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ABSTRACT

Speech emotion recognition (SER) systems often struggle in real-world environments, where ambient
noise severely degrades their performance. This paper explores a novel approach that exploits prior
knowledge of testing environments to maximize SER performance under noisy conditions. To address
this task, we propose a text-guided, environment-aware training where an SER model is trained
with contaminated speech samples and their paired noise description. We use a pre-trained text
encoder to extract the text-based environment embedding and then fuse it to a transformer-based SER
model during training and inference. We demonstrate the effectiveness of our approach through our
experiment with the MSP-Podcast corpus and real-world additive noise samples collected from the
Freesound repository. Our experiment indicates that the text-based environment descriptions pro-
cessed by a large language model (LLM) produce representations that improve the noise-robustness
of the SER system. In addition, our proposed approach with an LLM yields better performance than
our environment-agnostic baselines, especially in low signal-to-noise ratio (SNR) conditions. When
testing at -5dB SNR level, our proposed method shows better performance than our best baseline
model by 31.8 % (arousal), 23.5% (dominance), and 9.5% (valence).

Keywords Speech emotion recognition · noise-robustness · text-guided training · multi-modal
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1 Introduction

Speech emotion recogntion (SER) systems have highly improved with the help of pre-trained speech representation
models [1, 2, 3] and the creation of larger emotional speech databases [4, 5, 6, 7]. Recently, there has been increased
interest in deploying SER systems in real-world applications, opening opportunities across many domains, such as
digital assistants [8], health care applications [9], and security and defense. One important barrier in this direction is the
degradation of SER performance in real-world environments caused by multiple types of non-stationary background
noise [10].

Several solutions have been proposed to improve the robustness of SER systems against acoustic noise. The solutions
include data augmentation [11, 12], feature enhancement [13, 14], feature selection [15, 16], and domain adaptation
approaches [17, 18]. Since transformer-based speech representation models have been successfully used in speech
problems [1, 2, 3], many studies have also worked on increasing the noise robustness of SER systems built with
pre-trained speech representation models [19, 20]. These approaches can increase the performance of transformer-based
SER models in target noisy conditions. However, it is challenging to use these models in scenarios with multiple noisy
environments since a transformer-based SER model requires important resources to adapt and store its parameters
for each target environment. To address multiple noise types in a single SER model, Leem et al. [21] proposed
environment-agnostic and -specific adapters. Their work showed that leveraging the prior knowledge of the testing
condition is important for an SER model’s adaptation to multiple noisy environments.

This paper focuses on how to effectively use the prior knowledge of a testing condition for an SER model that is adapted
to multiple environments. The prior knowledge is used as a mechanism for zero-shot learning in new environments
with types of noises not considered while training the models. It also provides the mechanism to indirectly identify
similar environmental conditions during training (e.g., noise in a bus station and a train station). Exploring this problem,
we investigate using text-based environment descriptions as the prior knowledge for a noise-robust SER system. Using
natural language prompts during training has shown potential in image classification [22], sound event classification
[23], and several speech processing downstream tasks, including keyword spotting, and speaker counting [24]. Natural
language supervision is also applicable to SER tasks [25, 26]. All these studies indicate that exploiting text information
is a promising strategy to SER systems. We propose a text-guided environment-aware training (TG-EAT) strategy to
improve the noise robustness of an SER model with text descriptions. We focus on the prediction of arousal (calm to
active), valence (negative to positive), and dominance (weak to strong). TG-EAT uses noisy speech and its text-based
environmental description to adapt the SER model. We use a pre-trained text encoder to extract the representation of
text-based environment descriptions. This representation is combined with a transformer-based SER model. During
adaptation, the SER model learns appropriate denoising functions with respect to the given environment description.
During inference, we only need to change the template sentence to guide the SER model with testing environment
information. We expect that the pre-trained text encoder can capture similar semantic information from environmental
conditions included in the train set, allowing zero-shot environment learning for the SER model. This approach is
expected to generalize the SER performance when tested in environmental conditions that are not included in the
training process.

Our experiment with the MSP-Podcast corpus shows that using text description of the testing environment can highly
improve the SER performance, especially with large language model (LLM). In the -5dB signal-to-noise ratio (SNR)
condition, our method improves the original SER model built with a self-supervised learning (SSL) representation
by 163.6% for arousal, 200.0% for dominance, and 91.6% for valence. When we compare the proposed SER model
with our best baseline, we observe improvements of 31.8 % for arousal, 23.5% for dominance, and 9.5% for valence
(-5dB SNR level). With the text encoder from CLAP, pre-trained with paired audio, the SER model can achieve the best
performance in the low SNR condition. Compared with freezing the text encoder, the fine-tuning approach improves
performance by 72.2% for arousal, 91.6% for dominance, and 21.0% for valence under the -5dB SNR condition. Our
solution is highly applicable to SER systems deployed in real-world applications. For example, systems can infer the
testing environment from the global positioning system (GPS) information by using geological information service
(GIS) mashups, such as OpenStreetMap [27]. The main contributions of this study are:

• We explore using text embedding for an SER model to increase noise robustness in unseen conditions by
explicitly leveraging the environment information.

• We show the benefits of using LLM to improve SER performance under noisy conditions over using a
pre-trained environment classifier, especially in a low SNR condition.

• We show that fine-tuning the text encoder of CLAP can improve SER performance, leading to the possibility
of using a paired audio encoder to deal with unknown testing environments.
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Our paper is organized as follows. Section 2 describes studies relevant to SER in noisy conditions and text-guided
training strategies. Section 3 describes the proposed approach, emphasizing the motivations and insights behind the
TG-EAT framework. Section 4 provides the experimental setting, including the database, baselines, and implementation
details. Section 5 presents the results, discussing the clear benefits of the proposed strategy. Finally, Section 6 concludes
the paper, summarizing our study and providing future research directions inspired by the proposed approach.

2 Previous Work

2.1 Speech Emotion Recognition under Noisy Environments

Increasing the noise robustness of an SER system is an essential task when deploying it in real-world applications.
Previous studies have mainly focused on improving acoustic features for the SER model. Triantafyllopoulos et al. [14]
proposed to enhance noisy low-level descriptors (LLDs) for an SER model by using a convolutional neural network
(CNN) with residual blocks. Pandharipande et al. [28]proposed to discard noisy frames to increase the noise robustness
of an SER model by using a voice activity detection module. Leem et al. [29] proposed to select noise-robust LLDs by
addressing the performance and robustness of each single LLD.

More recently, SER studies have mainly focused on using transformer-based speech representation models [30, 31,
32, 33, 34, 35], including Wav2Vec2.0 [1], HuBERT [2], and WavLM [3]. Such models have shown higher robustness
against the small perturbation on the input speech than the traditional SER model with a Mel-spectrogram [32]. Despite
this trend, they still show performance differences from the ones tested in a clean environment. For this reason, studies
are currently exploring strategies to improve the noise robustness of the pre-trained speech representation model. A
common approach to address this issue is noise-aware training, where the clean training set is augmented with the
noise sound during environment adaptation. Mitra et al. [19] demonstrated that training a HuBERT-based SER model
with noisy speech can highly improve the performance in low signal-to-noise ratio (SNR) conditions. Leem et al. [20]
proposed a contrastive teacher-student learning strategy to address the catastrophic forgetting issue when training a
fine-tuned SER model with noisy speech. Wu et al. [12] proposed to dynamically change the distortion level of the
augmented speech during adaptation based on the distortion metrics.

The aforementioned methods focused on increasing the SER model’s robustness against a single target environment.
They might not be the optimal solution for an SER model deployed on a real-world application since it is highly likely
that this system will encounter multiple types of environmental noises. We focus on adapting a single transformer-based
SER model to multiple noisy environments to efficiently deal with multiple types of environments. To address this
issue, Leem et al. [21] proposed to adapt the transformer-based SER model to multiple types of noises with skip
connection adapters. They not only trained the SER model with multiple environments but also focused on leveraging
the environmental information of the testing conditions to improve SER performance under noisy conditions. The results
showed that using the environment-agnostic and -specific adapters with respect to the testing condition can improve the
SER performance under noisy conditions. Such prior knowledge could be achieved using domain knowledge or global
positioning system (GPS) information. Their result showed that using environmental information during inference
is important for a SER model to perform well under noisy conditions. This work indicates that leveraging the prior
knowledge of the testing condition is also important for a noise-robust SER model, as well as training it with multiple
types of noises. This is beneficial for an SER model deployed on real-world applications where the system can exploit
the domain knowledge of the testing environment and the global positioning system (GPS) information.

This paper also explores the multi-condition training approach where the fine-tuned SER model is adapted to multiple
types of noise. Different from other methods, our strategy relies on a text embedding that describes the testing
environment to deal with multiple unseen environments.

2.2 Text-Guided Training

As we discussed in Section 2.1, exploiting environmental information can improve SER performance in a noisy
environment. This paper mainly focuses on using text prompts to infuse environmental information into an SER model.
Using natural language prompts does not require the recognition model to use a fixed set of predetermined labels during
training. Contrastive language-image pre-training (CLIP) is a good example of this approach [22]. It consists of
an image encoder and a text encoder, trained with pairs of images and their corresponding text descriptions. These
encoders are trained in a contrastive learning manner, which maximizes the similarity of both representations if the
image and the description are paired and minimizes the similarity if they are unpaired. After training, these encoders
can perform zero-shot classification by checking the similarity between the given image and the candidate prompts.
The study of Radford et al. [22] used the following prompt template: “A photo of a {label}”. They calculate the
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Figure 1: Our proposed text-guided environment-aware training framework. The environment representation is
concatenated with the output of the convolutional feature encoder.

similarity between the representation from the given image and the representations from the prompts with different
{label}, selecting the {label} that shows the maximum similarity.

The contrastive pre-training strategy with natural language supervision is also successful in universal audio and speech
processing. Wu et al. [23] demonstrated that pre-training audio and text encoder with natural language guidance could
improve audio classification performance. The study of Elizalde et al. [24] showed that such natural language guidance
can improve speech processing tasks, including keyword spotting, speaker counting, and SER tasks.

Previous studies have found that natural language supervision can apply to SER tasks. Stanley et al. [25] used word
embeddings to encode emotional labels for SER model. Gong et al. [26] used large language model (LLM) to infer
weak emotion labels for unlabeled data for weakly-supervised learning of an SER model. All these findings have shown
that exploiting text information is highly applicable to SER systems. To the best knowledge of the authors, the use
of natural language supervision to address SER robustness against unknown noisy environments is a novel research
direction.

3 Proposed Method

This paper proposes text-guided environment-aware training (TG-EAT), which leverages environmental information to
improve an SER model in noisy conditions. Figure 1 illustrates our proposed TG-EAT framework, which uses a pair of
noisy speech and its corresponding environmental description. The text embedding extracted from the environmental
description is combined with the acoustic representation in the SER model, allowing it to denoise the representation for
the given environmental description.
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The key contribution of this study is how we use the text description from the target environment. We used prompts to
generate the text description where the target environment is changed. As a preliminary experiment, we tested different
prompts to describe the target environment such as “The type of background noise is {environment},” or “The input is
recorded with a sound of {environment}.” We change {environment} in the prompts according to the target environment
during training and testing. We found that all the prompts showed similar emotion recognition performance for all the
attributes. Therefore, we consistently use the following prompt in this study: “This speech is recorded in {environment}.”
We extract the text-based environment embedding from this text description using a pre-trained text encoder. We test
two different text representations: contrastive learning (CL)-based representation and LLM-based representation. For
the CL-based representation, we use the text encoder pre-trained with the contrastive language audio pre-training
(CLAP) strategy [23, 24]. CLAP consists of an audio encoder and a text encoder. It uses a pair of acoustic events and
their text description during pre-training (e.g., bird chirping sound with the description, “Bird is chirping in the given
audio”). With these audio-text pairs, the training objective is to maximize the similarity between the audio and text
representation if they are from the same pair and minimize it if they are from a different pair. Since CLAP uses an
audio-text pair during pre-training, we assume that its text encoder can generate an appropriate representation from the
given environment description coherent with the target acoustic condition. This paper uses the pre-trained text encoder
from the unfused CLAP model proposed in the study of Wu et al. [23]. For the LLM-based representation, we use the
encoder from the pre-trained RoBERTa model [36]. RoBERTa is pre-trained with masked language modeling (MLM)
and next sentence prediction (NSP) tasks. RoBERTa has shown good performance in various benchmarks for evaluating
natural language understanding systems, such as GLUE [37]. Although it is not pre-trained with audio data, we assume
that its encoder can extract enriched semantic information from the given prompt. We use RoBERTa-large, which has
24 transformer layers. For each text encoder, we use the same tokenizer used in its pre-training to tokenize the text
description of the environment. We extract token-level text embeddings from the tokenized prompt and then apply
average pooling, resulting in a single representation vector for each prompt.

After the environmental representation is obtained, the next step is to introduce this information into the model. We
mainly focus on a transformer-based SER model, which has shown good performance in SER tasks [38, 32]. An
important task is to fine-tune the model with clean and emotional speech data. We first fine-tune the SER model with
clean speech to maximize the concordance correlation coefficient (CCC) between the predicted and the ground-truth
emotional attribute scores of arousal, dominance, and valence. After fine-tuning with clean speech, the SER model
is continuously updated with the training set contaminated with multiple types of noise and their corresponding text
description. We insert the text representation from the given environment description into the fine-tuned transformer-
based SER model. We achieve this goal by combining the text embedding with the acoustic representation, which is the
output of the convolutional encoder. We apply trainable linear projection to the text embedding to match its dimension
to the acoustic representation embeddings. We concatenate the projected text embedding to the acoustic representation
embeddings along the time axis, then feed them into the transformer encoder. We update the transformer encoder and
the downstream head with the concatenated embeddings. We use the same training objective as the one used when
training with clean speech. From this framework, we want to evaluate if the SER model can learn the denoising function
given a noisy acoustic representation with its text embedding.

4 Experimental Settings

4.1 Data preparation

Our experiment uses the MSP-Podcast corpus, which consists of natural and diverse emotional speech samples from
various podcast recordings [6]. The audios do not include background music or overlapped speech, and their predicted
SNR is above 20 dB. We consider this corpus a clean emotion speech database for these reasons. This study focuses on
predicting the emotional attributes of arousal (calm to active), dominance (weak to strong), and valence (negative to
positive). Labels for these attributes were annotated by at least five raters using a seven-point Likert scale. We average
the scores provided by raters for each sample to establish its ground truth values. This paper uses version 1.10 of
the corpus, which consists of 104,267 annotated utterances. We use the train set to fine-tune the pre-trained speech
representation model, using it as the original SER model. We use samples from the development set to select the best
model during the fine-tuning process.

We simulate real-world noisy environments by collecting noise sounds from the Freesound repository [39], which
contains publicly available ambient noise sounds. We use diverse queries related to each environment to collect noise
sounds, including indoor, outdoor, and in-vehicle conditions. We use 20 noisy environments to contaminate the training
and development set, consisting of {mall, restaurant, office, airport, station, city, park, street, traffic, home, kitchen,
living room, bathroom, bedroom, metro, bus, car, construction site, pedestrian, beach}. For the evaluation, we use six
environments, including {plaza, garden, school, tram, sea, boat}. Although these noise sounds are not used during
adaptation, they have common characteristics with the noise sounds used during adaptation (e.g. indoor, outdoor, or
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in-vehicle conditions). We want to evaluate if our proposed method can capture this semantic similarity during the
inference. We randomly pick the noise sounds to contaminate the Test1 set of the clean MSP-Podcast corpus. We repeat
this process 10 times, creating 10 different sets for three different SNR levels, 5dB, 0dB, and -5dB.

4.2 Fine-Tuning Transformer-Based Architecture

We implement our proposed approach with two different pre-trained speech representation models: wav2vec2-large-
robust [40] and the wavlm-base-plus models [3]. The wav2vec2-large-robust model has shown good performance in
the emotional attribute prediction task [32]. The wavlm-base-plus model has shown good performance for emotion
recognition in the speech processing universal performance benchmark (SUPERB) [41]. This model is pre-trained
with noise, creating representations that are expected to be more robust to noise than other SSL representations. We
fine-tune the transformer encoder of the pre-trained speech representation model and the downstream head with the
clean version of the MSP-Podcast corpus. For wav2vec2-large-robust, we remove the top 12 transformer layers from
the model to preserve the recognition performance with fewer parameters [32]. We import the pre-trained models from
the HuggingFace library [42]. We use two fully connected layers for the downstream head, where each layer has 512
nodes, layer normalization, and the rectified linear unit (ReLU) as the activation function. We use dropout in all the
hidden layers to increase regularization, with a rate set to p = 0.5. We use a linear output layer with three nodes to
predict emotional attribute scores, where each node predicts the scores for arousal, dominance, and valence. We apply
average pooling on top of the last transformer layer’s representation to feed it to the downstream head.

During fine-tuning, we apply Z-normalization to the raw waveform by using the mean and standard deviation estimated
over the training set and min-max normalization to the emotional labels, mapping them to the range of 0 to 1. We use
32 utterances per mini-batch and update the model for ten epochs. We use the Adam optimizer [43] with a learning rate
warmup scheduling, which shows good performance when fine-tuning a pre-trained transformer architecture [44]. For
the first 1,000 mini-batches, we linearly increase the learning rate from 1e−8 to 1e−5. After the 1,000 mini-batches, we
fix the learning rate to 1e−5. All of our experiments are conducted on a single NVIDIA GeForce RTX 3090.

4.3 Text-Guided Environment-Aware Training

After fine-tuning with the clean speech, we adapt the SER model to the noisy environmental conditions. We randomly
select one of the 20 noise conditions for each mini-batch during adaptation. We then use 32 different noise samples
in the selected condition to contaminate 32 clean speech samples from the training set of the MSP-Podcast corpus.
We build text prompts with respect to the picked environment for each mini-batch, as described in Section 3. In
real-world applications, it is difficult to assume the exact SNR level of the testing condition. Therefore, we introduce
an SER mismatch between our experiment’s adaptation and testing stages. We randomly select the SNR level for
the adaptation of the models among these options: {2.5, 7.5, 12.5}dB. We use the same hyperparameters as the ones
used for fine-tuning the SER model with clean speech during adaptation. We tested two variations of our proposed
text-guided environment-aware training: the CL-based representation TG-EAT-CL, and the LLM-based representation
TG-EAT-LLM.

4.4 Baselines

Original: This model fine-tunes the model with clean emotional speech, with no adaptation to the noisy conditions.

Retrain the original model with noisy speech (RT): This baseline updates the transformer encoder and the downstream
head of the Original model with noisy speech. It does not use environmental information during adaptation and
inference. As described in Section 4.1, it uses 20 environmental conditions for adaptation. The evaluation uses six other
environmental conditions.

Domain adversarial training (DAT): Inspired by Huang et al. ’s work [45], we test a domain adversarial training strategy
to adapt an SER model to multiple noisy conditions. Along with the downstream head for the SER task, we attach
an environment classifier on top of the average-pooled transformer representations. The environment classifier has
the same architecture as the downstream head for the SER task. The environment classifier is trained to minimize
the cross-entropy loss between the predicted and the ground-truth noise types. We applied a gradient reversal layer
(GRL) between the environment classifier and the transformer encoder to train the transformer encoder to normalize the
environment information in the resulting representations. Like the RT baseline, this baseline does not use environmental
information during inference.
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Table 1: Average CCC of the ten experiments for the proposed text-guided environment-aware methods and the baselines.
We report the performance with models implemented using either the wav2vec2-large-robust or wavlm-base-plus
feature vectors. We denote with ∗, †, and ⋆ when a model shows significantly better performance than the Original, RT,
and DAT models, respectively. We highlight in bold the best performance per condition.

SNR Model Arousal Dominance Valence
wav2vec2-large-robust

5d
B

Original 0.59 0.51 0.40
RT 0.60 0.52 0.45∗

DAT 0.61 0.5 0.45∗

TG-EAT-CL 0.62∗ 0.52 0.46∗

TG-EAT-LLM 0.63∗ 0.53∗ 0.47∗

0d
B

Original 0.53 0.47 0.33
RT 0.56∗ 0.46 0.4∗

DAT 0.54 0.44 0.4∗

TG-EAT-CL 0.52 0.42 0.4∗

TG-EAT-LLM 0.57∗⋆ 0.48†⋆ 0.41∗

-5
dB

Original 0.27 0.25 0.14
RT 0.24 0.22 0.19∗

DAT 0.24 0.22 0.16∗

TG-EAT-CL 0.21 0.2 0.18 ∗

TG-EAT-LLM 0.29∗†⋆ 0.27∗†⋆ 0.21∗†⋆

wavlm-base-plus

5d
B

Original 0.53 0.46 0.45
RT 0.57∗ 0.48∗ 0.41
DAT 0.59∗ 0.49∗ 0.48∗†

TG-EAT-CL 0.57∗ 0.47 0.47∗†

TG-EAT-LLM 0.58∗ 0.48∗ 0.45†

0d
B

Original 0.40 0.32 0.35
RT 0.53∗ 0.43∗ 0.34
DAT 0.53∗ 0.45∗ 0.42∗†

TG-EAT-CL 0.52∗ 0.43∗ 0.42∗†

TG-EAT-LLM 0.55∗†⋆ 0.45∗† 0.40∗†

-5
dB

Original 0.11 0.07 0.12
RT 0.19∗ 0.12∗ 0.13
DAT 0.22∗† 0.17∗† 0.21∗†

TG-EAT-CL 0.18∗ 0.12∗ 0.19∗†

TG-EAT-LLM 0.29∗†⋆ 0.21∗†⋆ 0.23∗†⋆

5 Results

5.1 Emotion recognition performance

We report the SER performance of our text-guided environment-aware training with our baselines. As described in
Section 4.1, we use ten different evaluation sets for three SNR levels. We report the average CCC of ten experiments
for each SNR level. We conduct a one-tailed Welch’s t-test between the baselines and our proposed models to assess if
the training strategy shows significantly better SER performance in noisy conditions. We assert significance at p-value
< 0.05.

Table 1 illustrates the SER performance of each model in noisy testing environments. When comparing our baselines
(RT, DAT) with the original model, they do not consistently yield performance improvement for all the attributes.
RT does not improve the performance neither for arousal and dominance with the wav2vec2-large-robust feature
vector, nor for valence with the wavlm-base-plus feature vector. Although the DAT shows significant performance
improvement with wavlm-base-plus feature vector, it fails to improve arousal and dominance prediction performance
with wav2vec2-large-robust feature vector. Since these baselines do not use environmental information, we can observe
the importance of using environmental information when adapting the SER model to multiple noisy environments.
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Figure 2: Embedding differences in the first and the last transformer encoder layers using clean and noisy speech in the
-5dB condition. We use the wavlm-base-plus feature vector in this analysis. (a) it extracts and compares clean and noisy
representations from each of the models. (b) it extracts and compares the clean representation from the Original model
and the noisy representation from each of the models.

Compared with the baselines, our proposed TG-EAT-LLM performs best when using the wav2vec2-large-robust feature
vector. In the 5dB condition, TG-EAT-LLM improves the original model’s performance by 6.7 % (arousal), 3.9%
(dominance), and 17.5% (valence). It does not yield the best performance with the wavlm-base-plus feature vector
in the 5dB conditions. However, as the SNR level decreases, TG-EAT-LLM shows higher performance than the
baselines. In -5dB condition, TG-EAT-LLM shows performance gains of 31.8% (arousal), 23.5% (dominance), and
9.5% (valence) compared to the best baseline, DAT. In spite of having a mismatch in SNR and environment conditions,
TG-EAT-LLM shows robust results under all the conditions. These results indicate that guiding the SER model with
LLM-based representation can improve the noise-robustness for the SER task. It shows good generalization to unknown
environments. Although the DAT approach is effective when using the wavlm-base-plus model for noise conditions
above 0dB SNR, using LLM-based representation is more helpful when dealing with low SNR conditions.

When we compare the TG-EAT-CL and TG-EAT-LLM models, we conclude that the CL-based representation does
not show a performance improvement over the original SER model, especially with the wav2vec2-large-robust feature
vector. We can clearly see that the TG-EAT-CL model does not improve the performance for arousal and dominance
in the 0dB and -5dB conditions. This result indicates that pre-training the text encoder to have enriched semantic
information is more helpful for the noise-robust SER model than pre-training the text encoder with a audio-text pair.

5.2 Embedding analysis

Section 5.1 demonstrated that the TG-EAT-LLM approach shows better performance than the environment-agnostic
baselines and the TG-EAT-CL approach. Our initial assumption is that the proposed TG-EAT-LLM can learn appropriate
denoising functions for the transformer encoder. To verify this assumption, we analyze the difference between the clean
and noisy representations (Fig. 2(a)). We use the wavlm-base-plus feature vector and the noisy speech from the -5dB
condition for this analysis. The first analysis compares the clean and noisy representation extracted from each model.
We want to assess with this analysis if the model has robustness between clean and noisy speech. The second analysis
compares the clean representation from the Original framework and the noisy representation from each of the models
(Fig. 2(b)). In this analysis, we want to assess if the model can keep the knowledge of the original SER model. We
extract the representations from the first and the last transformer encoder layers and then calculate the mean square
difference between clean and noisy representations for each layer.

Figure 2 illustrates our analysis results. When extracting clean and noisy representations from the same model, we
can first see that DAT shows the lowest difference in the last transformer layer. On the contrary, it shows the highest
difference when extracting the clean representation from the original model. This result demonstrates the risk of
catastrophic forgetting when using the DAT method. Although it can normalize the environmental difference in the
adapted model, its representation can deviate from the original SER model’s representation. However, our TG-EAT
method does not highly increase the difference compared to the original model’s clean representation. This result
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Figure 3: Visualization of text-based environment embeddings. We use UMAP to project text embeddings into 2D
space.

Table 2: Average CCC of the ten experiments for the seen environment. The environmental conditions for the train set
and the test set are the same. We compare the proposed method with the baselines by using the wavlm-base-plus model.

SNR Model Arousal Dominance Valence

5d
B

Original 0.54 0.46 0.45
One-hot 0.59 0.48 0.47
TG-EAT-LLM 0.59 0.48 0.47

0d
B

Original 0.40 0.32 0.35
One-hot 0.56 0.45 0.42
TG-EAT-LLM 0.56 0.46 0.40

-5
dB

Original 0.09 0.06 0.10
One-hot 0.29 0.20 0.21
TG-EAT-LLM 0.27 0.18 0.21

indicates that TG-EAT can minimize the risk of catastrophic forgetting during adaptation by introducing environmental
information about the speech.

Compared with the TG-EAT-LLM method, TG-EAT-CL shows a higher representation difference in the first layer. When
comparing the clean and noisy representations from the same model, TG-EAT-LLM shows 7.7% less representation
difference than the TG-EAT-CL method in the first transformer layer. However, TG-EAT-CL shows less representation
difference than the TG-EAT-LLM in the last layer. Even though the downstream head uses the representation from
the last transformer layer, TG-EAT-CL shows worse performance than the TG-EAT-LLM approach. LLM-based
representation can better denoise the acoustic representation than the CL-based representation. In addition, we
speculate that the embedding difference in the lower transformer layer might be the crucial factor for increasing the
noise-robustness of the SER system.

We also investigate if the proposed text-based environment embedding clusters similar environments together, which
it the key premise of the proposed approach to deal with unseen environments. First, we extract the 26 different text
embeddings using the different templates to describe each environmental condition. We project these embeddings into
the 2D space to visualize the embedding space using the uniform manifold approximation and projection (UMAP)
method [46]. Figure 3 illustrates the text embedding space of TG-EAT-CL and TG-EAT-LLM. The figure shows that
both frameworks cluster environmental conditions that are semantically similar together. For example, we observe the
embeddings for "boat" and “sea,” together. We also observe the ones for "subway" and "station" clustered together. Both
encoders cluster the house environments (house, home, kitchen) and the vehicle environments (bus, taxi, car), which
indicates that the text encoder can cluster acoustically similar environments. This analysis implies that our proposed
frameworks can deal with unseen environments by clustering acoustically and semantically similar environments.
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Table 3: Average CCC of the ten experiments for the unseen environment. We compare the proposed method with the
baselines by using the wavlm-base-plus model.

SNR Model Arousal Dominance Valence

5d
B

Original 0.53 0.46 0.45
RT 0.57 0.48 0.41
GloVe 0.58 0.47 0.42
AST 0.60 0.49 0.48
TG-EAT-LLM 0.58 0.48 0.45

0d
B

Original 0.40 0.32 0.35
RT 0.53 0.43 0.34
GloVe 0.53 0.43 0.37
AST 0.56 0.46 0.43
TG-EAT-LLM 0.55 0.45 0.40

-5
dB

Original 0.11 0.07 0.12
RT 0.19 0.12 0.13
GloVe 0.25 0.17 0.20
AST 0.25 0.18 0.21
TG-EAT-LLM 0.29 0.21 0.23

5.3 Evaluation of Different Types of Environmental Embedding

Our proposed method uses the embedding extracted from the text encoder to represent the testing environmental
condition. To verify the benefits of using a text-based environmental embedding, we compare it with three different
types of environmental embedding: one-hot encoding (One-hot), global vectors for word representation (GloVe)
[47], and audio spectrogram transformer representation (AST) [48]. One-hot uses 20-dimension binary vectors,
where 1 represents the target environment condition, and 0 represents the others. Each dimension corresponds to
the environmental condition of the training set. This embedding fully represents a seen environment with a simple
vector; however, it cannot represent unseen environments, which is inappropriate for real-world services. GloVe is
a word-level vector representation extracted from the regression model that considers the co-occurrences of words.
We import the pre-trained GloVe vector collections consisting of 2.2 million vocabularies. We select the word vector
representation that corresponds to the target noisy environment. The resulting representation is a 300-dimension vector.
This representation can deal with unseen environments using text description, but it is semantically limited compared to
our proposed text encoders. AST uses a transformer architecture to map the spectrogram patches into an audio-level
representation. The model is fine-tuned with sound event classification tasks by using AudioSet, which is the same
noise sound corpus for our training set. This model can automatically capture the acoustic characteristics from the
audio-only input. However, it cannot explicitly use the semantic information of the testing environment.

We compare our proposed method with One-hot in the seen environment scenario (Table 2) and with the other baselines
in the unseen environment scenario (Table 3). For the seen environment scenario, we used the same environmental
condition as the train set to contaminate the clean test set but with different audio samples. We use ten different test
sets and report the average CCC for both cases. Table 2 and 3 report the results for the seen and unseen environments,
respectively. In the seen environment, our proposed method and the one-hot environment encoding model improve
the original SER performance for all the conditions and attributes. Both models show similar performances in the
seen environments. However, the one-hot encoding cannot cover unseen environments. This result demonstrates that
the proposed text embedding can deal with both seen and unseen environments. Compared to the model that uses
GloVe embeddings, our proposed method shows better SER performances in 0dB and -5dB conditions. It also shows a
better performance for valence in the 10dB condition. The GloVe model only considers word co-occurrence to get a
word embedding, while our proposed text encoder model is pre-trained to understand the semantic information of a
sentence. This result implies the importance of pre-training the text encoder with language modeling to get a robust
environment embedding for performance improvement. The AST strategy shows better performance for valence than
our proposed model under the 5dB and 0dB conditions. In comparison, our proposed model performs better for all the
emotional attributes under the -5dB conditions. AST does not use semantic information from the testing environment to
get environmental embedding; instead, it extracts the environmental information from the given audio. Considering that
the -5dB SNR level is not presented while training the model, the result demonstrates that the AST works well for the
seen SNR level but not for the unseen SNR level. In contrast, our proposed method works well for the unseen SNR
level since the text description is independent of the SNR level. This result demonstrates that our proposed method is
robust against the unseen SNR level, which is practical for real-world scenarios.
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Table 4: Comparison of freezing the text encoder and updating it while adapting the SER model for the TG-EAT-CL
and the TG-EAT-LLM models. We report the average CCC of the ten experiments for all the methods. We implement
all the approaches with wavlm-base-plus feature vectors. We highlight in bold the best performance per condition.

SNR Model Arousal Dominance Valence

5d
B

TG-EAT-CL 0.57 0.47 0.47
TG-EAT-CL-FT 0.58 0.48 0.49
TG-EAT-LLM 0.58 0.48 0.45
TG-EAT-LLM-FT 0.58 0.48 0.46

0d
B

TG-EAT-CL 0.52 0.43 0.42
TG-EAT-CL-FT 0.56 0.46 0.45
TG-EAT-LLM 0.55 0.45 0.40
TG-EAT-LLM-FT 0.55 0.45 0.41

-5
dB

TG-EAT-CL 0.18 0.12 0.19
TG-EAT-CL-FT 0.31 0.23 0.23
TG-EAT-LLM 0.29 0.21 0.23
TG-EAT-LLM-FT 0.27 0.19 0.21

5.4 Benefit of Fine-Tuning the Text Encoder

Our results demonstrate that using the text encoder pre-trained with the CLAP strategy shows worse SER performance
than using the pre-trained LLM. Despite this observation, we assume that this type of text encoder should have the
potential to improve since the text encoder is pre-trained with the audio modality. Our assumption is that jointly
fine-tuning the text encoder with the SER model could further improve the performance. Therefore, we compare the
performance of an SER model by either freezing the text encoder or updating the encoder while adapting the SER model
with the text-based environment embedding. We refer to the models that fine-tune the text encoder of the TG-EAT-CL
and TG-EAT-LLM approaches during adaptation as TG-EAT-CL-FT and TG-EAT-LLM-FT, respectively.

Table 4 reports the average CCC of ten different test sets for each model. When comparing the TG-EAT-LLM and
TG-EAT-LLM-FT implementations, they do not show significantly different performance. However, the TG-EAT-CL-FT
approach shows meaningful performance improvement over the TG-EAT-CL implementation. For the -5dB conditions,
it even reaches the best performance among all the models. This observation illustrates the importance of compensating
the embedding space gap between the pre-trained text encoder space and the acoustic embedding. Although jointly
fine-tuning the text encoder and the SER model can cost more memory space and computation time for the adaptation,
this strategy can fully utilize the potential of the text encoder pre-trained with the audio modality.

6 Conclusions

We proposed the TG-EAT method, which uses a text description of the testing environment for noise-robust SER.
This approach inserts a text-based environment representation into an SER model, leading it to denoise the speech
representation with respect to the given environmental information. Our experiment demonstrated that the LLM-based
representation can improve SER performance under noisy conditions, especially when dealing with low SNR conditions.
Our analysis indicates that the pre-trained text encoder can cluster acoustically and semantically similar environments
into the same embedding, which is crucial for generalizing the models for unseen environments. Our result also shows
that the CLAP-based text encoder can be highly improved by updating the text encoder. This result demonstrates the
importance of minimizing the embedding space gap between the text encoder and the acoustic embedding.

We plan to expand this approach to cases where we cannot obtain information on the testing environment. We assume
that the CL-based representation can address the scenario when the noise information is not provided by introducing its
audio encoder. CLAP trains the audio encoder to have a similar representation to the ones from the text encoder, which
could be useful for extracting environmental information from the audio. For this reason, we plan to investigate how we
can improve the noise-robustness of the SER model with a CLAP encoder.
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