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Abstract
Background: Post-traumatic stress disorder (PTSD) poses 
a global public health challenge. Evidence-based psycho-
therapies (EBPs) for PTSD reduce symptoms and im-
prove functioning (Forbes et al., Guilford Press, 2020, 3). 
However, a number of barriers to access and engagement 
with these interventions prevail. As a result, the use of 
EBPs in community settings remains disappointingly low 
(Charney et al., Psychological Trauma: Theory, Research, Practice, 
and Policy, 11, 2019, 793; Richards et  al., Community Mental 
Health Journal, 53, 2017, 215), and not all patients who re-
ceive an EBP for PTSD benefit optimally (Asmundson 
et al., Cognitive Behaviour Therapy, 48, 2019, 1). Advancements 
in artificial intelligence (AI) have introduced new possibili-
ties for increasinfg access to and quality of mental health 
interventions.
Aims: The present paper reviews key barriers to accessing 
and engaging in EBPs for PTSD, discusses current applica-
tions of AI in PTSD treatment and provides recommenda-
tions for future AI integrations aimed at reducing barriers to 
access and engagement.
Discussion: We propose that AI may be utilized to (1) 
assess treatment fidelity; (2) elucidate novel predictors of 
treatment dropout and outcomes; and (3) facilitate patient 
engagement with the tasks of therapy, including therapy 
practice. Potential avenues for technological advancements 
are also considered.
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BACKGROUND

Posttraumatic stress disorder (PTSD) poses a significant public health challenge that is associated with 
a tremendous global economic burden (McGowan, 2019; Watson, 2019). Multiple treatment guidelines 
recommend trauma-focused, evidence-based psychotherapy (EBP) for PTSD as the frontline class of 
interventions (Forbes et al., 2020; Veterans Administration/Department of Defense Clinical Practice 
Guidelines Working Group, 2023). However, access and engagement barriers limit the reach of these 
EBPs. As a result, only a small proportion of affected individuals receive EBPs, with an even smaller 
proportion completing a dose of treatment sufficient to achieve maximal gains (Shiner et al., 2020). 
Recent advancements in artificial intelligence (AI), including machine learning (ML) and generative AI, 
offer novel solutions for improving access to and engagement with EBPs for PTSD. Machine learning 
(ML) is the subarea of artificial intelligence concerned with using statistics to extract patterns from large 
amounts of data. ML algorithms are most commonly ‘trained’ on human-created examples of the task to 
be learned. For instance, if the task is to identify what emotion a speaker is expressing, a training exam-
ple would consist of a video of a speaker paired with the correct emotion, usually as judged by a human 
observer or indicated by the speaker themselves during training data collection. The goal of the ML 
algorithm is to generalize from the specific examples seen at training time to be able to predict the cor-
rect emotion for a new, previously unseen video at test time. Conversely, generative AI focuses on the 
creation of novel content based on patterns and characteristics observed within a pre-existing dataset.

The present paper: (1) discusses barriers to accessing and engaging in EBPs for PTSD; (2) reviews 
the ways in which ML is already being used to overcome these barriers in the broader mental health 
field; and (3) suggests four potential avenues for the application of ML and generative AI in the domain 
of EBPs. We use Cognitive Processing Therapy (CPT; Resick et al., 2016) to illustrate these avenues, 
because our team has been implementing ML with a large CPT dataset and considering the best use 
of AI to facilitate CPT access and quality delivery. CPT is a 12-session intervention designed to help 
patients identify and challenge unhelpful beliefs that arose following a traumatic incident. CPT is one of 
several well-validated EBPs for PTSD, and it is considered a gold-standard intervention for the disorder 
(Asmundson et al., 2019).

BA R R IERS TO EBP FOR P TSD

Logistical and financial limits to EBP access

Access to EBPs for PTSD is limited by financial and logistical factors. In order to receive an EBP for 
PTSD, an individual must: (1) be aware of the existence of EBPs for PTSD; (2) understand their rela-
tive efficacy (e.g. in comparison to other therapies); and (3) locate a trained provider who is available to 
begin treatment without significant delay. Despite the release of best-practice guidelines for the treat-
ment of PTSD (Forbes et al., 2020; Veterans Administration/Department of Defense Clinical Practice 
Guideline Working Group, 2023) and significant organizational changes designed to increase training 
and implementation of EBPs for PTSD (e.g. within veterans' associations and public hospitals; see 
Rosen et al., 2016 for a review), there is little evidence that average consumers of mental health services 
outside these settings are knowledgeable about, or routinely seek, EBPs.

Access to qualified providers in these EBPs for PTSD is limited, and the cost of receiving them can 
be prohibitive. For example, outside of publicly funded settings (access to which is often limited to mil-
itary personnel and veterans) in North America, the cost of a single course of treatment is a minimum 
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       |  3MACHINE LEARNING IN PTSD INTERVENTION

of $1500–$3500 USD, depending on the education and experience of the provider. This problem is 
magnified when one considers that PTSD often gives rise to significant occupational impairment and 
workplace absenteeism, introducing additional financial burden among individuals with the disorder 
(Lee et al., 2020; Williams & Williams, 2020). Minimizing logistical and financial barriers to EBPs for 
PTSD access therefore remains a critical imperative.

Quality delivery

Even after gaining access to EBPs, individuals continue to experience significant variability in the qual-
ity of services they receive. Outcomes of EBPs for PTSD are maximized when delivered with fidelity 
(i.e. the extent to which the intervention is delivered with adherence to the relevant treatment manual 
and in a competent manner; Farmer et al., 2017; Keefe et al., 2022; Marques et al., 2019). However, re-
search has shown that treatment providers often demonstrate variable treatment competence and tend 
to deviate from protocol adherence over time (Marques et al., 2019). Treatment fidelity may be particu-
larly compromised in the delivery of EBPs for PTSD, as several of these treatments involve encouraging 
patients to directly confront or discuss trauma memories—a practice that some clinicians may fear is 
harmful or unduly distressing.

Treatment fidelity may be improved via routine monitoring and feedback provision to clinicians. 
However, current approaches to fidelity assessment are prohibitively costly and time-consuming (Finley 
et  al.,  2015; Maguen et  al.,  2018). In the current approach, treatment sessions are audio- or video-
recorded and listened to by trained human raters who score these recordings on various facets of treat-
ment fidelity. Creating and maintaining a pool of raters with inter-rater reliability is labour intensive. 
Given the demands of this process, fidelity assessment is rarely completed outside the context of ran-
domized controlled efficacy trials or implementation studies. Moreover, even within clinical trials, feed-
back may not be given to study clinicians, or may be provided after a significant time delay, resulting in 
diminished practical utility (Monson et al., 2018).

The lack of practical, cost-effective quality assurance measures represents a broad issue in the pro-
vision of mental health services. Introducing novel approaches to assessing treatment adherence and 
competence is critical to ensure that patients experience the best possible outcomes.

Engagement with treatment

Perhaps in part due to poor treatment quality, many patients struggle with treatment adherence and 
engagement after barriers to access are successfully overcome. Treatment engagement can be opera-
tionally defined in terms of treatment completion (vs. dropout) and in terms of time and effort devoted 
towards the tasks of psychotherapy (e.g. homework completion). Low engagement in therapy has been 
associated with suboptimal therapy outcomes (Sripada et al., 2020). With respect to treatment drop-
out, the incidence of dropout from EBPs for PTSD is unfortunately high (e.g. 29% for CPT; Kline 
et al., 2018) and is often related to patients finding the intervention to be too distressing or not feeling 
motivated by the therapy rationale or specific therapy tasks (Alpert et al., 2020; Hundt et al., 2020). 
Concerningly, a significant proportion of patients who prematurely terminate therapy do not improve 
(Holmes et al., 2019).

Research examining predictors of treatment dropout has largely focused on demographic variables 
and has yielded inconsistent findings (Alpert et al., 2020; Cooper et al., 2018; Sloan et al., 2018). It has 
been proposed that focusing on therapist and patient behaviours that emerge early in therapy and pre-
dict treatment dropout may be a more fruitful endeavour, because doing so would provide opportunities 
for clinicians to modify their approach and help shape patient behaviour to reduce the likelihood of 
subsequent dropout (Alpert et al., 2020; Cooper et al., 2018). Existing research in this area suggests 
that difficulties in the therapeutic relationship (Ormhaug & Jensen, 2018; Yasinski et al., 2018), as well 
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as higher levels of patient emotional avoidance (Alpert et al., 2020; Yasinski et al., 2018), overgeneral-
ized beliefs and physiological reactivity in early treatment sessions (Alpert et al., 2020), predict higher 
dropout rates. Astute clinicians may readily incorporate these findings in clinical practice by remain-
ing on the lookout for such behaviours and intervening accordingly (e.g. identifying and normalizing 
physiological reactivity, addressing maladaptive cognitions about emotional distress that are treatment-
interfering). However, tools designed to help clinicians identify these warning signs of dropout, and 
help them decide how and when to intervene, are sorely needed.

It is also imperative to consider barriers to patient engagement in the tasks of psychotherapy. 
Treatment homework is a core component of most cognitive behavioural therapy (CBT) protocols, in-
cluding CPT. For example, out-of-session practice assignments are given after every session in CPT, and 
most of these assignments are intended to be completed on a daily basis. CPT homework completion is 
associated with greater pre-to post-treatment improvements in PTSD symptoms (Stirman et al., 2018). 
However, since avoiding painful emotions and trauma reminders are hallmark symptoms of PTSD, 
engaging patients in CPT homework is often challenging (Stirman et al., 2018). Limited research has 
examined patients' perspectives regarding barriers to homework engagement in CPT. In the broader 
CBT literature, one study found that patients cited anxiety surrounding improper homework comple-
tion, difficulty translating emotional experiences into written words, low motivation and feeling unable 
to manage emotional distress evoked by homework completion as reasons for low engagement with 
homework (Barnes et al., 2013). If patients are to optimally benefit from EBPs for PTSD, further under-
standing and addressing barriers to homework engagement are necessary avenues for clinical research.

A RTIFICI A L INTEL LIGENCE IN PSYCHOTHER A PY

Over the past decade, developments in artificial intelligence (AI) and machine learning (ML) have 
rapidly progressed and are increasingly being used in the mental health arena (Aafjes-van Doorn 
et al., 2020; Graham et al., 2019). Applications of this technology have been widespread and include 
using ML to identify and diagnose mental disorders, predict the longitudinal progression of mental 
health problems and provide support for affected individuals (see reviews by Shatte et al., 2019; Tai 
et al., 2019). However, efforts to apply AI to enhance psychotherapy provision have been more limited 
(Aafjes-van Doorn et al., 2020). We argue that AI and ML have untapped potential to facilitate access to, 
and engagement in, PTSD interventions. In the following sections, we offer three potential applications 
of AI and ML in PTSD psychotherapy research and practice.

Recommendation 1: Using ML to train professionals and provide ongoing 
fidelity assessment

The current issues of limited EBP access and insufficient quality assurance monitoring may be mitigated 
with the development of AI designed to teach and provide ongoing feedback to clinicians on their pro-
vision of evidence-based treatment for PTSD, including CPT implementation. Several research groups 
have developed ML algorithms to automate the process of assessing treatment fidelity in psychotherapy. 
A systematic review found that these models yield fair to excellent levels of human-to-computer agree-
ment (Ahmadi et al., 2021), with some models correctly predicting fidelity with greater than 80% ac-
curacy (Creed et al., 2022; Xiao et al., 2016).

The preponderance of research in this area has involved the development of algorithms based 
on behavioural coding measures designed to assess adherence to motivational interviewing (see 
Ahmadi et al., 2021 for a review). To our knowledge, only one research group (Creed et al., 2022) 
has reported data on an ML model designed to assess fidelity in CBT. This study was conducted 
with a sample of individuals experiencing a range of mental health problems as part of the Beck 
Community Initiative (Creed et  al.,  2016). Thus far, there have been no documented efforts to 
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       |  5MACHINE LEARNING IN PTSD INTERVENTION

automate the assessment of fidelity in CPT or other trauma-focused interventions specifically. 
Developing such models reflects a critical avenue for ML research in CPT and other trauma-focused 
psychotherapy research.

We envision two possible applications of such technology. First, we suggest the development of a 
system that uses ML to provide immediate fidelity feedback to EBPs for PTSD, allowing for training 
of CPT clinicians at a less restrictive scale. Rather than the current approach of acquiring CPT com-
petency through the completion of a foundational workshop and subsequent consultation (e.g. weekly 
groups with an expert CPT consultant; Monson et al., 2018), we envision a process in which trainees 
would complete an initial online training and then proceed to administer CPT to real or simulated pa-
tients while receiving automated fidelity feedback derived from ML algorithms. This feedback could be 
provided to clinicians immediately following sessions (e.g. an on-screen panel displayed to the clinician 
after exiting a treatment session, providing analytics on their fidelity to the intervention). Utilizing AI in 
this manner could enable organizations to have increased confidence in the delivery of the intervention, 
increase clinician confidence in intervention delivery and empower patient to better understand what 
treatment they are getting and at what level of quality. In fact, such an approach is now being offered 
by Lyssn (www.​Lyssn.​io).

In addition to providing immediate fidelity feedback, the technological advancements afforded by 
ML will also provide new ways to think about assessing and improving the quality of EBP provision. 
For example, multimodal processing, which combines text, audio and optionally video data, has been 
shown to provide stronger ML performance on tasks such as sentiment analysis and emotion recogni-
tion (Sourav & Ouyang, 2021; Tsai et al., 2019), compared to approaches that focus on only one modal-
ity. With the increasing popularity of remote therapy, video and audio recordings of both clinician and 
patient become more readily available, facilitating the use of multimodal algorithms to better identify 
high-level therapist speech acts, such as asking questions, as well as to make fine-grained distinctions 
among them, such as distinguishing Socratic questions from simple clarification or information seek-
ing. With this approach, ML solutions may be used to provide objective feedback on additional indi-
cators of therapy quality, such as the number of questions asked by the therapist in each section, the 
affective quality of the therapist's utterances, and speaker-turn duration.

Recommendation 2: Identifying novel predictors of therapy 
outcomes and dropout

To overcome barriers to treatment engagement, ML may also be used to elucidate and test theoretical 
predictors of psychotherapy outcome and dropout. Outside the context of trauma-focused therapy, re-
search in this area is already underway. For example, ML has been used to identify patient characteristics 
that moderate the effects of therapeutic alliance (Rubel et al., 2020; Zilcha-Mano et al., 2018) and problem 
coping experience (i.e. the extent to which patients work on understanding the sources of their problems 
and seek solutions; Penedo et al., 2022, 2023) on treatment outcomes in psychotherapy.

Although these factors may inform initial treatment selection, they offer little by way of informing 
clinicians about indicators of likely dropout or treatment nonresponse after treatment has begun. To our 
knowledge, only one study (Nixon et al., 2021) has used ML to determine whether CPT nonresponders 
could be identified early in the intervention. Their results indicated that treatment responders could be 
readily identified by session 4 using predictive algorithms; however, differentiating between treatment 
nonresponders and delayed responders proved more difficult. Such data could be used to develop digital 
decision support and feedback systems that can guide clinician decision-making to reduce dropout and 
improve outcomes. For example, Duhne et al. (2022) used ML to develop such a system, providing cli-
nicians with treatment approach recommendations (i.e. using a predictive algorithm to determine who 
is more likely to benefit from face-to-face vs. a computerized intervention). The authors reported that 
patients who received the AI-generated recommendations were less likely to drop out of treatment and 
experienced improved treatment outcomes.
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Building on this approach, we propose that ML could be used to test additional predictors of treat-
ment response and dropout that have not yet been examined, including factors that are amenable to 
modification. Unmodifiable factors like pre-treatment age, gender or type of trauma provide no op-
portunity as targets for improving patient outcomes. Conversely, factors such as emotionality (specific 
prominent emotions and reactivity), physiological arousal, dissociation and working alliance provide 
potential points of intervention to maximize treatment response. Once identified, this research may 
be extended to create feedback systems that can provide data to clinicians following initial treatment 
sessions, highlighting any modifiable risks for dropout or treatment nonresponse.

Multimodal ML systems can be developed to track patient engagement, emotional state, body lan-
guage and frequency and length of utterances during each therapy session. Regression models trained 
on such data can quantify the strength of correlations between specific behaviours and dropout or 
treatment nonresponse. For example, ML models can track microexpressions in the face that may be 
correlated with therapy outcomes or an early indication of dropout. Additionally, changes in patient 
behaviour may be difficult for a clinician to mentally track over the course of a therapy session, let alone 
across multiple sessions spanning several weeks. A report generated by an ML system can assist the 
clinician in recognizing long-term changes in patient behaviour that they may wish to address or mit-
igate. In addition to this approach, generative AI may also be incorporated to offer clinicians concrete 
suggestions for reducing the risk of patient dropout or nonresponse.

Recommendation 3: Increasing engagement via therapy support tools

As previously highlighted, homework is a critical component in achieving successful treatment out-
comes. Meta-analyses have demonstrated that therapeutic interventions with homework assignments 
yield significantly greater treatment effects than interventions without them (Kazantzis et al., 2000, 
2010). Furthermore, research across various conditions highlights the strong correlation between 
homework adherence and improved treatment outcomes (Cooper et al., 2017; Kazantzis et al., 2010; 
Mausbach et al., 2010).

Offering patients feedback on therapy homework is imperative for enhancing homework engage-
ment and quality (Murdoch & Connor-Greene, 2000; Núñez et al., 2015). In educational disciplines, AI 
has been demonstrated as an effective tool for providing students with tailored homework feedback, 
leading to marked improvements in outcomes (Berrezueta-Guzman et al., 2021; Johnson et al., 2009; 
Kelly et al., 2013). Research in this area has also highlighted the superiority of instantaneous (vs. de-
layed) feedback in enhancing performance (Kehrer et  al.,  2013). Whereas instantaneous homework 
feedback is typically unrealistic in clinical practice given limits on clinician availability and workload, AI 
may be leveraged to deliver this crucial feedback with unprecedented speed and consistency.

Although homework completion plays an important role within PTSD treatment, individuals often 
fail to complete homework due to a range of individual (e.g. avoidance, forgetting and difficulty with 
homework completion) and environmental (e.g. scheduling, lack of time or reinforcement) factors 
(Kazantzis & Shinkfield, 2007; Reger et al., 2013). Accordingly, ML may be used to help individuals and 
therapists identify and target patient-specific factors that interfere with homework completion both pre-
emptively and throughout the duration of treatment, and generative AI may be used to provide reward-
ing feedback when such homework is completed and offer coping strategies to help deal with avoidance. 
Moreover, generative AI may provide individuals with guidance and real-time feedback that helps to 
minimize homework-related uncertainty and self-efficacy. Ultimately, AI may be used to dynamically 
tailor the type and amount of homework assigned to individuals at specific time points, which may help 
to minimize treatment dropout, maximize homework engagement and optimize its therapeutic benefit.

Within the context of CPT, homework feedback may be particularly beneficial with respect to 
helping patients when they first learn to differentiate between thoughts and feelings (e.g. identifying 
and offering correction when patients misidentify thoughts as feelings or vice versa), when they 
begin to identify ‘stuck points’ or erroneous beliefs that have emerged from the trauma (Resick 
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       |  7MACHINE LEARNING IN PTSD INTERVENTION

et al., 2016) and when they learn to challenge these beliefs (e.g. if a patient has identified ‘evidence’ 
to refute a stuck point that in fact reflects another erroneous belief ). Homework tools could utilize 
generative AI to provide verbal feedback, offer Socratic questions to help patients arrive at helpful 
responses or offer potential alternative interpretations of trauma-related events when patients feel 
stuck. AI may also be used to adjust therapy tasks according to a patient's skill level and to pro-
vide positive reinforcement for successful engagement with homework. For example, within CPT, 
a patient who is routinely struggling with more sophisticated worksheets may be encouraged to 
return to earlier, more simplistic worksheets and patients who have spent ample time on worksheet 
completion could be immediately and consistently reinforced for their efforts. These tools may help 
improve patient motivation by building momentum and keeping them engaged with tasks that are 
appropriate for their skill level.

Although the ability of ML models to handle sophisticated concepts such as distinguishing 
thoughts from feelings and identifying stuck points is currently unknown, the recent success of 
large language models (LLMs), such as GPT-4 and LLaMa 2, at tasks requiring the understanding 
of natural human language suggests this may be a fruitful direction for ML research. LLMs are 
particularly good at learning the appropriate styles of questions to ask when they are fine-tuned 
with appropriate data. Therefore, if sufficient examples are presented for Socratic questions, the 
LLM can learn to generate these types of questions. To this end, we envision the development of a 
customized chatbot, which could be framed as a patient's personal partner in progressing through 
the therapy. The chatbot would be able to provide advice or make suggestions that the patient might 
otherwise resist if it came instead from a human clinician. While a recent scoping review provided 
evidence of overall positive attitudes towards mental health chatbots among patient populations 
(Abd-Alrazaq et  al.,  2021), other research has demonstrated more heterogeneous attitudes, with 
particular concern raised about the potential impact of AI integration on patients' relationships 
with their health care providers (Faverio & Tyson, 2023). Integrating patients in the early stages of 
AI development appears critical for maximizing the subsequent acceptability of such technologies 
(Lambert et al., 2023).

Moreover, it is important to note that the ethics of generative AI in the context of psychother-
apy must be carefully considered. Recently, AI chatbots have been critiqued and removed from the 
public domain following the provision of problematic advice and emotional insensitivity (Coghlan 
et al., 2023; McCarthy, 2023). Furthermore, generative AI models have been known to perpetuate 
systematic bias against marginalized communities, as they are commonly trained on large datasets 
that include discriminatory content and biased representations. For example, if most patients in a 
dataset are white males, the output from generative AI will be more likely to describe patients with 
these characteristics. Accordingly, to minimize risks and ensure that therapy tools that rely on gen-
erative AI are beneficial across diverse populations (e.g. marginalized individuals), it is essential that 
model building, evaluation and implementation be conducted in a manner that assesses and mitigates 
potential biases (Timmons et al., 2023). It is therefore critical to involve patient groups (e.g. minori-
tized individuals) and researchers from diverse backgrounds in the development and implementa-
tion of these AI-based technologies (de Hond et al., 2022; Xu et al., 2021). Furthermore, models 
should be developed using datasets that are representative of these populations (see Dankwa-Mullan 
et  al.,  2021), in accordance with existing ethical frameworks (e.g. see Coghlan et  al.,  2023's five-
principle framework). The applicability of generated models to marginalized communities should 
also be explicitly tested and validated prior to their implementation (e.g. see Habicht et al., 2024). 
Finally, it is essential to continually evaluate these technologies for potential biases and fairness 
following their implementation (Taber et  al.,  2023). Towards this end, a therapy partner chatbot 
should be tested with a group of clinicians and iteratively be improved using strategies such as the 
Reinforcement Learning from Human Feedback algorithm (Ouyang et  al.,  2022). Clinicians can 
work with ML researchers to develop models to automatically detect emotional insensitivity and 
other undesired responses from the generative AI chatbot, which can then provide filters to prevent 
such responses from being conveyed to the patient.
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CONCLUSION

This paper examined barriers to accessing and engaging with EBPs for PTSD. We explored the cur-
rent landscape of ML and generative AI applications within the mental health domain and offered 
our recommendations for the effective integration of these technologies into EBPs for PTSD. PTSD 
presents an urgent public health challenge, compounded by a substantial economic burden. Despite 
the established efficacy of EBPs such as CPT, their widespread implementation is impeded by various 
logistical and financial constraints. Furthermore, ensuring consistent, high-quality delivery of EBPs 
remains a complex endeavour due to the inherent difficulties in assessing and maintaining treatment 
fidelity. Also, low patient engagement in therapy tasks, such as homework assignments, contributes to 
elevated dropout rates. The present paper explores how ML and generative AI can be used to potentially 
address these obstacles.

It is important to underscore potential challenges and limitations to the proposed applications 
of ML and generative AI to trauma-focused treatment. First, ML algorithms must be trained on 
vast datasets, which can be costly or otherwise challenging to access. Second, models that are de-
veloped on accessible datasets may demonstrate impressive predictive capacity within the datasets 
on which they are trained, but more modest ability when extrapolated to novel data and situations 
(Chekroud et  al.,  2024). Third, it is possible that clinician, patient and organizational acceptance 
of the integration of ML and generative AI into EBPs may be limited. The willingness to embrace 
these tools for various purposes, including clinician training, quality assurance and treatment adher-
ence, will significantly impact the effectiveness of their use. Moreover, patient willingness to adopt 
these tools in EBPs is also crucial for the implementation of this new technology. A simultaneous 
focus on solutions that are driven top-down and bottom-up holds the promise of rendering EBPs 
more accessible, augmenting their quality and ultimately enhancing their effectiveness. However, 
further consumer-sensitive and collaborative research is needed to synthesize various stakeholders' 
perspectives, concerns and practical considerations to build AI that can make a significant impact 
on the delivery of EBPs in the real world. Fourth, serious data security issues may arise from the 
integration of ML and generative AI into psychotherapy, especially given that within-session data 
contains highly sensitive and private material. Fifth, the incorporation of these technologies within 
trauma-focused treatment requires significant attention to ethical considerations. For instance, it 
will be essential to develop clinical guidelines that provide clinicians with ethical guidance and in-
struction on incorporating these technologies within their practice.

Despite these concerns, ML and generative AI have potential to transform clinician training, treat-
ment fidelity maintenance and adherence to treatment protocols, thereby elevating the overall quality 
of care. Additionally, harnessing AI-powered tools to bolster patient engagement, particularly through 
real-time feedback and support between therapy sessions. These enhancements aim to enrich the overall 
treatment experience for patients.
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