approach presented by Qiu et al. [25] needs to train 775

a single GAN model after concatenating all the inputs. The high 776

dimension of the input makes this single GAN difficult to train, 777

requiring more data to avoid undertraining the models. Because 778

of the high dimensionality of the model, the convergence of 779

the approach is also questionable. It is more convenient to train 780

a small GAN model for each modality than training one huge 781

GAN model with the concatenated inputs. 782

VI. CONCLUSION 783

This study introduced a novel unsupervised scalable mul- 784

timodal driving anomaly detection system based on the self- 785

attention mechanism, which is built on conditional GANs and 786

trained with the triplet loss function. This system builds a 787

separate conditional GAN model for each available modal- 788

ity, predicting the signal for the upcoming segment based on 789

previous data. The feature embeddings for the modalities are 790

fused by the attention model. The attention model is built based 791

on the self-attention mechanism and trained with triplet loss 792

function, where the distance between embeddings from actual 793

signals are minimized and embeddings from unpaired segments 794

are maximized. The entire training process does not require 795

labeled data. Our experimental results indicate that the proposed 796

model achieves better performance than the baseline models on 797

discriminating normal versus abnormal driving conditions. 798

The approach is scalable, where more modalities can be easily 799

added if needed. Our formulation only requires building separate 800

conditional GANs for the new modalities and concatenating 801

the corresponding feature representation to the input of the 802

attention model. Furthermore, the approach can react to driving 803

anomalies, even if the driver is not aware of the anomaly, by 804

incorporating modalities associated with the environment (i.e., 805

distances to nearby pedestrians, vehicles and bicycles) 806

Our future work includes the integration of our approach 807

with new modalities such as lane keeping information or visual 808

attention estimation. The proposed approach relies on obtaining 809

physiological data, which currently requires wearable sensors. 810

The proposed model will benefit from non-contact technology 811

to estimate physiological data. Another limitation of the pro- 812

posed approach is the latency in the prediction. Our model 813

directly compares predicted and actual signals. This approach 814

introduces a latency of at least six seconds. A future research 815

direction is to investigate approaches to reduce the latency of 816

the model. Another appealing research direction is to increase 817

the interpretability of the model, identifying why the system 818

predicted that a given segment was anomalous. We expect that 819

the embeddings generated by individual GANs, or the join 820

embedding generated by the attention module can be used to 821

increase the interpretability of the model. 822
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