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Abstract
Abundant speech data for speech emotion recognition

(SER) is often unlabeled, rendering it ineffective for model
training. Models trained on existing labeled datasets struggle
with unlabeled data due to mismatches in data distributions. To
avoid the cost of annotating speech data, it is imperative to ex-
plore unsupervised adaptation techniques to leverage the poten-
tial of unlabeled data. Motivated by this observation, we pro-
pose a novel use of voice conversion (VC) for SER, which effec-
tively enhances emotion recognition performance on an unla-
beled dataset. Our approach involves leveraging the simplicity
and efficacy of the k-nearest neighbor (kNN)-based VC tech-
nique to transform speech samples from the unlabeled domain
to the labeled domain. In contrast to conventional domain adap-
tation methods, our approach avoids re-training of a model on
transformed unlabeled data. We achieve good results by test-
ing transformed unlabeled samples on a model trained with a
different labeled dataset.
Index Terms: Speech emotion recognition, domain adaptation,
voice conversion, K-nearest neighbors

1. Introduction
Emotions play a key role in daily human interaction [1], reg-
ulating the conversations by changing and emphasizing the in-
tention of the message. This important human capability is of-
ten missing in human-computer interaction (HCI) [2]. There-
fore, an important research direction is to enable computers to
automatically sense human emotions. Speech emotion recogni-
tion is an appealing solution given the ubiquitousness of speech-
based devices. However, achieving high accuracy with a gener-
alized model in real-world scenarios presents challenges due to
disparities in emotional speech data across languages, accents,
and cultural backgrounds. These disparities arise from emo-
tionally biased datasets, variations in recording conditions, and
contextual nuances within speech.

We note that models trained on one domain often perform
poorly when tested on dissimilar domains [3]. Earlier strategies
for enhancing generalization have involved various forms of
feature normalization [4,5], such as speaker normalization, and
corpus normalization. Another strategy is to merge datasets [6]
to diversify data distribution. Additionally, methods have been
proposed for selecting crucial training samples [7] or assigning
a higher weight to crucial training samples [8] that are similar
to the unlabeled dataset. One potential approach is to further
annotate extra data from the intended domain to address this
challenge and improve cross-corpus performance by generaliz-
ing over mismatched domains. However, this method is lim-
ited by the unavailability and costliness of labeled data across
domains. As a result, we focus on developing techniques to

adapt models using unlabeled datasets. Recently, several studies
have investigated domain adaptation strategies utilizing genera-
tive [9], adversarial [10], data divergence optimization [11–14],
and reconstruction-based [15–17] approaches. While effective,
these approaches require retraining or adapting the SER mod-
els. There is a need for domain adaptation strategies that can
be easily implemented without the need to modify the already
trained SER models.

This paper proposes a novel solution that utilizes voice con-
version techniques to transform a domain with unlabeled data
(referred to as unlabeled domain) into the domain used to train
the models (referred to as labeled domain). The sentences in the
unlabeled domain are transformed into sentences in the labeled
domain, ensuring that test samples are well represented in the
train set. The proposed idea mitigates domain mismatches and
enhances the SER performance. This concept closely aligns
with the task of voice conversion [18], where speech samples
are converted from one speaker to another while retaining lin-
guistic content integrity. We implement our idea using the K-
nearest neighbors-voice conversion strategy [19], which is a re-
cently proposed approach that achieves impressive results in
VC despite its simplicity. The concept of kNN-VC involves
replacing frames of the source speaker with frames having sim-
ilar acoustic representations from the target speaker. Since self-
supervised learning (SSL) representations can discriminate be-
tween phones [20,21], similar frames are expected to match the
phonetical information from the source speaker, ensuring con-
tent preservation while achieving voice conversion. Its simplic-
ity provides us with the flexibility to accurately identify samples
in the transformation with similar emotional content.

We extract feature representations from the labeled and un-
labeled corpora using an SSL [21] model fine-tuned for the SER
task. For each frame of the unlabeled sample, we identify the
nearest frame in the matching pool of feature representation
space of the labeled corpus using the kNN algorithm. Each
unlabeled frame is then replaced with its closest match. We hy-
pothesize that the identified nearest frame in the labeled domain
would contain similar emotional characteristics as the samples
in the unlabeled domain [22]. To further ensure emotional con-
tent preservation, the labeled corpus is divided into multiple
pools, (referred to as bins), based on their emotional labels. The
appropriate bin is selected as the matching pool for the kNN al-
gorithm according to the pseudo-label of the unlabeled sample.
Pseudo-labels are derived by testing all unlabeled samples on a
model trained exclusively using the labeled corpus. When the
bins are created with actual labels, we observe impressive per-
formances across emotional attributes, which validate the pro-
posed strategy. When the bins are created with pseudo labels,
our proposed approach achieves performance gains as high as
8% over a baseline method.



The main contribution of this paper is the proposed un-
supervised domain adaptation method, which improves SER
performance in cross-corpus settings, eliminating the need for
repetitive model training on unlabeled data. We study the uti-
lization of the kNN-based VC in unsupervised domain adapta-
tion for SER. Notably, our results demonstrate that dividing the
entire labeled corpus into sub-pools based on emotional labels
effectively enhances the ability of the kNN algorithm to select
emotionally closer samples.

2. Related Work
2.1. Domain Adaptation for SER
Different approaches have been proposed to reduce the mis-
match between train and test domains in SER. Motiian et al.
[11] proposed a divergence-based domain adaptation method.
Long et al. [12] explored statistical approaches to reduce the
distance between multiple domains such as maximum mean dis-
crepancy (MMD), correlation alignment (CORAL), and con-
trastive domain discrepancy (CCD). Rozantsev et al. [13] pro-
posed separate architectures with a common regularizer for fine-
tuning components, rather than sharing weights between la-
beled and unlabeled domains, to achieve domain adaptation.
Gopalan et al. [14] connected samples from multiple domains
using geodesic curves on the Grassmann manifold, demonstrat-
ing reduced performance gaps in cross-corpus settings. Liu et
al. [9] proposed the CoGAN architecture, which employs two
interconnected generative adversarial networks (GANs), each
trained on a different domain to learn domain-invariant features.
Abdelwahab and Busso [10] applied adversarial domain adap-
tation as an auxiliary task to learn common features across dis-
similar domains by maximizing the domain classification loss.
Ghifary et al. [15] and Deng et al. [16] proposed an autoencoder
that minimizes a reconstruction loss across multiple domains,
enabling it to learn domain-invariant features. Parthasarathy et
al. [17] showcased enhanced SER performance through the uti-
lization of ladder networks [23]. As an alternative approach,
we propose a novel strategy for unsupervised domain adapta-
tion to improve SER performance that does not require to adapt
or retrain the SER model.

2.2. Leveraging speech synthesis and VC for SER
Another critical aspect of our study is the use of voice con-
version in SER. Voice conversion is the process of transform-
ing the speech of one speaker to sound like that of another
speaker, while maintaining linguistic content and prosodic fea-
tures. A range of strategies have been effectively utilized to
achieve high-quality voice conversion, including feedforward
neural networks [24], long short-term memory (LSTM) [25],
attention-based encoder-decoder [26] and GANs [27]. Many-
to-many nonparallel voice conversion techniques such as Star-
GAN [28], while promising, are often computationally com-
plex. In contrast, Baas et al. [19] proposed a simpler method
known as kNN-VC. This method replaces each frame from the
source sample with its nearest neighbor frame from a pool of
target samples. The approach achieves high-quality VC perfor-
mance with nonparallel training data.

Various attempts have been made to explore the applica-
tions of speech synthesis and VC to improve SER performance.
To address the data scarcity issue, Schuller et al. [29] proposed
generating emotional data to enrich the training dataset for SER.
Similarly, Bao et al. [30] applied cycleGAN to synthesize syn-
thetic data similar to the target domain. Lotfian and Busso [31]
introduce a framework to generate synthetic neutral utterances

Figure 1: Steps of the proposed domain adaptation that trans-
forms the unlabeled domain using kNN-VC approach.

from the target sentence without altering the lexical content.
The synthetic speech was then used as a reference to assess the
localized emotional modulation in the target sentence by com-
paring frame-by-frame their features. In this paper, we leverage
voice conversion for domain adaptation to enhance SER. We
specifically employ kNN-VC [19], discussed in Section 3.

3. Methodology
We envision a domain adaptation solution that does not re-
quire adapting or retraining a SER model for each new domain.
We achieve this goal by transforming the unlabeled domain
into sentences similar to the labeled domain, reducing the mis-
matches between domains. The envisioned domain transforma-
tion could be implemented with different approaches. Certain
techniques such as GANs and autoencoders involve complex
transformation methods that require training on both datasets,
defeating the goal of preserving the original SER model. In
contrast, we utilize the kNN-VC method [19], a non-parametric
machine learning algorithm, to facilitate effective transforma-
tions while simplifying the overall domain adaptation process.
Figure 1 presents the proposed approach. We implement our ap-
proach for the emotional attributes of arousal (calm versus ac-
tive), valence (negative versus positive), and dominance (weak
versus strong).

3.1. Proposed Unsupervised Domain Adaptation
The first step in our approach is to extract feature representa-
tions from the input speech (shown in red bars in Fig. 1). We
use the wavLM representation [21], obtained from the Hugging-
Face library. We fine-tune the wavLM model using SER as the
downstream task. We expect that samples with similar emo-
tions exhibit closer proximity to each other in the feature space
derived from the fine-tuned wavLM models.

We then use the kNN-VC model to transform the sentences
from the unlabeled domain. Utilizing the kNN algorithm [32],
unlabeled data samples are transformed into the distribution of
the labeled domain projected onto the wavLM feature space.
For each frame of an unlabeled sample, the k closest frames
are identified from the pool of reference frames. The pool con-
tains frames from all samples of the labeled dataset. The mean
of the k closest frames replaces the corresponding frame from
the unlabeled sample. We use the cosine distance to determine
the closeness of frames in the wavLM feature space. Since the
wavLM feature space is fine-tuned for the SER task, we expect
that phonetic units with similar emotions are close to each other.
After replacing all frames of the unlabeled sample with the av-



erage nearest neighbors from the labeled domain (shown with
green bars in Fig. 1), the transformed sample contains data from
the labeled domain with similar emotional content, thereby re-
ducing the domain mismatch. The simplicity of the proposed
approach is underscored by the fact that we do not need to re-
train the model using the transformed dataset.

3.2. Use of Bins with Similar Emotional Content
The labels of the emotional dataset are annotated at the utter-
ance level, representing the global emotion perceived across
the entire sentence. However, emotions may vary at the frame
level. To address frame-level fluctuations and further enhance
the accuracy of selecting frames with similar emotional con-
tent, we partition the labeled dataset into multiple bins based
on the scores of the attributes. This step requires to know the
emotional score of the unlabeled domain. We implement two
approaches. The first approach is to use the actual annotations
to create the bins to study the feasibility of the proposed strat-
egy when the bins are perfectly set. The second strategy is to
use pseudo labels. Each unlabeled sample is tested on an SER
model trained using the labeled dataset to obtain a pseudo-label.
The bins are set using the predicted scores, partitioning the data
into reference matching pools for the kNN algorithm.

4. Experimental Setting
4.1. Emotional Databases
We train and test our proposed framework using the MSP-
Podcast [33] and MSP-IMPROV [34] corpora, given their mis-
matched data distributions. The MSP-Podcast corpus contains
natural emotional speech samples from a diverse collection of
podcasts, while the MSP-IMPROV corpus consists of acted
dyadic interaction, making them very different from each other.

We use the MSP-Podcast (v1.11) as our labeled domain.
This corpus comprises 151,654 audio samples extracted from
English podcasts shared under Creative Commons licenses. The
podcasts are segmented into smaller segments ranging from
2.75 seconds to 11 seconds. Speaking turns without back-
ground music, noise, or multiple speakers are considered. Given
that most segments during natural conversations are emotion-
ally neutral, the strategy automatically selected samples with
machine learning algorithms that were predicted to have emo-
tional content. All the selected segments were annotated with
the emotional attributes arousal, valence, and dominance using
a seven Likert-scale. Each sample was annotated by at least
five raters. For a given attribute, the ground truth is the average
score given by the annotators to each sentence. In release 1.11,
the train set has 84,030 audio samples, the development set has
19,815 samples and the test set has 30,647 samples (we use test
1; test 2 and test 3 are not used).

We use the MSP-IMPROV corpus as our unlabeled domain.
This corpus is a collection of dyadic interactions in English,
recorded between 12 actors in a controlled environment. The
dataset consists of 8,438 audio samples annotated for arousal,
valence, and dominance by at least five annotators.

4.2. Implementation
In the initial phase, the wavLM extraction model is fine-tuned
on the SER downstream task using the training set. The down-
stream task is an SER task. We use the same SER models for
creating the pseudo labels in the unlabeled domain to determine
the bins and for testing our results. The SER model is trained on
the labeled dataset and consists of a feed-forward network with
two fully connected hidden layers and 1 output layer. Each hid-

Table 1: Performance of the proposed approach using correct
bins from the unlabeled domain. The table compares CCC val-
ues with and without domain adaptation. Results marked with
(*) indicate statistically significant improvements compared to
settings without the symbol (two tailed t-test, p-value<0.05).

SER Aro Dom Val
No adaptation 0.6488 0.4839 0.5251

kNN adaptation
No bins 0.6467 0.5179 0.5472
5 bins 0.7657 0.6235 0.7411
10 bins 0.8034* 0.6491* 0.7928*

den layer applies layer normalization and dropout with a rate
set to p = 0.5. The activation function is the rectified linear
unit (ReLU). The concordance correlation coefficient (CCC) is
used for the loss function and metric to evaluate the SER perfor-
mance. Individual models are trained for arousal, dominance,
and valence using Adam optimizer with a learning rate of 5e-5
on an NVIDIA GeForce RTX A6000 GPU. The wavLM fea-
tures are extracted from both the labeled and unlabeled datasets
using the same fine-tuned model.

For the kNN-VC algorithm, the extracted wavLM features
in the labeled dataset are partitioned into N bins based on their
corresponding labels. The scores of the emotional attributes are
normalized within the range of 0 and 1, and the bins are uni-
formly created within this range. We conduct experiments for
three cases: no bins, five bins, and ten bins. As described in the
bottom part of Figure 1, the kNN algorithm is applied to each
frame of an unlabeled utterance. A bin selected according to the
pseudo-label serves as a matching pool for the kNN algorithm.
We have chosen a value of k as 4. Once all the frames from the
unlabeled utterance are replaced by their nearest neighbors, this
transformed utterance is tested on the same SER model which
was used to generate pseudo-labels.

5. Experimental Results
The experimental evaluation considers the performance of the
proposed approach when the bins are obtained with labels from
the unlabeled database (Sec. 5.1). This analysis assesses the
potential of our proposed approach when the bins are perfectly
obtained in the unlabeled set. Then, we present the results when
the bins are estimated using pseudo labels (Sec. 5.2).

5.1. Results with Perfect Bins
We first demonstrate the adaptation results achieved by using
the true labels of the unlabeled domain for bin selection. This
analysis aims to showcase the potential of the proposed domain
transformation using the kNN-VC algorithm. Table 1 presents
the cross-corpus performance for arousal, valence, and domi-
nance. The first row displays the CCC values for the unlabeled
domain without adaptation. The subsequent three rows show
the CCC values for the proposed domain transformation using
different numbers of bins. The “No bins” condition indicates
that the entire corpus is treated as the reference pool. The im-
provement in SER performance achieved using the proposed ap-
proach is truly extraordinary. Compared to the model without
adaptation, there is a gain in CCC of 23.8% for arousal, 34.1%
for dominance, and 51.0% for valence using 10 bins. The only
case without improvement is for arousal under the “No bins”
condition. There are clear improvements for all other cases.

5.2. Results with Bins formed with Pseudo Labels
Table 2 presents the results using pseudo labels to generate the
bins in the unlabeled domain (i.e., unsupervised domain adap-
tation). Compared to the baseline without adaptation, the pro-



Table 2: Performance of the proposed approach using bins as-
signed with pseudo-labels. The table compares CCC values
with and without domain adaptation. Results marked with (*)
indicate statistically significant improvements compared to set-
tings without the symbol (two tailed t-test, p-value<0.05).

SER Aro Dom Val
No adaptation 0.6488 0.4839 0.5251

kNN adaptation
No bins 0.6467 0.5179 0.5472
5 bins 0.6541 0.4907 0.5664*
10 bins 0.6555 0.4853 0.5676*

Table 3: Comparison of MMD values between labeled and un-
labeled domains, before and after the kNN-VC transformation.

MMD Aro Dom Val
No adaptation 1.993 1.993 1.993

kNN adaptation
No bins 1.652 1.652 1.652
5 bins 1.725 1.817 1.657
10 bins 1.784 1.888 1.660

posed strategy implemented with 10 bins achieves a relative im-
provement of 1.0% for arousal, and 8.1% for valence. For dom-
inance, the relative gain in CCC is 7.0% for the condition “No
bins.” These results indicate the potential of the proposed strat-
egy to enhance cross-corpus SER performance without labeled
data for the new domain.

Table 3 presents the maximum mean discrepancy (MMD)
between the labeled and unlabeled domain. MMD quantifies the
difference between two probability distributions, with smaller
MMD values indicating greater similarity between the distri-
butions. For each emotional attribute, the proposed kNN-VC
adaptation results in reducing the MMD compared to the no
adaptation case. Higher MMD values are observed with an in-
creased number of bins, indicating that partitioning the dataset
into more bins reduces the size of the reference pool, affect-
ing the effectiveness of the transformations. By restricting the
size of the reference pool, we limit the available choices for the
nearest neighbors algorithm, resulting in transformations with
distributions that are further distant from the distribution of the
labeled domain. However, the higher performance often ob-
served for the “10 bins” conditions indicates that matching the
emotional content in the reference pool is beneficial despite the
resulting variation in the distributions.

5.3. Impact of Bin Assignment Error on CCC Performance
We rely on pseudo-labels for selecting the bins as a reference
pool for the kNN-VC adaptations. However, the results in Sec-
tions 5.1 and 5.2 show that the errors in the bin assignments
have impacted the performance of our proposed approach (Ta-
ble 1 and Table 2). This section explores the importance of
selecting the correct bin. First, we analyze the bin assignment
errors in the unlabeled dataset to assess the bin assignment ac-
curacy obtained using pseudo-labels. Figure 2 illustrates the
discrepancy in bin selection arising from pseudo-labels for the
experiment with 5 bins. For example, for arousal, 3,850 sam-
ples were correctly assigned and 4,048 samples were incorrectly
assigned to an adjacent bin (i.e., a difference of 1 bin between
predicted and correct bin assignment). The figure shows that
45.6% (arousal), 41.4% (dominance), and 41.9 % (valence) of
the samples were correctly assigned.

In this experiment, we aim to demonstrate the impact of bin
assignment prediction by progressively replacing pseudo-labels
with true labels. We perform replacement steps ranging from
0% to 100% with a step size of 25%, employing random selec-
tion. As an example, at the 50% replacement step, we select

Figure 2: Discrepancy in bin assignment for the 5-bin setting
when using pseudo-labels instead of true labels (unlabeled set).

Figure 3: Impact of bin assignment error in SER performance.
The percentage replacements indicate the percentage of sam-
ples with incorrect bin assignments that are corrected. 100%
represents the case when all the bin assignments are correct.

50% of the samples from each bar of Figure 2 and substitute
them with true labels. For instance, for arousal, out of the 4,048
samples with a one-bin difference, 2,024 (50%) are chosen to
be corrected. Similarly, 260 out of 520 samples with a two-bin
difference, and 9 out of 19 samples with a three-bin difference
are selected to be corrected. 100% denotes the case where all
the bin assignments are corrected. Figure 3 shows that the CCC
improvement linearly increases as the bin assignment improves.
This result indicates that if we can reliably assign the samples
of the unlabeled domain to the correct bins, we should observe
clear CCC gains.

6. Conclusions
This study proposed a novel and effective adaptation strategy
using the kNN-VC algorithm. The approach transforms a new
domain into the labeled domain without the need to retrain or
adapt the original SER model. The approach is flexible and can
be used with any SER architecture. We investigated optimizing
the kNN algorithm’s performance and devised a method to par-
tition the labeled dataset into multiple bins, reducing the match-
ing pool to sentences with similar emotions. This strategy led
to improvements in SER performance for the unlabeled dataset.
Notably, our algorithm enhanced CCC by 1.2% (arousal), 7.2%
(dominance), and 8.2% (valence) over the SER model without
the adaptation. Furthermore, we examined the impact of bin as-
signment errors using pseudo labels in the proposed approach,
finding that improvements in the bin assignment have a direct
impact on the SER performance. A future research direction
involves exploring methods to enhance the pseudo-labeling ac-
curacy. We will also evaluate this approach in other databases,
especially in cross-lingual SER evaluations.
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