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ABSTRACT
Drivers are exposed to a growing risk of being distracted

with the recent development of in-vehicle systems for navigation,
communication and infotainment. As a result, there is a need for
tracking systems that can monitor the drivers’ attention. This
study investigates driver distractions using a multimodal corpus
collected from real world driving scenarios. The paper focuses
on facial cues automatically extracted from a frontal camera fac-
ing the driver. We conducted subjective evaluations by external
observers to assess the perceived visual and cognitive distraction
of drivers performing secondary tasks. The data is divided into
two classes – distracted and normal. This partition is separately
created for visual and cognitive scores. Binary classifiers are
built with features describing action units (AU) and gaze (e.g.,
head poses). The classifiers achieve 80.8% F-score for visual
distractions, and 73.8% F-score for cognitive distractions. The
study identifies features that are relevant for detecting both types
of distractions. Furthermore, the paper presents a logistic regres-
sion analysis to identify facial features that are useful for detect-
ing samples in which cognitive distraction scores are not related
to visual distraction scores. The analysis reveals the benefits of
using AU in cognitive related distraction detection.

Index Terms— Driver distraction, facial features, action
units, cognitive distraction, visual distraction

1. INTRODUCTION
Driver distraction detection is an important yet challenging task,
given the various potential distraction sources. Studies have sug-
gested the multidimensional nature of drivers’ distraction, in-
cluding visual, cognitive, auditory, psychological and physical
distractions [1]. A key challenge is that each distraction’s type af-
fects the driver in different ways, so it is important to study them
separately. Among the types of distractions, visual and cognitive
aspects are prominent causes of vehicle accidents [2]. Visual dis-
tractions affect the drivers’ visual attention, reducing their road
awareness. Cognitive distractions are related mind-off-the-road
situations, where drivers are immersed in internal thoughts such
as daydreaming and thinking. These distractions directly impair
the drivers’ ability for visual scanning and decision making [3,4].

This paper explores the use of facial features to detect
drivers’ visual and cognitive distractions. The motivation of this
study is rooted in the cognitive appraisal theory, which states that
human emotions are generated as the result of perceiving, assess-

ing and responding to events [5]. In the context of driving behav-
iors, the desires and actions of performing secondary tasks can
affect the drivers’ emotions (e.g., nervous, surprise, happy). The
driving scenario can also induce cognitive states such as stress
and confusion, which will also affect drivers’ facial expressions.
Based on the well-established relationship between facial expres-
sion and human emotion and cognitive states [6], we hypothesize
that facial expression can be used to capture cues signaling dis-
tracted behaviors. This hypothesis is particularly important for
cognitive distractions, for which visible features to assess cogni-
tive load are less obvious. The proposed features can play a key
role in the next generation of in-vehicle active safety systems.

Although emotion has being considered in driver distraction
studies [7], few research groups have considered facial expres-
sion. A common approach is to explore direct measurements
derived from the driving activity including lateral (lane position)
and longitudinal (speed) control measures [8, 9]. Some studies
focused on the performance of secondary tasks such as event de-
tection and driver response [10,11]. Other measurements used in
this area are electroencephalography (EEG), size of eye pupils
and eye movement [1,9,10]. Facial features can provide comple-
mentary information to these measurements.

This study uses perceptual evaluations from external eval-
uators to assess the perceived visual and cognitive distraction
levels of drivers engaged in secondary tasks. The corpus con-
sists of recording from subjects driving a car in normal public
roads. The scores provided by the evaluators are used to split
the recordings into normal and distracted classes. This partition
is separately done for visual and cognitive distractions. Using
binary classification, we explored facial features, including head
orientation and action units (AUs), which are automatically ex-
tracted from video recordings. The binary classifiers achieve F-
score of 80.8% and 73.8% for visual and cognitive distractions,
respectively. Gaze and AU features are useful for detecting vi-
sual distractions, while AU features are particularly important for
cognitive distractions. A scatter plot of the perceptual evaluation
in the visual-cognitive space shows that in many cases the cogni-
tive and visual distraction scores are correlated. However, some
recordings have higher cognitive distraction scores than visual
distraction scores. This result is consistent with the fact that vi-
sual demanding tasks induce cognitive load, but not vice versa.
Based on this observation, we used logistic regression analysis
to identify facial features that are useful for detecting the cases



Table 1. Seven secondary tasks considered in this study. The
tasks phone and GPS were split, since we observed different
driver behaviors while operating and using the devices [12, 13].
Task Name Description
Radio Driver tunes the radio to predetermined stations
GPS-Operating Driver inputs a predetermined address into GPS
GPS-Following Driver follows the GPS instruction to the destination
Phone-
Operating

Driver dials an airline automatic flight information system
using a cellphone

Phone-Talking Driver interacts with the flight information system to re-
treive flight information

Picture Driver describes pictures shown by the passenger to reflect
the distraction caused by road sighs and billboard

Conversation Driver discusses the driving experience with the passen-
gers and answers general questions to the passenger

where cognitive distraction is not related to visual distraction.
Most of the features that are statistically significant (p = 0.05)
under chi-square statistical test are AU features. This result sug-
gests that AUs are important for cognitive distraction detection.

2. DATA COLLECTION
2.1. Database
The multimodal database used for this study includes real world
driving scenarios in which 20 participants were asked to drive
a customized 2006 Toyota RAV4. The participants’ age ranges
from 20 to 40 with an average of 25.4. Each participant drove
the car along the same predefined 5.6-mile route twice. During
the first run, the drivers were asked to perform various common
secondary tasks during specific segments in the route (Table 1).
During the second run, they were asked to drive normally fol-
lowing the same route. The driving data is recorded using both a
frontal camera facing the driver (30 fps) and a road camera fac-
ing the road (15 fps). Both cameras provide the same resolution
(320x240). The corpus also includes the controller area network
(CAN) Bus signal and audio recorded with a microphone array.
This study uses only the video cameras. Table 1 describes the
selected secondary tasks, which are commonly performed by in-
dividuals while driving. Each task was performed under the same
route segment. This controlled, sequential approach reduces the
road dependency in the analysis and induces similar learning ef-
fect across drivers. The data was collected during the day under
good weather condition. Each participant took about 40 min-
utes to finish the experiment, producing over 12 hours of driving
recordings. The corpus is further described in Jain et al. [12].

2.2. Perceptual Evaluation
This study relies on human perceptual evaluation to assess the
perceived visual and cognitive distraction levels induced by dif-
ferent secondary tasks. Three non-overlapped 10-second video
segments were randomly selected for each participant under 8
different driving conditions (7 tasks and normal). Altogether,
480 videos (3 videos ⇥ 8 conditions ⇥ 20 drivers = 480) were
extracted from the database. Eighteen subjects were invited to
evaluate both the perceived visual and cognitive distraction lev-
els of the drivers. We unified the understanding of visual and

cognitive distractions by providing a precise definition. We fol-
lowed the description given by Ranney et al. [3]. Visual distrac-
tion is defined as eye-off-the-road – drivers looking away from
the roadway. Cognitive distraction is defined as mind-off-the-
road – drivers being lost/busy in thoughts. We also mentioned
cues that they could use for inferring both types of distractions
(e.g., gaze and head direction for visual distractions; facial ex-
pression, secondary task and driving performance for cognitive
distractions). The evaluation included videos showing the road
and the driver. By showing both videos, the evaluators can eas-
ily determine whether the observed behaviors were related to the
primary driving task, increasing the reliability of the perceived
distraction scores. The evaluators gave a continuous score to in-
dicate the perceived distraction level by adjusting a sliding bar,
for which its extreme values are 0-less distracted and 1-more dis-
tracted. To minimize the duration of the evaluation, each evalu-
ator is only asked to assess 80 videos for visual distraction, fol-
lowed by a different set of 80 videos for cognitive distraction.
The visual and cognitive distraction levels of the driver in each
video are assessed by 3 different evaluators. This study uses the
average across evaluators to label the drivers’ distraction levels.

In our previous study, we showed the consistency among dif-
ferent evaluators [14]. We also compared the scores provided
by external observers with other two commonly used distraction
measurements: gaze metrics and self evaluations. It was found
that perceptual evaluation by external observers is superior: (1)
it provides reliable scores for short videos based on the driving
behaviors and route conditions, (2) it incorporates the unbiased
perception of various subtle cues that a driver may choose to ig-
nore, (3) it gives consistent scores from many evaluators.

3. FEATURE EXTRACTION
3.1. Facial Action Unit
Previous works on detecting driver behavior suggested that fa-
cial features provide valuable information about drivers perform-
ing secondary tasks [12, 15]. In addition to the obvious facial
movement associated with secondary tasks such as talking, we
hypothesize that facial expression can play an important role in
cognitive distraction detection. In particular, features related to
brow motion and eye lids movements may signal cognitive load.
The cognitive appraisal theory indicates that human emotion re-
sults from the evaluation of events, including the available coping
strategies [5]. Since face is a prominent expressive communica-
tive channel, this theory implies that there exist a link between
cognitive load and facial expressions. In fact, human behavioral
studies have used facial expression to analyze the affective state,
cognitive processes, and social interaction of an individual [16].

One of the most popular frameworks for describing facial
expression is the facial action coding system (FACS) [17]. The
action units (AUs) defined in the FACS represent the muscle ac-
tivity that generates different facial expressions. This system
has been used for distinguishing between genuine and simu-
lated pain [18], and detecting deceptive behaviors [19]. Gener-
ally, FACS is coded by professionally trained individuals that are



Table 2. Visual features for the analysis. Low level features are
time series signals over which we estimate statistics over win-
dowed segments (i.e., high level feature).

Low Level Feature

Action Unit (AUs)
Inner Brow Raiser (AU1) Dimpler (AU14) Lip Tightener (AU23)
Outer Brow Raiser (AU2) Lip Corner Depressor (AU15) Lip Pressor (AU24)
Brow Lowerer (AU4) Chin Raiser (AU17) Lips part (AU25)
Upper Lid Raiser (AU5) Lip Stretcher (AU20) Jaw Drop (AU26)
Nose Wrinkler (AU9) Cheek Raiser (AU6) Lip Suck (AU28)
Upper Lip Raiser (AU10) Lid Tightener (AU7) Blink (AU45)
Lip Corner Puller (AU12) Lip Puckerer (AU18)

Gaze Related Features
Head Yaw (Yaw) Head Pitch (Pitch) Head Roll (Roll)

High Level Features (10 sec.)

Statistics
Mean Minimum (Min) Skewness
Standard Deviation (STD) Range Kurtosis
Maximum (Max) Inter-Quatile Range (IQR)

Global features
Longest Eyes-Off-Road Duration (LEOR Dur.)
Eyes-Off-Road Duration (EOR Dur.)

FACS certified. The computer vision community has made sig-
nificant progress to automatize the extraction of AUs. In particu-
lar, Bartlett et al. [20] developed algorithms that were included in
the Computer Expression Recognition Toolbox (CERT), a robust
toolbox for estimating facial features. The software estimates 20
AUs, from frontal faces (see Table 2). In fact, this toolbox has
been used for drowsy driver detection [21]. This study estimates
these 20 AUs for each of the 10-sec videos. Then, the eight statis-
tics listed in Table 2 are calculated for each of the 20 AUs (e.g.,
skewness of AU25). Altogether, a feature vector with 160 high
level features (HLFs) is generated per video.

3.2. Gaze Related Features
Gaze metrics provide useful information about people’s atten-
tion, and has been used for detecting driver distraction [9,10]. In
this study, we extracted features related to head pose to approx-
imate the drivers’ gaze behavior. The assumption is that most
of time people move their heads for visual scanning, especially
when the glance range is big. Low level features correspond to
the 3-D head orientations represented by yaw, pitch and roll an-
gles, which are extracted by CERT. Details about the head pose
estimation can be found in Whitehill et al. [22].

For each of the three head pose angles, eight statistics (Ta-
ble 2) are calculated, generating 24 HLFs. In addition, we also
derived two off-the-road gaze behavior features: total eye-off-
the-road (EOR) duration, and longest eye-off-the-road (LEOR)
duration. Both metrics have been used in other driver distraction
studies [9, 10]. EOR is related to the time required to complete
a task, and LEOR captures the duration of each glance (longer
glances are more dangerous than few short glances). Both met-
rics are estimated by defining a reference field centered at the
road. In this study, we used a rectangle relevant field by set-
ting thresholds on yaw and pitch angles. The drivers are re-
garded as looking off-the-road when their estimated head pose
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Fig. 1. Histograms of perceived visual and cognitive distractions.

is beyond these thresholds. Considering that participants vary in
their heights and seat positions, thresholds are individually de-
fined with respect to their normal driving condition. Using these
thresholds, the feature EOR is calculated by counting the frames
in the recordings in which the driver is detected with his/her eyes
off-the-road. The feature LEOR is calculated by counting the
longest consecutive eye-off-the-road frames. Notice that normal
driving behavior such as mirror checking can be detected as an
eye-off-the-road action, thus simply using these metrics for de-
tecting visual distraction can be misleading.

In total, 186 HLFs are estimated for all the videos used
in the perceptual evaluation. The features include 26 gaze re-
lated features and 160 AUs related features. Due to hand occlu-
sions, extreme glance behaviors or adverse illumination condi-
tions, CERT may fail to recognize the face in the frame produc-
ing empty values for the LLFs. In these cases, we interpolated
the missing value when the number of frames with missing val-
ues is less than one third of the total number of frames. Other-
wise, the samples are excluded from the analysis (83 out of 480).
The study considers 397 samples. Notice that the interpolation
introduces a delay that can affect real-time applications.

4. DETECTION OF DISTRACTED BEHAVIORS
4.1. Data Partition
To explore the effectiveness of facial features in the drivers’ dis-
traction detection, we implemented binary classification to rec-
ognize the distracted and normal driving behaviors. The data
is split into two classes labeled as either distracted or normal
by setting thresholds on the human perceptual evaluations. This
distracted-normal dichotomy is separately done for the perceived
visual and cognitive distraction scores. The thresholds are de-
termined based on the distributions of the scores as shown in
Fig. 1. The figure shows that both types of distractions cluster
into two groups. The threshold s=0.3 is used for both visual and
cognitive distractions to define the classes normal (low distrac-
tion scores) and distracted (high distraction scores) (visual: 211-
normal, 186-distracted; cognitive: 134-normal, 263-distracted).
Fig. 2 shows the distribution of the recordings for each class
across the eight driving conditions (7 tasks and normal). For vi-
sual distraction, the distracted class consists of data from Radio,
GPS-Operating, Phone-operating, and Picture. For cognitive



Table 3. Binary classification for normal and distracted behaviors (Feat. # = feature dimension; P = precision; R = recall; F = F-score).
Visual Distraction

Gaze Feature AUs Feature All Feature
Feat # P (%) R (%) F (%) Feat # P (%) R (%) F (%) Feat # P (%) R (%) F (%)

LDC 6 71.9 71.3 71.6 3 77.3 76.3 76.8 4 81.0 80.6 80.8
KNN 12 71.8 71.5 71.6 4 76.6 75.5 76.0 5 78.7 77.9 78.3
SVM1 4 72.0 71.3 71.6 4 77.2 76.3 76.8 4 80.6 80.4 80.5
SVM2 6 71.9 70.9 71.4 4 76.3 75.3 75.8 4 79.5 79.0 79.3
QDC 5 71.4 70.4 70.9 3 76.8 74.5 75.6 4 80.9 79.2 80.0

Cognitive Distraction
Gaze Feature AUs Feature All Feature

Feat # P (%) R (%) F (%) Feat # P (%) R (%) F (%) Feat # P (%) R (%) F (%)
LDC 4 71.7 68.9 70.3 8 74.3 72.4 73.3 24 73.8 73.4 73.6
KNN 10 70.6 71.1 70.8 10 71.8 67.6 69.6 29 67.6 68.1 67.8
SVM1 15 72.4 70.8 71.6 11 70.0 68.5 69.2 21 73.8 73.9 73.8
SVM2 8 68.7 69.4 69.1 8 73.9 69.3 71.5 10 73.2 72.4 72.8
QDC 5 67.3 69.1 68.2 8 70.4 71.6 71.0 10 70.9 72.3 71.6
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Fig. 2. Distributions of normal and distracted classes for visual
and cognitive distractions. The y-axis provides the percentage of
tasks in each class.

distraction, the distracted class includes recordings from most
of the secondary tasks except GPS-following. It is important for
the distracted class to include various secondary tasks such that
the results can capture representative features across tasks.

4.2. Binary Classification
Various machine learning methods are considered in the bi-
nary classification experiment: linear discriminant classifier
(LDC), k-nearest neighbor classifier (KNN), support vector ma-
chine with linear kernel (SVM1); support vector machine with
quadratic kernel (SVM2) and quadratic discriminant classifier
(QDC). The performance of the classifer is estimated with 20-
fold driver independent crossvalidation scheme. In each fold,
data from 19 drivers is used for training and the data from the
remaining driver is used for testing. To understand what features
are important for driver distraction, for each training set, we ap-
plied forward feature selection (FFS) to the 186 features based
on inter-intra class distance ratio. The top 30 features with the
highest inter-intra class ratio are selected and used for the evalu-
ation. This criterion does not depend on any particular classifier.

While a wrapper-based method can give higher accuracies, this
approach was selected since the focus of the analysis is on the
features rather than on the classifiers. Different number of fea-
tures from this set are tested for each classifier, and the one with
the best performance is reported in Table 3.

Due to the unbalanced data partition, the table reports the av-
erage precision (P), average recall (R) and F-score (F). The av-
erage precision corresponds to the mean precision (i.e., fraction
of retrieved samples that are relevant) of normal and distracted
classes. The average recall corresponds to the mean recall (i.e.,
fraction of relevant samples that are correctly classified) between
the classes. F-score combines both metrics by using equation 1.

F = 2⇥ precision⇥ recall

precision+ recall
(1)

The results show that we achieve the best performance when
both gaze and AUs features are considered with F-score of 80.8%
(LDC) for visual distraction and 73.8% (SVM1) for cognitive
distraction. Using only AUs gives better performance than using
only gaze features for both visual and cognitive classifications.
Interestingly, the performance for visual binary classification im-
proves when fusing all the features. Glance behavior features and
AUs provide complementary information that can be used to de-
tect visual distractions. For cognitive distraction, combining both
set of features does not improve the performance. Glance behav-
ior features do not add additional cues to the ones given by AUs.
The performance of the classifiers highlights the importance of
using facial features to recognize cognitive distractions.

The rank of the best features provided by FFS varies across
the 20 folds. We study the top five features across folds for cog-
nitive and visual distractions. For cognitive distraction, the top
five features in order are head Yaw Mean; Lip Corner Depressor
(AU15) STD; Lip Puckerer (AU18) Max; Lip Tightener (AU23)
IQR; head Roll Mean. For visual distraction, the top five features
in order are Lip Tightener (AU23) IQR; Jaw Drop (AU26) Max;
Head Yaw Mean; Lip Suck (AU28) Mean; Blink (AU45) Min.
The features Lip Tightener (AU23) IQR and head Yaw Mean are
frequently selected for both visual and cognitive distractions. For
cognitive distraction, Roll Mean was previously found useful for
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Fig. 3. Positive and negative classes. The study aims to iden-
tify relevant features characterizing samples in which cognitive
distraction scores are not related to visual distraction scores.

phone talking detection since people tend to tilt their heads when
using the phone [13]]. Given that phone talking is a cognitive ex-
clusive task, this result is expected. For visual distraction, Blink
(AU45) Min is related to eye movement. Therefore, it can pro-
vide useful information about visual attention.

5. VISUAL & COGNITIVE DISTRACTIONS
Fig. 3 displays the scatter plot of the evaluation scores for vi-
sual and cognitive distractions. The figure shows most record-
ings have similar scores for both type of distractions (points in
the diagonal). However, there are many samples where the cog-
nitive distraction score is higher than the visual distraction score
(e.g., upper left corner). Furthermore, The close but still different
performance between the visual and cognitive classification sug-
gests that these two type of distractions are not completely corre-
lated. This result is expected since visual distraction can induce
cognitive distraction but not vice versa. This section presents a
logistic regression analysis to identify facial and gaze features
that are useful for detecting samples in which cognitive distrac-
tion scores are not related to visual distraction scores. For this
purpose, the recordings are divided into two new classes based
on the difference between the scores assigned to cognitive and
visual distractions. The positive class corresponds to the cases
when cognitive distraction is not related to visual distraction (i.e.,
higher cognitive scores). The negative class corresponds to the
cases when the two distractions are related (i.e., similar scores).
Thresholds are applied to define the two classes. For the posi-
tive class, we set an upper threshold equal to the mean plus one
standard deviation of the differences between cognitive and vi-
sual distraction scores. Samples for which the score difference is
higher than this threshold are assigned to the positive class (68
recordings). For the negative classes, we defined a region cen-
tered in the diagonal of the scatter plot such that the number of
samples matches the ones in the positive class (balanced classes).
Fig. 3 highlights the samples that are selected for each of the

classes. Most of the samples in the positive class are related to
cognitive tasks (Phone-Talking and Conversation).

The feature analysis follows the approach introduced by
Busso et al. [23], which is based on logistic regression (Eq. 2).

⇡ (f) =
e�0+�1f1+�2f2+···+�F fF+"

e�0+�1f1+�2f2+···+�F fF+" + 1
(2)

In logistic regression, the contribution of a set of features
can be statistically estimated by comparing two nested models.
If the likelihood ratio between the models is multiplied by minus
two times its natural logarithm, the resulting statistic is approx-
imately distributed with a chi-square function with 1 degree of
freedom. We compare the model with just the intercept (Equa-
tion 3) with the model with a single feature (Equation 4). Then,
we estimate the chi-square statistic for each feature and use its
value to rank-order them (Fig. 4). Features that are more dis-
criminative between the positive and negative classes will lead to
better models, which will be reflected in the chi-square statistic.

H0 : ⇡ (f) =
e�0

e�0 + 1
(3)

H1 : ⇡ (f) =
e�0+�1f1

e�0+�1f1 + 1
(4)

Fig. 4 shows the top 30 features ranked by the logistic regres-
sion analysis. These features are all significant (p-value = 0.05)
under chi-square distribution test (see horizontal line). Most of
the features are AUs except for two high level features related to
head Roll. It is not surprising that many AUs related to lips move-
ment are selected given that positive class are closely related to
talking activities. In addition, AUs describing the eyebrows and
cheeks are selected among the best features. They capture emo-
tional and cognitive cues displayed by the drivers. These features
can provide useful information to detect tasks that increase the
cognitive load, without affecting the visual demand.

6. CONCLUSIONS AND FUTURE WORK
The results from this study indicate that facial information is use-
ful for driver distraction detection. Gaze features and AUs pro-
vide valuable information for visual distraction detection. The
results indicate that AUs play an important role in cognitive dis-
traction detection. In addition, AUs are also useful for detecting
when cognitive distraction is not induced by visual distraction.

Since the cognitive tasks considered in this study closely re-
lated to talking activities, our future work will include the anal-
ysis of other cognitive tasks (e.g. thinking, solving math prob-
lems). In addition, other modalities such as CAN-Bus, and audio
signals, which can provide complementary information, will be
studied. We will also collect data under different driving condi-
tions (e.g., day/night, road/highway). Studies have shown that
driver behaviors change under different driving conditions. For
example, driving on city roads is different from driving on high-
ways. By collecting more data, we will expand our study to cover
a wide range of scenarios, building appropriate models for driver
distraction under different road and environment conditions.
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Fig. 4. Most discriminative features for positive and negative classes according to the logistic regression analysis. The horizontal line
indicates the threshold for which the individual features are statistical significant at p-value=0.05.
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