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A B S T R A C T   

The use of speech-based solutions is an appealing alternative to communicate in human-robot 
interaction (HRI). An important challenge in this area is processing distant speech which is 
often noisy, and affected by reverberation and time-varying acoustic channels. It is important to 
investigate effective speech solutions, especially in dynamic environments where the robots and 
the users move, changing the distance and orientation between a speaker and the microphone. 
This paper addresses this problem in the context of speech emotion recognition (SER), which is an 
important task to understand the intention of the message and the underlying mental state of the 
user. We propose a novel setup with a PR2 robot that moves as target speech and ambient noise 
are simultaneously recorded. Our study not only analyzes the detrimental effect of distance 
speech in this dynamic robot-user setting for speech emotion recognition but also provides so
lutions to attenuate its effect. We evaluate the use of two beamforming schemes to spatially filter 
the speech signal using either delay-and-sum (D&S) or minimum variance distortionless response 
(MVDR). We consider the original training speech recorded in controlled situations, and simu
lated conditions where the training utterances are processed to simulate the target acoustic 
environment. We consider the case where the robot is moving (dynamic case) and not moving 
(static case). For speech emotion recognition, we explore two state-of-the-art classifiers using 
hand-crafted features implemented with the ladder network strategy and learned features 
implemented with the wav2vec 2.0 feature representation. MVDR led to a signal-to-noise ratio 
higher than the basic D&S method. However, both approaches provided very similar average 
concordance correlation coefficient (CCC) improvements equal to 116 % with the HRI subsets 
using the ladder network trained with the original MSP-Podcast training utterances. For the 
wav2vec 2.0-based model, only D&S led to improvements. Surprisingly, the static and dynamic 
HRI testing subsets resulted in a similar average concordance correlation coefficient. Finally, 
simulating the acoustic environment in the training dataset provided the highest average 
concordance correlation coefficient scores with the HRI subsets that are just 29 % and 22 % lower 
than those obtained with the original training/testing utterances, with ladder network and 
wav2vec 2.0, respectively.  
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1. Introduction 

Seamless human-robot collaboration will be a strategic component in commercial applications in the next 10 to 20 years. 
Consequently, social robotics is one of the most important and critical challenges in robotic science and engineering (Stock-Homburg, 
2022). Although some progress has been made on this topic, comprehensive social interaction between humans and robots in 
real-world conditions is not possible today. Social interaction is a very complex challenge for robotics, in part because it requires 
effectively recognizing or detecting gaze directions, facial expressions, linguistic content, and prosody of speech, and then acting 
accordingly. Depending on the cultural context, the difference between human emotional states can be as subtle as "a simple wink, or 
an upward inflection in a single phoneme." (Yang et al., 2018). To achieve this purpose, systems will need to combine multiple input 
modalities. However, some of these inputs, such as physiological signals, require wearable sensors that may be invasive from the user’s 
point of view. In addition, image processing is not always possible depending on the operating conditions, and can raise privacy 
concerns. In contrast, speech conveys an enormous amount of linguistic and paralinguistic information (e.g., prosody). Beyond voice 
commands to robots, speech is a window into the psychological, physical, and emotional state of humans. In this context, one of the 
most challenging and least explored scenarios is that in which one or more users, who may be in motion, attempt to interact with the 
robot, which may also be in motion. In addition, this interaction may occur in a noisy environment, which affects this communication. 

Social user profiling is essential for human-robot interaction (HRI) because the robots are expected to be able to recognize the 
intentions and goals behind the user’s actions to adapt their behavior (Rossi et al., 2017). In addition, social profiling also refers to the 
ability to recognize social phenomena, such as commitment, conflict, empathy, interest, and emotions, which cannot be directly 
observed but must be inferred by examining indirect indicators. Some of these indirect indicators can be body posture (Gaschler et al., 
2012), facial expressions (Faria et al., 2017; Deng et al., 2019), gaze direction (Paletta et al., 2019; Chakraborty et al., 2021), voice 
volume, etc. We are particularly interested in Speech Emotion Recognition (SER), which seeks to dynamically detect the emotional 
state of the user during the interaction using acoustic features (Busso et al., 2013; Scherer, 2003). Within social user profiling, the 
concept of emotion recognition arises because the user may exhibit multiple emotions during the interaction with the robot. 

The vast majority of the research in this discipline is focused on human-computer interaction (HCI) (Shah Fahad et al., 2021), 
assuming the user is directly next to the microphone. In this scenario, the influence of the acoustic channel is neglected since the speech 
is clean. Only a few studies have tested distant SER in real environments (Shah Fahad et al., 2021; Chen et al., 2020; Leem et al., 2021). 
The most used techniques to address this challenge are the selection of features that are more robust to distance distortions and the 
creation of encoder-decoder models, which are known to be robust in tasks involving various types of distortions. In Salekin et al. 
(2017), it is proposed to select 48 robust low-level descriptors (LLD), which were extracted per frame and passed through a long 
short-term memory (LSTM) network for final classification. The test environment of this study is a meeting room with seven fixed 
microphones distributed throughout the room. Spectral and temporal filtering was performed. However, no beamforming technique 
was used, so it is expected that better results may be achieved by combining the audio from the microphones. In Ahmed et al. (2017), 
the use of a metric to determine the distortion of the features according to the distance to the microphone was suggested. In addition, 
they trained their classifier with convoluted audio with artificially generated room impulse responses (RIRs). The proposed solution 
used the weighted prediction error (WPE) algorithm to remove reverberation from the test audios and Coherent-to-Diffuse Power Ratio 
Estimation (CDR) to perform de-noise. However, in this study only static situations are evaluated, varying the distance to the 
microphone. In Chen et al. (2020), a feature acquisition technique using a robotic platform with a Kinect mounted on the robot was 
evaluated. The test database is acted by the volunteers from their research lab and has only 500 utterances. Furthermore, the authors 
neither use any speech enhancement technique nor evaluate the robot motion effect. However, a dynamic moving scenario between 
the robot and the user is important to consider, since robots are crucial both in industrial tasks (Berg et al., 2019; Kousi et al., 2019) and 
in butler or personal assistant tasks (Chen et al., 2020; Miseikis et al., 2020). Although there is consensus on the importance of mobile 
HRI, there are few studies that have analyzed the effect of this scenario on the voice channel for speech-based systems relying on the 
voice as their main input. 

This paper explores the recognition of emotional speech in HRI under a challenging, but realistic scenario where the distance and 
angle between the robot and the user vary through the interaction. Our study not only analyzes the detrimental effect of distance 
speech in this dynamic robot-user setting for SER tasks but also provides solutions to attenuate its effect. While there are studies on the 
effect of dynamism in HRI for the speech-to-text task (Novoa et al., 2021), the performance of SER models in mobile HRI scenarios has 
not been tested so far. Our evaluation relies on the MSP-Podcast corpus (Lotfian and Busso, 2019), which is currently the largest 
naturalistic emotional dataset in the community. This database, unlike most other databases (Busso et al., 2008; Metallinou et al., 
2016; Cao et al., 2014), contains fragments of non-acted audio, in normal speech environments, so it better matches the expressive 
behaviors observed in real-world interactions. We propose a setup for re-recording the test partition of our database. The setup in
cludes a meeting room with a PR2 robot and three loudspeakers. One of the loudspeakers plays the target speech signal, while the other 
two loudspeakers reproduce ambient noise. The loudspeakers are positioned two meters from the robot’s central position of move
ment. Specifically, the target speech loudspeaker is placed directly in front of the robot, while the noise speakers are positioned 45◦

apart from the speech speaker, with one on each side. Additionally, the robot has the capability to move one meter forward and one 
meter away from the target source from the central position. Simultaneously, the robot head also rotates. The proposed testbed il
lustrates the generic problem of HRI in mobile robotics regarding SER, including distant speech processing, external noise sources, and 
noise coming from the engine of the robot. 

Our solution to mitigate the channel modeling problem includes the use of beamforming and RIR. We simulate the target source 
localization for beamforming, which in turn is feasible with the sensors mounted on the robot (e.g., cameras), to steer the main mic 
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array lobe. Beamforming is one of the spatial filtering techniques used successfully to enhance signals coming from a certain direction 
relative to a set of microphones, reducing noise and interference coming from other directions. However, the ability of traditional 
beamforming approaches to decrease reverberation and diffuse noise is limited (Simmer et al., 2001). Some studies (Novoa et al., 2021; 
Díaz et al., 2021) have compared different beamforming techniques for an automatic speech recognition (ASR) system on a robotic 
platform, achieving improvements with respect to the base cases. This paper evaluates two widely employed beamforming techniques 
with SER in a complex, non-stationary HRI scenario: the delay-and-sum (D&S) scheme (Omologo et al., 2001) and the minimum 
variance distortionless response (MVDR) (Bitzer and Simmer, 2001). We also address the acoustic channel modeling problem by using 
RIRs to simulate a real environment in the training database. 

At the model architecture level, we reduce the mismatch between the train and test conditions by using a semi-supervised domain 
adaptation strategy. One of the most popular architectures in SER is the ladder network, especially those using semi-supervised 
training (Huang et al., 2018; Parthasarathy and Busso, 2018; Parthasarathy and Busso, 2020; Tao et al., 2019). This type of 
network consists of an encoder-decoder scheme with lateral connections between these two modules. The encoder is trained to perform 
classification or regression tasks depending if the reference corresponds to emotion classes or attributes, respectively, with an input to 
which noise, usually Gaussian, is added at each of the layers. The decoder is trained to perform a reconstruction of the original input 
(before adding the noise) of each layer. The feature extraction procedure is composed of two stages. First, frame-by-frame low-level 
descriptors (LLDs) are retrieved. Mel frequency cepstral coefficients (MFCCs), fundamental frequency (F0), and energy are all included 
in the set. Over the LLDs, several statistics known as high-level descriptors (HLDs) are computed creating a 6373-dimensional feature 
vector, regardless of the length of the sentence. This set is then passed to the ladder network. While this strategy has been adapted for 
SER in noisy speech (Leem et al., 2021), this study evaluates the approach in a more complex mobile HRI scenario. We formulate the 
SER problem as a regression task in this paper, where we estimate the emotional attributes of arousal, dominance, and valence. 
Emotional attributes reduce the complexity of describing human emotions using categorical labels with a few meaningful dimensions 
(Devillers et al., 2005; Mower et al., 2009). 

This method is a first step towards a more complete integration of SER in HRI, including static and dynamic situations. The main 
contribution of this study is the proposed experimental setting to simulate real dynamic HRI scenarios, and the evaluation of state-of- 
the-art SER solutions and techniques for noise robustness to address this challenging problem that has not been addressed elsewhere. 
An important contribution is also the testing dataset re-collected using the proposed robotic platform, which in turn can be shared with 
the community. According to the strategy followed here, recording training speech in several operating HRI conditions would not be 
necessary. Instead, we model the indoor testing environment from the reverberation, noise, and also beamforming response points of 
view to simulate the testing condition in the training data. The procedure employed and studied here in the framework of SER is 
interesting because it allows us to cope with the problem of complex real HRI scenarios with limited training data. We hypothesize that 
the critical factors influencing SER in the HRI scenarios with limited training data that are targeted here correspond to: variability in 

Fig. 1. Proposed SER system for static and dynamic indoor HRI scenarios. Source localization is considered information provided by, for instance, 
image processing for both target and noise sources to be used by a given beamforming technology. The enhanced speech is input to the SER 
classifier, which in turn is trained with the target indoor acoustic model. Finally, the SER classifier delivers the emotional attributes. 
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acoustic conditions represented with additive noise and reverberation; the increase of interference caused by additive noise and 
reverberation when the speaker-microphone distance increases from a few centimeters to more than one meter; the response of the 
beamforming schemes; and the time-varying acoustic channel effect that is observed in dynamic conditions (Novoa et al., 2021). The 
approach adopted here targets these problems. 

2. Proposed framework 

Our paper builds upon our preliminary study (Grageda et al., 2023). In HRI situations, robots can use sensors such as cameras to 
determine the position of the target speaker and, therefore, have a more precise estimate of the angle of incidence or direction of arrival 
(DOA) corresponding to the speech source (Díaz et al., 2021). By doing so, it is possible to avoid the error introduced by reverberation 
in indoor scenarios. In contrast to Grageda et al. (2023) where results with only simulated and real static conditions were presented, in 
this paper a much more complex HRI scenario was incorporated to include translational and rotational robot movement. This dynamic 
condition has not been addressed elsewhere in the field of SER. Also, in addition to Grageda et al. (2023), the static and dynamic HRI 
scenarios considered here were evaluated with the transfer learning methodology by using an architecture based on wav2vec 2.0 
(Wagner et al., 2023). We used the foundation model (without emotion-specific fine-tuning) and carried out the fine-tuning by our
selves following the same procedure described in Wagner et al. (2023). 

2.1. Proposed system 

This paper proposes the framework in Fig. 1 to address the problem of SER in mobile HRI to cope with the challenges imposed by 
the source-microphone distance, noise sources, and time-varying acoustic channel (TVAC) (Novoa et al., 2021). The following as
sumptions are included in this framework: first, the angular position of the target source can be accurately estimated independently of 
the error introduced by indoor reverberation; second, beamforming technology can use the target speaker’s angular position to deliver 
improved spatial filtering; third, TVAC in an indoor environment can be addressed by making use of RIRs obtained in static conditions, 
as presented in Novoa et al. (2021). 

Two beamforming techniques are considered in this study: D&S and MVDR (see Appendix). In the case of MVDR, the noise 
covariance matrix in speech segments was made equal to the interpolation of the matrices corresponding to the pre and post-noise 
intervals. For this paper, indoor acoustic modeling (AM) represents the reflections of both the target speech and the additive 
external noise signals using RIRs experimentally obtained in the same environment as in the HRI test datasets. 

As indicated in Fig. 1, to improve the performance of SER models in real HRI indoor scenarios, the indoor AM is modeled similarly 
to Novoa et al. (2021), with RIRs obtained in static conditions and additive noise. The original training data and additive noise are 
convoluted with the corresponding RIRs before being artificially added. The resulting training dataset represents real HRI conditions 
more accurately. 

Two neural network-based schemes were evaluated in this study. The first architecture employed here corresponded to the ladder 
network proposed in Parthasarathy and Busso (2020). The network is trained with multitask learning, jointly predicting arousal, 
valence, and dominance. The input to the network is the ComParE feature set (Schuller et al., 2013), which has 6373 HLDs, regardless 
of the audio duration of the speech segment. For training, we ran 100 epochs with a learning rate set to 0.0001. We used the same code 
provided by the authors in Parthasarathy and Busso (2020) in our implementation to obtain our results. 

The second architecture tested in this study was the approach with the highest concordance correlation coefficient (CCC) in the SER 
tasks using the MSP-Podcast corpus reported in Wagner et al. (2023). This model has a simple head on top of a pre-trained wav2vec 
2.0-large-robust transformer (Hsu et al., 2021). An average pooling was applied to the hidden states of the last transformer layer, 
passing them through a fully connected layer of 1024 nodes and a final output layer of 3 nodes. A dropout procedure was employed 
before the two head layers. Before fine-tuning the model, the weights of the Convolutional Neural Network layers were frozen, but the 
transform and head layers were trained as suggested in Wang et al. (2021). Adaptive Moment Estimation (ADAM) optimizer was 
applied with the learning rate and batch size equal to 10-4 and 32, respectively. The wav2vec 2.0 transformer estimates 1024 features 
per window. Then, the pooling layer computes the global average per each feature, resulting in a vector of dimension 1024 that is input 
to the hidden layers of the head. We used the codes shared by the authors of Wagner et al. (2023) to obtain our results. 

2.2. Robotic platform and recording settings 

We employed the publicly available MSP-Podcast corpus (Lotfian and Busso, 2019) (version 1.9), collected by the Multimodal 
Signal Processing Laboratory at the University of Texas in Dallas. The corpus is collected from available recordings from audio-sharing 
websites, including natural conversations about a broad range of topics. Therefore, the recordings are good representations of speech 
expected to be collected in real-world applications. We chose to train and evaluate our models with the MSP-Podcast corpus since it is 
currently one of the largest naturalistic databases available in the community. The recordings are obtained from real human in
teractions. Given that our focus is on exploring solutions for real human-robot interactions, it is natural to use this database instead of 
other naturalistic or acted corpora. Common benchmark databases with acted recordings such as IEMOCAP, EMO-DB, MSP-Improv, 
and CREMA-D are recorded from a few speakers. Instead, the MSP-Podcast includes recordings from 1354 speakers. The speaker 
diversity also makes this corpus a natural option for our experiments. It has 86,389 speech turns, corresponding to 137 h of speech 
annotated with emotional labels. Each speech turn has emotional labels for attribute-based descriptors (valence, activation, and 
dominance) and categorical labels (happiness, surprise, contempt, neutral, anger, fear, disgust, sadness, and others) that were 

N. Grágeda et al.                                                                                                                                                                                                       



Computer Speech & Language 89 (2025) 101666

5

annotated via a modified version of the crowdsourcing protocol presented in Burmania et al. (2016). This study focuses on the esti
mation of arousal (calm to active), valence (negative to positive), and dominance (weak to strong), formulating the task as a regression 
problem. 

The test partition of the corpus was played back in complex real HRI scenarios. This test partition has 21,560 turns of speech and 
accumulates more than 32 h of audio. The HRI testbed was implemented with our Personal Robot 2 (PR2) robot equipped with a 
Microsoft Xbox 360 Kinect sensor mounted on top of its head. As shown in Fig. 2, we use one target speech and two noise sources, each 
one located two meters away from point P2. The noise sources are 45◦ on either side of the speech source. The average recording signal- 
to-noise ratio (SNR) was adjusted to be equal to 5 dB measured at point P2. Figs. 3 and 4 show the meeting room with the robot and the 
studio speakers. 

We have two scenarios: static and dynamic settings. For the static scenario, the PR2 robot stays still at P2, with its head pointing 
directly to the speech source. In the dynamic scenario, PR2 moves between P1 and P3 at a speed of 0.45 m/s. Moreover, the head of the 
robot moves periodically between 50◦ and -50◦ with a uniform angular velocity of 0.56 rad/s, simulating following a moving target as 
shown in Fig. 5. While recording the dynamic scenario, the angles that the PR2′s head are stored in real-time. These angles are then 
used to calculate the DOA corresponding to the target speech. 

In contrast to the approach proposed in Novoa et al. (2021), three sets of 63 RIR per each Microsoft Kinect microphone were 

Fig. 2. Schematic view of the testbed.  

Fig. 3. Rear view of the testbed.  
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obtained with the PR2 robot positioned at P1, P2, and P3 (Fig. 2) and by orienting the robot head at 21 different angles with respect to 
the source. The head angle was varied from -50◦ to 50◦ in 5◦ steps. The 0◦ angle corresponds to the PR2 robot head looking directly 
toward the speech source. The RIRs were computed with the swept-sine method proposed in Farina (2000). An exponential sweep from 
64 Hz to 8 kHz sine functions was generated and played back with a studio loudspeaker located at the target, Noise 1, and Noise 2 source 
positions (see Fig. 2). The audio of the reproduced sweep was recorded with the four Microsoft Kinect microphones. An impulse 
response was estimated for each channel by convoluting the corresponding recorded signal with the time reversal of the original 
exponential sinusoidal sweep. The three sets of 63 RIRs were named according to where the studio loudspeaker was positioned to 
reproduce the swept sine functions: RIR-Target Source, RIR-Noise1 Source, and RIR-Noise2 Source. 

3. Training and testing databases 

3.1. Training datasets 

The SER architectures evaluated here were trained with two types of data. First, we used the original MSP-Podcast corpus, which 

Fig. 4. Side view of the testbed.  

Fig. 5. Robot head movement.  
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we refer to as Original Training Dataset. The second training data corresponds to the same audios but convoluted with the RIRs esti
mated as aforementioned and with noise added artificially to emulate the real HRI testing scenario. We refer to this setting as Simulated 
Training Dataset. 

A simulated training dataset was generated with set RIR-Target Source of impulse responses as follows: 25 % of the data from each 
partition was convoluted with the RIR obtained at P1 while the robot head looked directly at the target source. The remaining 75 % of 
the audio files from each partition were convoluted with the remaining 62 RIRs, so that each of these RIRs was used in the same 
number of simulated audios. Then, noise was artificially added to the resulting audios at SNRs that were randomly chosen between 10 
dB and 20 dB. The additive noise was obtained as follows: noise segments from the DEMAND database (Thiemann et al., 2013) were 
convoluted with the impulse responses from RIR-Noise1 Source and RIR-Noise2 Source; then, they were added with a ratio equal to one; 
and, the resulting external additive noise was summed to the PR2 engine noise at SNRs between -5 dB and 5dB. Observe that the speech 
and noise RIRs employed to generate a given noisy signal correspond to the same robot and head positions. 21 angular head positions 
were employed, where each head position determines a given DOA. Moreover, the resulting reverberated noisy data from the four 
Microsoft Kinect microphones were delayed and combined with the D&S and MVDR beamforming methods producing two training 
sets that simulate the target acoustic environment: Simulated Training Data+D&S and Simulated Training Data+MVDR, respectively. 

3.2. Testing databases 

Results with four testing conditions are reported here: Original Testing Data, corresponding to the clean audios from the test 
partition of the MSP-Podcast corpus; testing data that simulates the target acoustic environment corresponding to the audios from the 
test partition of the MSP-Podcast corpus which were processed similarly to the training data (Section 3.1), Simulated Testing Data; HRI 
Static Data, corresponding to testing audios from the MSP-Podcast corpus re-recorded in the robotic platform in static conditions (see 
Section 2.2); and HRI Dynamic Data, corresponding to testing audios from the MSP-Podcast corpus re-recorded in the robotic platform 
with dynamic conditions (see Section 2.2). Beamforming schemes D&S and MVDR were assessed with the following conditions: 
Simulated Testing Data (i.e. Simulated Testing Data+D&S and Simulated Testing Data+MVDR), HRI Static Data (i.e. HRI Static Data+D&S 
and HRI Static Data+MVDR), and HRI Dynamic Data (i.e. HRI Dynamic Data+D&S and HRI Dynamic Data+MVDR). 

4. Results and discussion 

The ladder network and wav2vec 2.0 strategies were trained ten times and twice, respectively, in each experiment. It should be 
noted that to train the wav2vec 2.0 architecture requires much more time than the ladder network one. About the significance analysis, 
the MSP-Podcast corpus is large enough and the original test subset was randomly divided into 15 smaller subsets, where each subset 
contains more than 1.000 utterances (a thousand samples is much more than the full size of most emotional datasets available in the 
literature). This size is maintained to preserve the statistical robustness and reliability of our analysis. This approach allows us to 
perform a detailed statistical analysis to validate our findings. Specifically, we randomly split the original test set into 15 similarly sized 
subsets and reported the average results from these subsets. This method was implemented to facilitate a two-tailed t-test across the 15 
test subsets, aiming to ensure that our findings are statistically robust and significant. We defined statistical significance at a p-value of 
0.05, following standard practices in the field. It is important to note that this subdivision and analysis strategy does not involve the 
replacement of samples, which distinguishes it from a bootstrapping methodology. The approach that we adopted ensures that each 
subset is unique and that there is no overlap or repetition of utterances across subsets. This method was chosen to maintain the 
integrity of the test set and to ensure that our statistical analysis reflects genuine performance variations across different parts of the 
dataset. This procedure has been previously employed and validated in Lin and Busso (2023), where it was found that it offers a robust 
framework for evaluating model performance across diverse data segments. 

4.1. Original training data & real HRI testing scenarios 

Table 1 and Fig. 6 present the results when the ladder network and wav2vec 2.0 were trained with the Original Training Data set and 
tested with static testing scenarios. The testing subsets corresponded to Original Testing Data, HRI Static Data, HRI Static Data+D&S, and 
HRI Static Data+MVDR. According to Table 1, the highest CCC degradation in arousal, dominance, and valence when compared with 

Table 1 
Valence, arousal, and dominance when the ladder network and wav2vec-based classifiers were trained with the original MSP-Podcast training dataset 
and tested with the static HRI subset. The result with the original MSP-Podcast testing dataset is included as a reference.  

Model Test type SNR [dB] CCC Aro CCC Dom CCC Val Mean CCC 

Ladder  
network 

Original Testing Data – 0.571 0.461 0.216 0.416 
HRI Static Data 5.46 0.172 0.112 0.042 0.109 
HRI Static Data + D&S 8.34 0.328 0.295 0.062 0.229 
HRI Static Data + MVDR 9.35 0.358 0.305 0.078 0.247 

Wav2vec Original Testing Data – 0.606 0.500 0.518 0.541 
HRI Static Data 5.46 0.435 0.367 0.242 0.348 
HRI Static Data + D&S 8.34 0.471 0.409 0.313 0.398 
HRI Static Data + MVDR 9.35 0.424 0.336 0.268 0.343  
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the Original Testing Data results corresponds to the HRI Static Data set with the ladder network. The degradation with wav2vec 2.0 was 
much smaller. This result must be because this model was pre-trained using 2k hours of noisy data (Hsu et al., 2021). The beamforming 
schemes D&S and MVDR increased the SNR and decreased the degradation in CCC for arousal, dominance, and valence when 
compared with the Original Testing Data results using the ladder network. The increase in SNR was equal to 53 % and 71 % with the 
D&S and MVDR strategies, respectively. As can be seen in Fig. 6, when compared with set HRI Static Data, D&S, and MVDR led to an 
increase in the average CCC equal to 110 % and 127 %, respectively, when using the ladder network. Surprisingly, only D&S could 
increase the average CCC when wav2vec 2.0 was employed (14 %). Moreover, this improvement was considerably smaller than with 
the ladder network. This result should also be because, as aforementioned, wav2vec 2.0 was also exposed to noisy data during the 
pre-training procedure, so the room for improvement due to spatial filtering is smaller. Observe that, even though MVDR provides a 
higher SNR improvement than D&S, it does not necessarily lead to higher improvements in average CCC than the latter. This could be 
due to the artifacts introduced by MVDR (Erdogan et al., 2016). 

Table 2 and Fig. 7 show the results when ladder network and wav2vec 2.0-based models were trained with the Original Training 
Data set and tested with dynamic testing scenarios. The testing subsets corresponded to Original Testing Data (as a reference), HRI 
Dynamic Data, HRI Static Data+D&S, and HRI Dynamic Data+MVDR. According to Table 2, the highest CCC degradation in arousal, 
dominance, and valence when compared with the results with Original Testing Data is also observed with the HRI Dynamic Data set 
using the ladder network approach. As expected, the wav2vec 2.0-based engine is more robust than the ladder network one because it 
is pre-trained with noisy data. Consequently, beamforming methods D&S and MVDR led to smaller improvements in CCC for all the 
attributes with wav2vec 2.0 than with the ladder network architecture. The beamforming schemes D&S and MVDR increased the SNR 
and reduced the CCC degradation for all the emotional attributes when compared with the Original Testing Data when using the ladder 
network classifier. Observe that the improvements in SNR are similar to those in Table 1. According to Fig. 7 and similarly to Fig. 6, 
D&S and MVDR led to an increase in the average of CCCs equal to 116 % and 110 %, respectively, when using the ladder network. 

Fig. 6. Average CCC across valence, arousal and dominance according to Table 1. The ladder network and wav2vec based classifiers were trained 
with the original MSP-Podcast training dataset and tested with the static HRI subset. The result with the original MSP-Podcast testing dataset is 
included as a reference. 

Table 2 
Valence, arousal, and dominance when the ladder network and wav2vec-based classifiers were trained with the original MSP-Podcast training dataset 
and tested with the dynamic HRI subset. The result with the original MSP-Podcast testing dataset is included as a reference.  

Model Test type SNR [dB] CCC Aro CCC Dom CCC Val Mean CCC 

Ladder  
Network 

Original Testing Data – 0.571 0.461 0.216 0.416 
HRI Dynamic Data 5.69 0.176 0.093 0.052 0.107 
HRI Dynamic Data + D&S 8.37 0.339 0.288 0.066 0.231 
HRI Dynamic Data + MVDR 10.82 0.332 0.267 0.077 0.225 

Wav2vec Original Testing Data – 0.606 0.500 0.518 0.541 
HRI Dynamic Data 5.69 0.426 0.356 0.268 0.350 
HRI Dynamic Data + D&S 8.37 0.449 0.385 0.297 0.377 
HRI Dynamic Data + MVDR 10.82 0.434 0.339 0.304 0.359  
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However, Fig 7 shows that D&S could lead to a greater increase in the average CCC than MVDR when the wav2vec 2.0-based model 
was employed although this relative improvement was smaller than with the ladder network classifier. These results corroborate the 
hypothesis mentioned above about the potential artifacts introduced by the MVDR method even though it can lead to higher reductions 
in SNR than D&S. 

In contrast to what was observed with ASR in a similar HRI scenario (Novoa et al., 2021, 2018), the SER technology evaluated here 
showed a baseline degradation that is quite similar for both the static (Table 1 and Fig. 6) and dynamic (Table 2 and Fig. 7) scenarios. In 
ASR, the search is carried out on a frame-by-frame basis. Consequently, if the severity of the acoustic conditions is time-dependent, the 
ASR search in those frames with lower local SNR or higher reverberation effect may condition the search in the following frames. 
However, as discussed above, the ladder network and wav2vec 2.0-based schemes deliver the emotional attributes by extracting 
features on an utterance-by-utterance basis. Moreover, the periods of the robot’s translational and rotational movements are 
approximately equal to nine seconds and seven seconds, respectively, which in turn are comparable to the average length of the ut
terances (i.e. 5.5 s). As a result, there could be an acoustic severity compensation effect along the whole utterances to estimate the 
emotional attributes. 

Valence is more dependent on linguistic information than arousal and dominance (Wagner et al., 2023). The ASR accuracy 
degradation in a similar HRI scenario (Novoa et al., 2021, 2018) explains the greater CCC reduction for valence than for arousal and 
dominance observed here. It is worth mentioning that the ladder network delivers the emotional attributes on an 
utterance-by-utterance basis employing statistics computed over short-term handcrafted features. In contrast, wav2vec 2.0 extracts the 
features from the raw signal using CNN layers. The task employed to train wav2vec 2.0 makes this representation implicitly capture 
linguistic information. The authors in Wagner et al. (2023) demonstrated this observation by synthesizing neutral speech with 
transcription of the original emotional sentences. Even though the acoustic properties were neutral, the model was able to classify 
valence with acceptable performance. In other words, wav2vec 2.0 depends more on the linguistic information extracted from the 
input than the ladder network. As a consequence, one can expect that the relative degradation of the performance for valence should be 
greater than the ones for arousal and dominance. As can be seen in Tables 1 and 2, when the ladder network was trained with the 
original MSP-Podcast training dataset, the average relative degradations in CCC for arousal, dominance, and valence were 69.5 %, 77.7 
%, and 78.2 %, respectively, when the original MSP-Podcast testing dataset was replaced with the static and dynamic HRI data. Under 
the same conditions, wav2vec 2.0 provided CCC reductions for arousal, dominance, and valence equal to 29.0 %, 27.7 %, and 50.8 %, 
respectively. 

4.2. Models trained and tested with simulated data 

Table 3 and Fig. 8 show the results when the ladder network and wav2vec 2.0-based classifiers were trained and tested with 
simulated data (described in Section 2.1). Two training/testing conditions were employed: Simulated Data+D&S and Simulated 
Data+MVDR, where D&S and MVDR were applied to the data that simulates the acoustic environment, as explained in Section 3.1. 
Results with the Simulated Data+D&S and Simulated Data+MVDR sets correspond to the static conditions, i.e. the robot movement is 

Fig. 7. Average CCC across valence, arousal and dominance according to Table 2. The ladder network and wav2vec-based classifiers were trained 
with the original MSP-Podcast training dataset and tested with the dynamic HRI subset. The result with the original MSP-Podcast testing dataset is 
included as a reference. 
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not emulated, and can be compared with the results obtained with the Original Training Data/Original Testing Data sets in Tables 1 or 2. 
According to Table 3, Simulated Data+D&S and Simulated Data+MVDR with ladder network still led to reductions in the average CCC 
score equal to 22 % and 25 %, respectively, when compared with the results with the Original Training Data/Original Testing Data sets in 
Tables 1 or 2. Although the training and testing conditions in Table 3 are intended to be matched, the added noise and reverberation 
still introduce some uncertainty. Even in this case, the average CCC value achieved by the ladder network architecture is 42 % and 26 
% greater than those with testing subsets HRI Static Ddata+D&S and HRI Static Data+MVDR in Table 1 where the training/testing 
mismatch is highly significant. 

As can be seen in Tables 1 and 3, Simulated Data+D&S with wav2vec 2.0 led to a reduction in the average of the CCC scores as small 
as 20 % when compared with the Original Training Data/Original Testing Data results. Moreover, the average CCC score is 9 % higher 
than the one with the HRI Static Data+D&S set. These results suggest that the wav2vec 2.0-based classifier is more robust to the 
training/testing mismatch condition than the ladder network-based model. Simulated Data+MVDR with wav2vec 2.0 experiments led 
to an improvement in the average CCC score equal to 9 % when compared with the HRI Static Data+MVDR results. 

Table 3 
Valence, arousal, and dominance when the ladder network and wav2vec-based classifiers were trained and tested with the original MSP-Podcast 
dataset that had incorporated the acoustic model of the test room plus the response of the beamforming schemes evaluated here, i.e. D&S and MVDR.  

Model Training database Testing database CCC Aro CCC Dom CCC Val Mean CCC 

Ladder Network Simulated Training Data + D&S Simulated Testing Data + D&S 0.496 0.363 0.113 0.324 
Simulated Training Data + MVDR Simulated Testing Data + MVDR 0.482 0.350 0.101 0.311 

Wav2vec Simulated Training Data + D&S Simulated Testing Data + D&S 0.556 0.442 0.303 0.434 
Simulated Training Data + MVDR Simulated Testing Data + MVDR 0.513 0.402 0.203 0.373  

Fig. 8. Average CCC across valence, arousal, and dominance according to Table 3. The ladder network and wav2vec-based classifiers were trained 
and tested with the MSP-Podcast database that had the acoustic model incorporated in the utterances according to Section 3.1. 

Table 4 
Valence, arousal, and dominance when the ladder network and wav2vec-based classifiers were trained with the original MSP-Podcast training 
partition that had incorporated the acoustic model of the test room plus the response of the beamforming schemes evaluated here, i.e. D&S and 
MVDR. The testing subset corresponded to the testing partition of MSP-Podcast that was re-recorded in static condition with the HRI testbed according 
to Section 2.2.  

Model Train database Test CCC Aro CCC Dom CCC Val Mean CCC 

Ladder Network Simulated Training Data + D&S HRI Static Data + D&S 0.407 0.317 0.093 0.272 
Simulated Training Data + MVDR HRI Static Data + MVDR 0.440 0.341 0.099 0.293 

Wav2vec Simulated Training Data + D&S HRI Static Data + D&S 0.556 0.458 0.320 0.445 
Simulated Training Data + MVDR HRI Static Data + MVDR 0.546 0.406 0.258 0.403  
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4.3. Models trained with simulated data and tested in real HRI scenarios 

Table 4 and Fig. 9 present the results when the ladder network and wav2vec 2.0-based architectures were trained with data that 
simulates the acoustic environment and tested with real static HRI data. As can be seen in Tables 3 and 4, the difference between the 
average CCC scores obtained with the HRI Static Data+D&S and Simulated Testing Data+D&S sets when the ladder network was trained 
with Simulated Training Data+D&S was 16 %. A similar result was observed with the HRI Static Data+MVDR and Simulated Testing 
Data+MVDR sets when the difference in the average CCC metrics was only 6 %. The same trend was observed with the wav2vec 2.0- 
based model, although the average CCC scores were slightly greater with HRI Static Data+MVDR set than with the Simulated Testing 
Data+MVDR set. This difference might be due to a random behavior of the artifact introduced by MVDR or by the variability in SNR 
provided in the Simulated Testing Data+MVDR set. 

Results in Table 4 and Fig. 9 basically suggest that the training conditions proposed here, that simulate the target acoustic envi
ronment, are reasonable approximations to the real static HRI scenario. This result is corroborated in Table 5 and Fig. 10 which present 
the results when the ladder network and wav2vec 2.0-based architectures were trained with Simulated Training Data+D&S and 
Simulated Training Data+MVDR and tested with the real dynamic HRI subset. The CCC metrics obtained with the dynamic HRI en
vironments and the model trained with simulated data (Table 5 and Fig. 10) are similar to those achieved in static conditions with the 
same trained models (Table 4 and Fig. 9). First, this result validates the acoustic modeling-based scheme to generate the training data 
that emulates the target scenario. Particularly, it is worth emphasizing the incorporation of a suitable variability of DOAs and 
loudspeaker-robot distance. Second, as observed earlier, this result suggests that the SER schemes evaluated here were naturally robust 
to the dynamic conditions employed in our robotic platform. Actually, the average CCC score was slightly higher in the dynamic HRI 
condition than in the static one. This is probably because the beamforming effectiveness is not homogenous and depends on both DOA 
and the audio speaker-robot distance. Also, the wav2vec 2.0-based model provided average CCCs that are 50 % and 39 % higher than 
those achieved with the ladder network-based model for static and dynamic scenarios, respectively. This may be because the wav2vec 

Fig. 9. Average CCC across valence, arousal and dominance according to Table 4. The ladder network and wav2vec-based classifiers were trained 
with the MSP-Podcast training subset that had the acoustic model incorporated in the utterances according to Section 3.1. The testing subset 
corresponded to the testing partition of MSP-Podcast that was re-recorded in static condition with the HRI testbed according to Section 2.2. 

Table 5 
Valence, arousal, and dominance when the ladder network and wav2vec-based classifiers were trained with the original MSP-Podcast training 
partition that had incorporated the acoustic model of the test room plus the responses of the beamforming schemes evaluated here, i.e. D&S and 
MVDR. The testing subset corresponded to the testing partition of MSP-Podcast that was re-recorded in the dynamic condition with the HRI testbed 
according to Section 2.2.  

Model Train type Test type CCC Aro CCC Dom CCC Val Mean CCC 

Ladder Network Simulated Training Data + D&S HRI Dynamic Data + D&S 0.473 0.350 0.109 0.311 
Simulated Training Data + MVDR HRI Dynamic Data + MVDR 0.461 0.344 0.098 0.301 

Wav2vec Simulated Training Data + D&S HRI Dynamic Data + D&S 0.551 0.455 0.299 0.435 
Simulated Training Data + MVDR HRI Dynamic Data + MVDR 0.552 0.416 0.277 0.415  
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2.0-based model takes better advantage of the simulated database condition because of the attentional scheme that models better the 
sequence of frames and its pre-training condition. 

4.4. The static and dynamic HRI platform: a challenging testbed 

The main contribution of this study is the acoustic channel framework proposed to mitigate the detrimental effect in SER per
formance expected in HRI where the distance and angle between the robot and the user vary. To the best knowledge of the authors, this 
is the first SER study in dynamic HRI, which is critical for practical applications where the distance and angle between the speakers and 
the microphone change during an interaction. While humans are quite good at understanding speech even in this dynamic scenario 
where the speech sources are moving, this scenario challenges most existing approaches that assume a static environment where the 
audio source is fixed. Our study investigates this relevant problem in the context of user profiling, where the robot aims to infer the 
emotional state of the users. We evaluate the proposed solutions using learned and handcrafted features, comparing the results in the 
presence of static and dynamic HRI scenarios. 

Unlike the area of "robot profiling", which aims at making the robot capable of expressing human emotions through facial ex
pressions or voice intonation (Stock-Homburg, 2022; Cameron et al., 2018; Ilić et al., 2019; Stock, 2019; Stock, 2016), the area of "user 
profiling" aims at making the robot capable of identifying the emotions of its human interlocutor (Rossi et al., 2017; Rajendran et al., 
2023; Maroto-Gómez et al., 2023). The importance of SER development in HRI is evident (Sönmez and Varol, 2022): highlights the 
importance of improving the ability of robots to interact with humans more naturally and effectively. Understanding emotions holds a 
pivotal role in human communication, enabling robots to comprehend and respond to human needs more adeptly. In addition, it is 
mentioned that SER in HRI is a field that, even though virtually all social robots have microphones, has surprisingly been almost 
unexplored in the literature. 

Most of the research on SER in HCI often overlooks the impact of the acoustic channel due to the proximity of users to the 
microphone (Shah Fahad et al., 2021; Alnuaim et al., 2022; Mustaqeem et al., 2023; Alnuaim et al., 2022; Mustaqeem and Kwon, 
2021), unlike in HRI scenarios. Moreover, there are entire literature reviews on SER techniques that do not mention the application of 
these in HRI (Atmaja et al., 2022; Singh and Goel, 2022). As described in the introduction, none of the few studies addressing SER in 
HRI (Chen et al., 2020; Leem et al., 2021; Salekin et al., 2017; Ahmed et al., 2017) have considered the effects of a dynamic envi
ronment, i.e. with relative movement between the user and the robot. They have targeted only the effect of the human-robot distance. 

There are two different features for SER: handcrafted and learned. On the one hand, Hashem et al. (2023) presents diverse 
handcrafted features applicable in both time and frequency domains, including energy, Frequency, Voice Quality, Spectral, and 
Cepstral features (Lee and Narayanan, 2005; Rao et al., 2013; Gao et al., 2017). On the other hand, the learned feature approach 
involves neural networks fed with voice signals to derive relevant representations for the task, predominantly applied in close-talk 
microphone HCI settings (Hashem et al., 2023). In this paper, we have managed to evaluate both approaches, both in static and 
dynamic environments. For the handcrafted features, we use the HLDs proposed in Schuller et al. (2013), implementing the approach 
with ladder networks. For the learned feature approach, we use wav2vec 2.0 (Wagner et al., 2023) which is fed with raw data. Thus, we 

Fig. 10. Average CCC across valence, arousal, and dominance according to Table 5. The ladder network and wav2vec-based classifiers were trained 
with the MSP-Podcast training subset that had the acoustic model incorporated in the utterances according to Section 3.1. The testing subset 
corresponded to the testing partition of MSP-Podcast that was re-recorded in the dynamic condition with the HRI testbed according to Section 2.2. 
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compare the performance of both approaches under HRI conditions. 
Regarding the direct comparison between wav2vec 2.0 and the ladder network, the former always provided a greater CCC. This 

must be because the wav2vec 2.0 is pre-trained with data that includes noisy conditions and extracts learned features. Fig 6 shows that 
wav2vec 2.0 always led to improvements in CCC when compared with the ladder network with and without beamforming techniques 
when both architectures were trained with the original MSP-Podcast training dataset. An interesting result is the comparison of D&S 
with MVDR. When combined with the ladder network, D&S did not provide a greater average CCC than MVDR. However, this situation 
was modified with wav2vec 2.0 and D&S usually gave greater average CCC than MVDR. As it is well known, speech enhancement 
techniques can introduce artifacts even though the SNR could be high (Goh et al., 1998) and MVDR is not an exception (Avila et al., 
2016; Cauchi et al., 2019). If these artifacts can degrade the accuracy of ASR systems (Iwamoto et al., 2024), they can also deteriorate 
the performance of any speech-based pattern recognition technology including SER. Consequently, if wav2vec 2.0 provides greater 
CCC than the ladder network due to the pre-training conditions and the learned features, it cannot remove the artifact introduced by 
MVDR. Observe that the wav2vec 2.0 pre-training data does not include the beamforming response. The difference between the 
averaged CCCs across all the training and testing conditions with the ladder network for D&S and MVDR is -0.002. In contrast, the 
difference between the averaged CCCs across all the training and testing conditions with wav2vec 2.0 for D&S and MVDR is 0.0344. 

We would like to emphasize that the proposed strategy is not just data augmentation that increases the training set size by 
incorporating, for instance, simple speed or amplitude perturbations on utterances to generate copies of the training data. Actually, the 
number of training utterances was not modified. Also, the proposed scheme is not multi-condition training either in the sense that it 
was not necessary to record training data in many indoor environments. In fact, we argue that to record training speech in several 
operating conditions would not be necessary. Instead, we model the indoor testing environment from the reverberation, noise, and 
beamforming response points of view to simulate the testing condition in the training data. The procedure employed and studied here 
in the framework of SER is interesting because it allows us to cope with the problem of complex real HRI scenarios with limited training 
data. The key factors involved in these conditions are: static and dynamic acoustic conditions with respect to noise and reverberation; 
the impact of increased interference due to noise and reverberation as the speaker-microphone distance increases beyond one meter; 
the response of beamforming schemes; and the TVAC effect that is observed in dynamic situations (Novoa et al., 2021). Our experi
ments with the HRI platform employed here show that the combination of all these factors can degrade the performance of SER systems 
dramatically. However, modeling the indoor testing environment from the reverberation, noise, and also beamforming response points 
of view to simulate the testing scenarios to be incorporated in the training data led to substantial increases in SER performance in the 
static and dynamic HRI conditions. Consequently, the strategy studied here softens the need to record training speech in several 
operating HRI situations. It is worth highlighting that our findings can be generalized to any indoor distant SER task. 

5. Conclusions 

In this paper, the problem of continuous SER was addressed for the first time in both real static and dynamic HRI scenarios. Two 
SER classifiers were evaluated, one implemented with the ladder network, and one implemented with the wav2vec 2.0 speech rep
resentation. Three training sets were considered: the original MSP-Podcast training utterances; and the MSP-Podcast training utter
ances that were processed to simulate the target acoustic environment plus the response of beamforming schemes such as D&S or 
MVDR. The acoustic environment was emulated as follows: first, RIRs were estimated in the testing room for the target speech and each 
one of both external noise sources by combining three robot positions with 21 different robot head angular positions, resulting in 63 
RIRs for the target speech and for each one of the two noise sources resulting in 189 RIRs; second, the clean utterances and the two 
noise sources were convoluted with the corresponding RIRs, where speech utterances and noise samples shared the same positions of 
the robot and its head in each case; third, the speech and noise sources convoluted with the corresponding RIRs and the robot noise 
were added all together; and fourth, the beamforming responses were incorporated to the training noisy utterances. It is worth 
highlighting that, in the robotic testbed employed here, each robot head position determines a given DOA. Similarly, four testing data 
sets were employed: the original MSP-Podcast testing utterances; the MSP-Podcast testing utterances processed to simulate the testing 
environment as with the training data; and the MSP-Podcast testing dataset re-recorded in our HRI platform in static and dynamic 
conditions. 

The results reported here show that the wav2vec 2.0 architecture provided a CCC metric that is on average 30.7 % higher than the 
ladder network-based engine using the original MSP-Podcast training utterances and the static and dynamic HRI testing subsets. This 
must be a result of the fact that wav2vec 2.0 is pre-trained with noisy data and employs learned features. Even though MVDR could 
lead to an average SNR improvement that is 1.73 dB higher than the basic D&S, both provided very similar average CCC improvement 
approximately equal to 116 % using the ladder network trained with the original MSP-Podcast training utterances and tested with the 
static and dynamic HRI data. However, when the wav2vec 2.0 classifier was employed in the same training/testing conditions, D&S led 
to an improvement in the average CCC that is slightly greater than the one achieved with MVDR but is much smaller than with the 
ladder network. Again, this must be because wav2vec 2.0 was pre-trained with noisy speech, so there is less room for improvement, 
and due to the MVDR artifacts. Surprisingly, in contrast to previous results with ASR, the static and dynamic HRI testing subsets 
resulted in a similar average CCC metric across all the training conditions. This must be a consequence of the SER engines employed 
here that determine emotional attributes on an utterance-by-utterance basis and of the periodicity of the translational/rotational robot 
movement. Simulating the acoustic environment and incorporating the beamforming response into the training dataset provided the 
highest average CCC scores with both the static and dynamic HRI subsets. These average scores are just 29 % and 22 % lower than those 
achieved with the original MSP-Podcast training/testing utterances with the ladder network and wav2vec 2.0 architectures, respec
tively. This result suggests that modeling the acoustic environment can be a convenient strategy to address the problem of SER in HRI 

N. Grágeda et al.                                                                                                                                                                                                       



Computer Speech & Language 89 (2025) 101666

14

scenarios without the need for recording ad-hoc training databases. Moreover, it is worth highlighting that our findings can be 
generalized to any indoor distant SER task. Finally, employing more complex robot movement conditions and integrating speech 
enhancement methods into the SER engines are proposed for future work. 

CRediT authorship contribution statement 
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Appendix 

Beamforming techniques or spatial filtering denotes a family of technologies that is widely adopted to address distant speech 
processing. It has a very important role in social robotics, not only for speech-based HRI but also for analyzing audio sources. Two 
beamforming methods were considered here, D&S and MVDR. 

Fig. 11. Microphone array geometry of the Microsoft Kinect, where: τl is the time delay between microphone l and the reference one, i.e. 
microphone 1; and ϕ is the look direction or DOA. 
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A.1 Delay-and-sum 

A microphone array is a collection of multiple microphones that can be combined and processed to achieve spatial filtering with 
beamforming. This technique can help to reduce noise and reverberation, especially by suppressing non-direct path acoustic signals. In 
this study, a linear microphone array was employed. Particularly, the Microsoft Kinect was adopted. This device is widely used in HRI 
applications, features a four-channel linear microphone array (see Fig. 11), and provides standard RGB and depth cameras. 

Delay-and-sum is a well-known beamforming technique, which involves summing delayed signals to steer the look direction to the 
direction of arrival (DOA) of sound waves. This produces destructive interference in all directions except for DOA. The delayed signals 
are summed to generate the output signal y(t) as in Navvab et al. (2012): 

y(t) =
∑L

l=1

xl(t − τl) (1)  

where: xl(t) denotes the signal samples from microphone l; τl is the delay applied to channel l with respect to the reference microphone, 
i.e. microphone 1 in this case; and L is the number of channels, i.e. L is equal to four here. Delay τl is given by Tashev (2009): 

τl =
dl

v
(sen(ϕ)) (2)  

where dl is the distance between the microphone l and the reference one (see Fig. 11), and v is the propagation speed of sound. 

A.2 MVDR 

MVDR is a more advanced technique than delay-and-sum and improves beamforming noise suppression by adaptively reducing 
spatially correlated noise. This is achieved by creating nulls on the interfering signals without affecting the gain in the look direction. If 
xl(m, i) represents the ithsample in frame m of channel l, where 1 ≤ m ≤ M, M is the number of frames in a given utterance, 1 ≤ i ≤
frameLength and frameLength denotes the frame length in number of samples, Xl(m,ω) is obtained by applying the DFT to frame xl(m, i)
and denotes the component at discrete frequency ω in frame m and channel l, where 0 ≤ ω < numFreqBins, numFreqBins = DFT2 + 1 
and DFT corresponds to the number of samples employed by the DFT. The DFT of the MVDR output at the mth frame, Y(m,ω), can be 
estimated as Kumatani et al. (2012): 

Y(m,ω) = w(m,ω)[X1(m,ω) X2(m,ω) . . . XL(m,ω) ] (3) 

Where the weights are estimated on a frame-by-frame basis as (Tashev, 2009): 

wH(m,ω) =
vH(m,ω)

∑− 1
N (m,ω)

vH(m,ω)
∑− 1

N (m,ω)v(m,ω)
(4) 

Eq. (4) includes the steering vector v(m,ω) =
[
e− jωτ1(m), e− jωτ2(m),…, e− jωτL(m)

]T and the covariance matrix of the noise 
∑

N(m,ω) =

E
{
N(m,ω)NH(m,ω)

}
, where E{ ⋅ } denotes the expectation operator and N(ω) = [N1(ω)N2(ω)…Nl(ω)…NL(ω)] is the spatially correlated 

noise in each microphone in the frequency domain. 

A.3 Delay-and-sum vs. MVDR 

The primary focus of this paper is not only to compare the performance of the D&S and MVDR beamforming schemes. According to 
the strategy followed here, we argue that recording training speech in several operating HRI conditions would not be necessary. 
Instead, we model the indoor testing environment from the reverberation, noise, and also beamforming response points of view to 
simulate the testing condition in the training data. However, a brief comparison between D&S and MVDR can be interesting. First of 
all, D&S is the most basic beamforming scheme and requires only the DOA information to estimate and apply the resulting channel 
delays. In contrast, MVDR needs the estimation of the noise covariance matrix, which in turn could be a problem within speech in
tervals. This was counteracted by making the noise covariance matrices in speech segments equal to the interpolation of the matrices 
corresponding to the pre and post-noise intervals. It is worth highlighting that MVDR provides a larger SNR gain than D&S. Never
theless, MVDR can incorporate artifacts (Avila et al., 2016; Cauchi et al., 2019) that degrade the accuracy of ASR systems (Iwamoto 
et al., 2024). 
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