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Abstract
There are several applications for speech-emotion recog-

nition (SER) systems in areas such as security and defense
and healthcare. SER systems have achieved high performance
when they are trained and tested in similar conditions. How-
ever, the performance often drops in more realistic and diverse
conditions. Most existing SER datasets are too controlled and
do not capture complex scenarios relevant to practical appli-
cations. This paper presents the White House tapes speech
emotion recognition (WHiSER) corpus, which includes distant
speech with real emotions from conversations in the Oval Of-
fice in 1972. This dataset is unique because it combines natural
emotional expressions with various background noises, making
it a perfect tool to test and improve SER models. Its real-world
complexity and authenticity make the WHiSER corpus an ex-
cellent corpus for advancing emotion recognition technology,
offering insights into how human emotions can be accurately
recognized in complex environments.
Index Terms: emotional dataset, speech emotion recognition,
expressive speech.

1. Introduction
The development of speech-emotion recognition (SER) sys-
tems has opened novel opportunities in diverse domains such
as healthcare, customer satisfaction, security and defense, edu-
cation, and entertainment [1–3]. SER systems must accurately
detect emotional behaviors regardless of the context, target ap-
plication, and recording conditions. The effectiveness of these
systems relies on the quality and diversity of the datasets used to
train the models. It is important to have challenging datasets to
test the reliability of SER systems in complex environments that
resemble real-world conditions. The existing emotional corpora
that capture real human interactions are often recorded using
high-quality recording devices with a noiseless environment [4].
However, most of the real-world applications involve different
types of background acoustic noise [5, 6]. Therefore, we need
more diverse SER datasets that capture the challenges that SER
systems are expected to face if deployed in real applications.

Over the years, researchers have created many emotional
speech datasets. Initial datasets relied mainly on actors read-
ing a predefined set of sentences portraying targeted categorical
emotions (happiness, anger, sadness) [7, 8]. However, research
indicates that these emotions tend to be too exaggerated and
do not represent the expressions observed in everyday human
interactions [9]. A more natural approach is to simulate con-
versations between individuals to create more natural interac-
tions [4, 10]. However, it is difficult, time-demanding, and ex-
pensive to collect a large database with this method. Few studies
explored speech datasets generated from uncontrolled settings
such as TV shows [11, 12], but these sources often resulted in

biased emotional content because of the focus of the show (col-
loquial conversations in family-oriented programs, negative ex-
pressions in conflict-based shows). Recently, large emotional
speech corpora have been developed by annotating the data
available in media-sharing platforms [4,13]. Even though these
corpora provide adequate resources to develop strong SER sys-
tems, the recordings are still clean. We need emotional datasets
recorded under real-time conditions including distance speech,
reverberation, and background noise.

This paper introduces the White House tapes speech emo-
tion recognition (WHiSER) corpus, obtained from the Nixon’s
Tapes recordings [14]. From 1971 to 1973, President Nixon
recorded conversations in the Oval Office, which included au-
thentic emotional interactions under varied recording condi-
tions. The recordings were declassified and archived. They
include distant speech, reverberation, and low signal-to-noise
ratio (SNR), capturing relevant realistic conditions for SER sys-
tems. We rely on the pipeline proposed in the affective natural-
istic database consortium (AndC) to select and annotate emo-
tional recordings. The corpus comprises 6 hours and 21 minutes
of data specifically annotated for emotional attributes (arousal,
valence, and dominance), and categorical emotions (anger, sad-
ness, happiness, surprise, fear, disgust, contempt, and neutral).
The WHiSER database is intended to be used as an independent
test set, in the context of the generalization of SER systems in
complex environments. Its use can facilitate advances in unsu-
pervised domain adaptation for SER [15–17]. All the data and
the emotional labels are released on our GitHub repository. 1

2. Related Work
Building the right infrastructure to develop computational mod-
els for emotions is critical. A common approach in early
emotional databases is to record actors instructed to read sen-
tences portraying target emotions. Several emotional datasets
are developed using this approach, including the Emo-DB [8],
RAVDESS [18], TESS [19], CREMA-D [20], and the Chen Bi-
modal [21] databases. However, Devillers et al. [22] and Bat-
liner et al. [23] highlighted that such acted emotions do not ac-
curately reflect real-life emotional complexity, suggesting that
performances in acted scenarios do not match real-world appli-
cation accuracies. The IEMOCAP [24] and MSP-IMPROV [25]
databases were created to feature conversations in dyadic inter-
actions, moving away from the scripted readings of previous
datasets. Although these datasets tackled the problem of ex-
aggerated emotions by presenting more natural dialogues, the
recordings still involve actors. Other datasets such as VAM
[26], SEMAINE [27], and TUM-AVIC [28] were built, sourc-
ing natural interactions from TV shows and call centers. While

1https://github.com/msplabresearch/WHiSER



they moved towards capturing genuine interactions, the emo-
tional content in these datasets became significantly skewed,
reflecting the specific contexts of these interactions rather than
the range of emotional content observed in everyday human in-
teractions. The MSP-Podcast [4] corpus relied on recordings
obtained from audio-sharing websites, enriching the emotional
context beyond what acted datasets offer. Podcasts are often
recorded with close-talking microphones, providing clean au-
dio. There is a pressing need for emotional datasets that cap-
ture naturalistic recordings resembling the conditions expected
to exist if SER systems are deployed in real applications. This
observation is the motivation for the WHiSER dataset, which
provides a valuable resource to comprehensively assess and en-
hance the capabilities of SER systems.

3. The WHiSER Corpus
The WhiSER dataset consists of speech files obtained from the
declassified President Nixon’s Oval Office recorded conversa-
tions from 1971 to 1973, referred to as Nixon’s tapes [14].
These recordings cover significant events and meetings in key
locations such as the Oval Office, Cabinet Room, the Pres-
ident’s Old Executive Office Building, and Aspen Lodge at
Camp David. It also includes recordings of the White House
telephone calls. The recorded conversations in the dataset pro-
vide emotionally rich natural interactions using distant micro-
phones, which makes it an ideal resource for emotional recog-
nition tasks. We follow the pipeline suggested in the affective
naturalistic database consortium (AndC) to select and annotate
emotional recordings. This section details the process.

3.1. Pipeline and Data Annotation
The data collection pipeline’s preprocessing stage is divided
into two main phases: the audio preparation phase and the filter-
ing phase. In the audio preparation phase, the raw audio collec-
tions are transformed into a consistent format using the Librosa
toolbox [29] (16kHz, 16-bit, and single-channel). These record-
ings are then processed by a voice activity detector (VAD) to
identify speech segments. In the filtering phase, the recordings
undergo several filtering steps to enhance speech quality. This
step includes automatic algorithms to determine the presence
of music, using the approach proposed in Lee et al. [30], and
noise, using the noise estimator proposed by Nicolson and Pali-
wal [31]. We considered 5dB SNR as a lower threshold for
removing samples that are too noisy. Only the utterances that
satisfy all predefined criteria are considered in the subsequent
stages. In total, this set includes 121,482 sentences.

In natural conversations, most of the sentences are emotion-
ally neutral. Therefore, the AndC pipeline involves automat-
ically retrieving samples with machine-learning tools that are
likely to convey emotional reactions. We collected emotion-
ally rich samples from the full set of speech files in two stages.
Initially, we employed four speech-emotion recognition mod-
els based on preference learning on emotional attributes. These
models were initialized with the wav2vec2 large model [32]
from the HuggingFace [33] library and were fine-tuned with
the MSP-Podcast dataset, as detailed in [17]. From these cho-
sen samples, we manually eliminated any unintelligible sam-
ples, regardless of their emotional content, ending up with 1,427
speech files to be annotated with emotional labels. In the sec-
ond stage, we utilized 12 speech-emotion recognition models
designed to predict attribute scores, which helped us select emo-
tionally rich samples. These models were based on the state-
of-the-art self-supervised learning (SSL) models (wavLM [34],
wav2vec2 [32], HuBERT [35], Data2vec [36]), fine-tuned and
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Figure 1: Distributions for the emotional attributes scores for
arousal, valence, and dominance.

trained with the MSP-Podcast dataset, as explained in [37]. We
also removed any unintelligible or duplicate samples from the
first stage, resulting in 4,000 speech files to be annotated with
emotional labels. The WHiSER corpus incorporates all samples
from both stages, totaling 5,427 speech files.

The selected utterances are annotated with emotional la-
bels using a perceptual evaluation. During this phase, anno-
tators label the utterances with the emotional dimensions of
arousal (calm versus active), valence (negative versus positive),
and dominance (weak versus strong), using a seven-point Lik-
ert scale. We provide self-assessment manikins (SAMs) [38] as
visual references to help annotators accurately assess these di-
mensional attributes. The annotations include primary categor-
ical emotion, which is the class that most accurately represents
the emotional content of the utterance, choosing from a list of
eight primary emotions: anger (A), sadness (S), happiness (H),
surprise (U), fear (F), disgust (D), contempt (C), and neutral
(N). The annotators also provide secondary emotions, includ-
ing all the emotional classes perceived in the audio. In addi-
tion to the eight options, the list for the secondary emotions in-
cludes amused, frustrated, depressed, concerned, disappointed,
excited, confused, and annoyed. The corpus was annotated by
33 student workers at <anonymous>. Each speaking turn was
annotated by at least five annotators. We use the plurality rule
to obtain consensus for primary emotions. For each emotional
attribute, we estimate the average scores assigned to each sen-
tence by the annotators, using this value as the consensus score.

3.2. Size of the WHiSER corpus
The WHiSER corpus consists of 5,427 speech files with a total
duration of 6 hours 21 minutes. The duration of speech samples
within a dataset is a critical factor for the extraction of emotional
content and subsequent labeling. Our dataset was developed to
include speech files ranging from 3 to 11 seconds, as shown in
Figure 3(b). This range was chosen based on previous studies
indicating the challenges in perceiving the emotional content
from very short audio clips [39]. Likewise, attributing a single
emotional label to a long file leads to label noise as emotion can
fluctuate within the sentence. We split longer speaking turns
into smaller parts to fall within our target duration. Figure 3(b)
reveals that the majority of samples are concentrated within the
3 to 6-second window.

3.3. Emotional Content Analysis
The sentences in the corpus were selected based on their pre-
dicted content in terms of emotional attributes. Figure 1(a),
1(b), and 1(c) show the distribution of emotional attribute scores
for arousal, valence, and dominance, respectively. For each
attribute, we observe a Gaussian distribution centered around
four, which is the central point in the seven-point Likert scale.
This distribution captures the expected emotional expressions
displayed in daily human interactions, where extreme expres-
sions are less common. The distribution presents a significant
number of samples around the scores of three and five. Srid-
har and Busso [40] observed a higher level of uncertainty in
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Figure 2: (a) Distribution of primary emotions, (b) distribu-
tion of primary emotions in the arousal-valence space, (c) word
cloud representing all secondary emotions, and (d) word cloud
representing all the emotions selected for “other”.

models predicting emotional attributes within this range. These
sentences on the scale represent emotions that are neither too
subdued nor too intense, resulting in the most challenging sen-
tences to accurately recognize. The WHiSER corpus adds a
layer of complexity, highlighting the dataset’s capacity to chal-
lenge SER models and encouraging the development of sophis-
ticated models capable of differentiating across subtle emotions.

The emotional distribution within a dataset can significantly
affect its efficacy as a training or testing resource. Figure 2(a)
shows the distribution of primary emotions across the dataset.
The dataset showcases a substantial portion of ‘Neutral’ emo-
tional data, with 64.3% instances. This neutrality mirrors the
authentic emotional representation of day-to-day conversations,
which often skew towards a non-extreme emotional display.
Figure 2(b) plots the placement of the sentences assigned to
each emotional class in the arousal-valence space. This fig-
ure illustrates the variability of the emotional content included
within the same classes. We notice that even within the class
‘Neutral,’ we observe a range of emotional expressions per-
ceived in the speech. Figure 2(a) shows that the dataset ex-
hibits an almost even distribution among ‘Happiness’, ‘Sad-
ness’, and ‘Anger.’ This balanced representation of major emo-
tions makes the dataset an effective tool for testing SER models
and provides the ability to distinguish between different emo-
tional states without bias. The frequencies of these categorical
emotions validate the dataset’s potential to serve as a balanced
benchmark for SER systems, ensuring they are well-versed in
detecting and interpreting a spectrum of emotions that are com-
monplace in real-world interactions. Figures 2(c) and 2(d) show
word clouds for secondary emotions and terms included when
the annotators selected ‘other’ as the secondary emotions.

3.4. Intended Use of the WHiSER Corpus

The intended use of the WHiSER corpus is to serve as a test set
where the generalization of SER models can be assessed. For
this purpose, we do not provide train, development, and test sets
for this corpus. The WHiSER corpus is ideal for testing unsu-
pervised domain adaptation (UDA) strategies aiming to reduce
the mismatch between train and test domains.
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Figure 3: (a) SNR distribution of the total set before filtering
and WHiSER corpus, (b) Distribution of duration (seconds) of
all speech files in the dataset.

4. Speech Emotion Recognition Evaluation
The WHiSER corpus was developed to create a challenging
dataset that closely mirrors the real-world testing conditions for
SER systems. This section evaluates the effectiveness of SER
models using the WHiSER corpus for predicting emotional at-
tributes (arousal, valence, dominance), and classifying emo-
tional categories (happiness, anger, sadness, neutral). We con-
sider models relying on the LLS wavLM, wav2vec2, and Hu-
BERT. These models provide a solid foundation, having been
trained on extensive and diverse datasets. We fine-tuned these
large representations using the MSP-Podcast dataset using a
downstream head consisting of a simple deep neural network
(DNN). We refer to the fine-tuned models as the large-robust
(LR) version of the corresponding SSL model. To extend our
evaluation, we incorporate UDA techniques to investigate the
adaptability of a model trained on a different, sizable corpus.
We considered the MSP Podcast corpus as the source dataset
and the WHiSER corpus as the target dataset. The first UDA
strategy in this study is using the ladder network [15, 41]. It
uses an encoder-decoder model with added noise at interme-
diate representations. The goal is to reconstruct the interme-
diate representation of the encoder using ladder connections.
The cost function has two parts: one for the classification task
at the encoder’s end, obtained using the fully labeled source
data, and another for the reconstruction loss, obtained for both
source and unlabeled target data. We refer to this UDA ap-
proach as domain adaptation using ladder network (DAL). The
second strategy is the adversarial domain adaptation (ADA),
as used by Abdelwahab and Busso [16], which has a domain
classifier as an auxiliary task. The approach employs a gradi-
ent reversal layer (GRL) to make the domain classifier achieve
random performance, hence, forcing the shared feature repre-
sentation layers to generate similar responses for both domains.
This method considers task and domain losses for the source
domain (labeled data), and only the domain loss for the target
domain (i.e., unlabeled target data), alternating between the two
data types. These approaches allowed us to explore the extent
to which the SER models could adjust to the unique characteris-
tics of the WHiSER dataset without direct supervision, thereby
assessing their potential for generalized, cross-domain applica-
tions in real-world scenarios. We refer to this UDA method



Table 1: concordance correlation coefficient (CCC) for arousal,
valence, and dominance. The symbol ∗† indicates that the result
is a significant improvement over the result with the symbol ∗,
which is a significant improvement over the results without any
symbol.

CCC LR ADA DAL Within
Arousal

wavLM 0.299 0.396∗ 0.391∗ 0.418∗†

wav2vec2 0.301 0.391∗ 0.384∗ 0.412∗†

HuBERT 0.292 0.385∗ 0.377∗ 0.408∗†

Valence
wavLM 0.392 0.441∗ 0.446∗ 0.483∗†

wav2vec2 0.395 0.457∗ 0.461∗ 0.493∗†

HuBERT 0.383 0.450∗ 0.453∗ 0.476∗†

Dominance
wavLM 0.338 0.369∗ 0.379∗ 0.387∗†

wav2vec2 0.326 0.371∗ 0.376∗ 0.391∗†

HuBERT 0.317 0.365∗ 0.361∗ 0.384∗†

Table 2: Comparison of within and cross corpus performance
for 4 primary emotions classification. The table reports the av-
erage F1 (Macro), UAR (%) values. (∗ indicates that the model
is significantly better than the other three methods)

LR ADA DAL Within
F1 UAR F1 UAR F1 UAR F1 UAR

wavLM .613 63.9 .621 64.2 .627 65.3 .676∗ 69.2∗

wav2vec2 .592 61.7 .601 61.9 .609 62.6 .652∗ 66.5∗

HuBERT .608 62.8 .604 62.7 .617 63.4 .661∗ 67.4∗

as adversarial domain adaptation (ADA). To understand the
best performance that could be achieved on the WHiSER cor-
pus, we considered within-corpus settings as the fourth method.
For the within-corpus settings, we considered a five-fold cross-
validation of the corpus, to train the LR models directly on the
WHiSER corpus using a downstream head. In each fold, we use
data from four partitions as a train set and one as a test set.

For wav2vec2, we fine-tuned the LR model by remov-
ing the top 12 transformer layers, which retains performance
with fewer parameters [42]. The SER architecture for both
fine-tuning and training steps involves two layers with 1,024
nodes each, layer normalization, and ReLU activation. For
emotional attributes, the average concordance correlation co-
efficient (CCC) from the three attributes (arousal, valence, and
dominance) served as the loss function while fine-tuning the
models. For training the SER model, we use three different
models, one for each attribute, where the weights are individ-
ually set to optimize the performance of the target attribute.
For emotional classes, we used the cross-entropy loss for fine-
tuning and training stages (a four-class problem). ADA em-
ploys a 128-node layer for task and domain classifiers with
ReLU activation, while DAL includes two 256-node layers with
ReLU and linear activations for the task classifier. We utilize
an EC2 g5.4xlarge instance for fine-tuning the models with an
NVIDIA A10G GPU with an Adam optimizer at a learning rate
of 10e-5. For all other tests, we use an NVIDIA GeForce RTX
3090 GPU.

Table 1 shows the results for the emotional attributes, re-
porting performance in terms of CCC. We evaluate if the results
are statistically significant by dividing the WHiSER corpus data
into 20 subsets of similar size. Then, we conducted a two-tailed
t-test over the 20 subsets. We defined statistical significance at a

p-value< 0.05. When we compare the LR results with the ADA
and DAL approaches, we observe significant improvements by
using UDA strategies. However, the table shows that the within-
corpus setting achieves significantly better results than all other
cases. There are opportunities to explore better UDA strategies
to bridge this gap.

Table 2 shows the classification performance for categorical
emotions. We reported the results using F1-score (macro) and
unweighted average recall (UAR) metrics. Similar to the ex-
periments with emotional attributes, we observed a significantly
better result in the within-corpus setting compared to all other
cases. In most cases, UDA strategies produced significantly bet-
ter performance compared to the LR model. Overall, among the
three SSL methods considered, wavLM produced better results
in most cases with few exceptions in both experiments.

5. Conclusions
The paper presented the White House tapes speech emotion
recognition (WHiSER) corpus consisting of authentic and di-
verse emotional content from President Nixon’s Oval Office
recordings. The corpus closely aligns with real-world chal-
lenges faced by SER systems when deployed in practical ap-
plications. The WHiSER corpus, with its natural emotional ex-
pressions and varied background noises, produces a challenging
testing scenario for SER models. Through the detailed analysis
of the dataset’s emotional content and the evaluation of SER
models using this corpus, we have underscored the potential of
the WHiSER corpus to serve as an invaluable asset for both test-
ing and improving emotion recognition systems. By incorpo-
rating scenarios that feature distant speech, reverberation, and
low signal-to-noise ratios, the WHiSER corpus bridges the gap
between controlled laboratory conditions and the nuanced, un-
predictable nature of real-life settings. Future work will aim to
explore innovative approaches to harness the full potential of
the WHiSER corpus in advancing deployable SER technology.
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