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Simple Summary: Complete resection of dysplastic and malignant tissue improves overall survival 
and delays cancer recurrence in oral cancer patients; however, intraoperative surgical margin as-
sessment is limited to visual inspection and palpation, making it difficult to achieve total resection. 
There is currently no tool capable of providing real-time, accurate, and continuous margin-assess-
ment guidance during oral cancer resection surgery. Multispectral autofluorescence lifetime imag-
ing (maFLIM) is a label-free imaging modality that enables quantifying a plurality of metabolic and 
compositional autofluorescence biomarkers of oral dysplasia and cancer. We have developed and 
validated a machine-learning assisted computer aided detection (CAD) system for automated dis-
crimination of dysplastic and cancerous from healthy oral tissue based on in vivo widefield maFLIM 
endoscopy data. This CAD system can be potentially embedded into maFLIM endoscopes to enable 
continuous in situ detection of positive margins during oral cancer resection surgery, thus facilitat-
ing maximal tumor resection and improving surgical outcomes for oral cancer patients. 

Abstract: Multispectral autofluorescence lifetime imaging (maFLIM) can be used to clinically image 
a plurality of metabolic and biochemical autofluorescence biomarkers of oral epithelial dysplasia 
and cancer. This study tested the hypothesis that maFLIM-derived autofluorescence biomarkers can 
be used in machine-learning (ML) models to discriminate dysplastic and cancerous from healthy 
oral tissue. Clinical widefield maFLIM endoscopy imaging of cancerous and dysplastic oral lesions 
was performed at two clinical centers. Endoscopic maFLIM images from 34 patients acquired at one 
of the clinical centers were used to optimize ML models for automated discrimination of dysplastic 
and cancerous from healthy oral tissue. A computer-aided detection system was developed and 
applied to a set of endoscopic maFLIM images from 23 patients acquired at the other clinical center, 
and its performance was quantified in terms of the area under the receiver operating characteristic 
curve (ROC-AUC). Discrimination of dysplastic and cancerous from healthy oral tissue was 
achieved with an ROC-AUC of 0.81. This study demonstrates the capabilities of widefield maFLIM 
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endoscopy to clinically image autofluorescence biomarkers that can be used in ML models to dis-
criminate dysplastic and cancerous from healthy oral tissue. Widefield maFLIM endoscopy thus 
holds potential for automated in situ detection of oral dysplasia and cancer. 

Keywords: oral cancer and dysplasia; positive surgical margin detection; multispectral autofluores-
cence lifetime imaging (maFLIM); autofluorescence biomarkers; machine learning 
 

1. Introduction 
Oral cancer is a significant global health threat with ~355,000 cases and over 177,000 

deaths each year, and one of the lowest five-year survival rates (~50%) among the major 
cancer types [1]. This threat is greatly attributed to the difficulty in capturing all the cancer 
at treatment. Oral cancer treatment is primarily surgical with the aim of achieving com-
plete tumor resection without leaving behind residual disease [2]. Positive surgical mar-
gins are associated with significant increase in recurrence rate and decrease in survival 
rate [3]; unfortunately, the rate of oral cancer positive surgical margins can be as high as 
40% [4]. Intraoperative oral cancer surgical margin assessment is limited to visual inspec-
tion and palpation. When available, histopathological evaluation of intraoperative frozen 
sections is also used [2,5], but it suffers from low sensitivity (as low as 15%) [6,7], and its 
positive impact in clinical outcomes is unclear [8,9]. 

Preoperative positron emission tomography (PET), computed tomography (CT), and 
magnetic resonance imaging (MRI) are routinely used in oral cancer staging and surgical 
planning, but they are not useful for intraoperative surgical margin assessment [10,11]. 
Optical imaging modalities, which can provide simultaneous structural, functional, and 
biochemical tissue characterization across multiple scales, are ideal for intraoperative sur-
gical margin assessment. Grillone et al. performed an in vivo study on 34 patients, in 
which elastic scattering spectroscopy (ESS) and a machine learning diagnostic algorithm 
were used to distinguish healthy from abnormal (mild/moderate/severe dysplasia, carci-
noma in situ, and invasive cancer) oral tissue, with sensitivity ranging from 84% to 100% 
and specificity ranging from 71% to 89%, depending on how the cutoff between healthy 
and abnormal tissue was defined (i.e., mild, moderate, or severe dysplasia) [12]. In an ex 
vivo study, Hamdoon et al. used optical coherence tomography (OCT) to scan tumor mar-
gins from 28 oral squamous cell carcinoma (OSCC) patients following resection, and they 
differentiated tumor-free from tumor-involved margins with levels of sensitivity and 
specificity of 81.5% and 87%, respectively [13]. Jeng et al. used Raman spectroscopy (RS) 
in an ex vivo study to image 44 tumor and 36 healthy oral tissue samples from patients 
and implemented a quadratic discriminant analysis (QDA) classifier to discriminate tu-
mor from healthy oral tissue, resulting in levels of sensitivity and specificity of ~91% and 
~83%, respectively [14]. Halicek et al. performed ex vivo hyperspectral imaging (HSI) on 
20 patients and discriminated SCC margins from healthy oral tissue with 84% sensitivity 
and 74% specificity using a convolutional neural network classifier [15]. Nayak et al. used 
autofluorescence spectroscopy (AFS) and an artificial neural network to classify healthy 
(n = 40) vs. premalignant (n = 6) and malignant (n = 37) oral tissue biopsies from patients 
and reported levels of sensitivity and specificity of 96.5% and 100%, respectively [16]. Un-
fortunately, none of these technologies have been yet translated to the operating room; 
thus, intraoperative image-guiding technologies that will facilitate complete oral tumor 
resection are still urgently needed. 

Two mitochondrial metabolic coenzymes, the reduced-form nicotinamide adenine 
dinucleotide (NADH) and flavin adenine dinucleotide (FAD), are used in multiple meta-
bolic processes, including glycolysis and oxidative phosphorylation, and are the main en-
dogenous fluorophores in the oral epithelial layer [17,18]. Increased cellular metabolic ac-
tivity, a hallmark of malignant epithelial cells, can be quantified by imaging the oral tissue 
autofluorescence originated from the metabolic cofactors NADH and FAD [17,19,20]. We 
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have recently demonstrated clinical label-free metabolic imaging of oral epithelial cancer 
based on multispectral autofluorescence lifetime imaging (maFLIM) endoscopy in pa-
tients presenting oral malignant lesions and reported several autofluorescence biomarkers 
of oral epithelial cancer [20]. 

These capabilities and its relatively inexpensive implementation cost make maFLIM 
a promising imaging modality to enable continuous real-time margin-assessment guid-
ance during oral cancer resection surgery. However, for maFLIM to become an impactful 
image-guided tool for oral cancer resection surgery, computer-aided detection (CAD) sys-
tems are needed to enable in situ intraoperative, automated, objective, and accurate dis-
crimination and visualization of dysplastic and cancerous vs. healthy oral tissue during 
tumor resection surgery. In this study, we report what is, to the best of our knowledge, 
the first independently validated CAD system for automated clinical detection of dysplas-
tic and cancerous from healthy oral tissue based on in vivo widefield multispectral auto-
fluorescence lifetime imaging endoscopy. 

2. Materials and Methods 
A summary of the methods applied in this study, from the maFLIM data acquisition 

to the final classification output, is shown in Figure 1 and described in detail in the fol-
lowing sections. 

 
Figure 1. Summary of the methods used in this study. (1) In vivo clinical maFLIM images of both the lesions and healthy 
tissue regions from oral cancer patients were acquired. (2,3) Raw maFLIM data were preprocessed to increase the signal 
quality. (4) Autofluorescence spectral and time-resolved maFLIM features were computed per pixel. (5) Models for the 
classification of precancer/cancer vs. healthy oral tissue at the pixel level were trained. (6) Pixel-level classification results 
in a posterior probability map for each imaged oral tissue region. (7) An image-level score was computed from the poste-
rior probability map, and a threshold (T) on this score was optimized. (8) The image-level score threshold was applied to 
classify the whole image as either precancer/cancer or healthy. Note. Modified from “Clinical label-free biochemical and 
metabolic fluorescence lifetime endoscopic imaging of precancerous and cancerous oral lesions,” by Duran-Sierra, E.; 
Cheng, S.; Cuenca-Martinez, R.; Malik, B.; Maitland, K.C.; Lisa Cheng, Y.S.; Wright, J.; Ahmed, B.; Ji, J.; Martinez, M.; et 
al., 2020, Oral Oncol, p. 2, doi:10.1016/j.oraloncology.2020.104635 [20]. 
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2.1. Clinical Endoscopic maFLIM Imaging of Oral Lesions 
2.1.1. Training Set 

In vivo clinical maFLIM endoscopy images of dysplastic and cancerous oral lesions 
were acquired following an imaging protocol approved by the Institutional Review Board 
at Hamad Medical Corporation (Doha, Qatar). In this study, 34 patients scheduled for 
tissue biopsy examination of suspicious oral epithelial precancerous or cancerous lesions 
were recruited. Following clinical examination of the patient’s oral cavity by an experi-
enced head and neck surgeon (M.M., M.A.K., H.A.E), maFLIM endoscopy images were 
acquired from both the suspicious oral lesion and a clinically healthy-appearing area in 
the corresponding contralateral anatomical side, using a maFLIM endoscope previously 
reported in Cheng et al. [21]. Tissue autofluorescence excited with a pulsed laser (355 nm, 
1 ns pulse width, ~1 μJ/pulse at the tissue) was imaged at the emission spectral bands of 
390 ± 20 nm, 452 ± 22.5 nm, and >500 nm, which were selected to preferentially image 
collagen, NADH, and FAD autofluorescence, respectively. The total energy deposited into 
the patient’s oral mucosa (2.8 mJ) was set to at least an order of magnitude lower than the 
maximum permissible exposure (MPE = 29.8 mJ) provided by the American National 
Standards Institute (ANSI) [22]. Each maFLIM endoscopy image was acquired with a cir-
cular field-of-view (FOV) of ~11 mm in diameter, lateral resolution of ~100 μm, and total 
acquisition time of <3 s. The time-resolved autofluorescence intensity signal measured at 
each pixel was digitally sampled at 4 GS/s. After acquiring the maFLIM endoscopy images 
from the oral lesion biopsy region and corresponding contralateral healthy area deter-
mined by the surgeon, the tissue biopsy examination procedure was performed following 
standard clinical protocols. All biopsies performed were incisional taken from the center 
of the lesion and of different sizes based on the type and extension of lesion examined. 
The imaged clinically healthy-appearing areas on the contralateral side of the lesions were 
not biopsied. Each imaged lesion was then annotated based on the corresponding tissue 
biopsy histopathological diagnosis (gold standard). The distribution of the 34 imaged oral 
lesions based on both anatomical location and histopathological diagnosis is provided in 
Table 1, and the demographic information of the 34 imaged patients is summarized in 
Table 2. 

2.1.2. Testing Set 
Additional in vivo clinical maFLIM endoscopy images of oral lesions and healthy 

oral tissue were acquired from 23 patients from the Texas A&M University College of 
Dentistry (Dallas, TX, USA), following a similar imaging protocol approved by the Insti-
tutional Review Board at Texas A&M University (College Station, TX, USA). The maFLIM 
endoscopy system used to image this cohort of patients had the same characteristics as 
the one previously described and reported in Cheng et al. [21], except for the sampling 
rate, which was 6.25 GS/s. The distribution of these additional 23 imaged oral lesions 
based in both anatomical location and histopathological diagnosis is also provided in Ta-
ble 1, and the demographic information of the 23 imaged patients is summarized in Table 
2. 

Table 1. Distribution of the 57 imaged oral lesions based in both anatomical location and histopathological diagnosis (MiD: 
Mild Dysplasia; MoD: Moderate Dysplasia; HiD: High-Grade Dysplasia; SCC: Squamous Cell Carcinoma). 

 
Lesion Location 

 Histopathology Diagnosis 
Total Number Distribution of Imaged 

Oral Lesions 
MiD MoD HiD SCC 

Training Set 

Buccal Mucosa 1 1 1 9 12 
Tongue 0 0 0 12  12 
Gingiva 0 0 2 3  5 

Lip 0 0 0 2 2 
Mandible 0 0 0 1 1 
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Maxilla 0 0 0 1 1 
Floor of Mouth 0 0 0 1 1 
Total Number 1 1 3 29 34 

Testing Set 

Tongue 6 1 0 6 13 
Gingiva 1 0 0 5 6 

Buccal Mucosa 0 1 0 2 3 
Mandible 0 0 0 1 1 

Total Number 7 2 0 14 23 

Table 2. Demographics of the two patient populations included in this study (MiD: Mild Dysplasia; MoD: Moderate Dys-
plasia; HiD: High-Grade Dysplasia; SCC: Squamous Cell Carcinoma). 

Training Set (Doha, Qatar) Testing Set (Dallas, Texas) 
Patient # Race Age Gender Histopathology Patient # Race Age Gender Histopathology  

1 Indian 34 M SCC 1 White 59 M SCC 
2 Egyptian 67 M SCC 2 White 76 F SCC 
3 Sri Lankan 52 M SCC 3 White N/A F SCC 
4 Nepalese 47 M SCC 4 Asian N/A F SCC 
5 Egyptian 42 M SCC 5 White 60 M SCC 
6 Nepalese 35 M HiD 6 White N/A M MiD 
7 Indian 50 M HiD 7 White 54 F MiD 
8 Indian 51 M SCC 8 White 75 F MiD 
9 Indian 43 M MoD 9 Asian 58 M MiD 
10 Bangladeshi 59 M SCC 10 Asian N/A M MiD 
11 Sri Lankan 55 M MiD 11 White 55 F MiD 
12 Nepalese 31 M SCC 12 White N/A M MiD 
13 Nepalese 39 M SCC 13 White N/A M MoD 
14 Indian 36 M SCC 14 White 62 F SCC 
15 Pakistani 36 M SCC 15 White 59 M SCC 
16 Qatari 55 M SCC 16 White N/A M SCC 
17 Indian 48 M SCC 17 Asian 52 F SCC 
18 Nepalese 36 M SCC 18 White 83 F SCC 
19 Indian 36 M SCC 19 White 55 M SCC 
20 Pakistani 60 M SCC 20 Black N/A F MoD 
21 Sudanese 61 F SCC 21 White N/A M SCC 
22 Sudanese 60 F SCC 22 White 68 M SCC 
23 Iranian 68 M SCC 23 N/A 47 F SCC 
24 Indian 41 M SCC  
25 Indian 49 M SCC  
26 Nepalese 45 N/A SCC  

27 Somali 60 M SCC  

28 Indian 50 M SCC  

29 Indian 61 M SCC  

30 Indian 34 F SCC  

31 Nepalese 30 M HiD  

32 Filipino 49 F SCC  

33 Iranian 59 M SCC  

34 Pakistani 69 M SCC  

2.2. maFLIM Feature Extraction 
In order to generate a maFLIM feature pool, the endoscopic maFLIM images were 

processed as follows. The maFLIM data are composed of fluorescence intensity temporal 
decay signals, 𝑦ఒ(𝑥, 𝑦, 𝑡), measured at each emission spectral band (𝜆) and at each spa-
tial location or image pixel (𝑥, 𝑦). Each maFLIM dataset was first preprocessed as fol-
lows. First, offset and background subtraction was applied to the temporal signal at each 
pixel of the maFLIM image. Second, pixels presenting temporal signal saturation were 
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detected by setting a threshold on the maximum signal amplitude, and masked. Third, 
spatial averaging (order 5 × 5) was applied to increase the temporal signal-to-noise ratio 
(SNR) at each spatial location. Fourth, pixel masking based on SNR was also performed 
with an SNR threshold value of 15 decibels. Finally, additional pixels were manually 
masked from regions where tooth areas were observed in the intensity images. 

After data preprocessing, absolute and normalized multispectral fluorescence inten-
sity values were computed for each pixel as follows. The absolute multispectral fluores-
cence intensity 𝐼ఒ(𝑥, 𝑦) was computed by numerically integrating the fluorescence inten-
sity temporal decay signal (Equation (1)). 𝐼ఒ(𝑥, 𝑦)  =  න 𝑦ఒ(𝑥, 𝑦, 𝑡)𝑑𝑡 (1)

The normalized multispectral fluorescence intensity 𝐼ఒ,௡(𝑥, 𝑦) was computed from 
the absolute multispectral fluorescence intensities 𝐼ఒ(𝑥, 𝑦) using Equation (2). 𝐼ఒ,௡(𝑥, 𝑦)  =  𝐼ఒ(𝑥, 𝑦)∑ 𝐼ఒ(𝑥, 𝑦)ఒ  (2)

From the multispectral absolute fluorescence intensities, six intensity ratios were 
computed at each spatial location. Three quantify the relative autofluorescence intensities 
between single spectral channels: 𝐼ଷଽ଴(𝑥, 𝑦) / 𝐼ସହଶ(𝑥, 𝑦) , 𝐼ଷଽ଴(𝑥, 𝑦) / 𝐼ହ଴଴(𝑥, 𝑦) , and 𝐼ସହଶ(𝑥, 𝑦)/𝐼ହ଴଴(𝑥, 𝑦); and three quantify the combined autofluorescence intensity of two 
spectral channels relative to the third one:  (𝐼ସହଶ(𝑥, 𝑦) + 𝐼ହ଴଴(𝑥, 𝑦)) 𝐼ଷଽ଴(𝑥, 𝑦)⁄ , (𝐼ଷଽ଴(𝑥, 𝑦) + 𝐼ହ଴଴(𝑥, 𝑦)) 𝐼ସହଶ(𝑥, 𝑦)⁄ , and (𝐼ଷଽ଴(𝑥, 𝑦) + 𝐼ସହଶ(𝑥, 𝑦)) 𝐼ହ଴଴(𝑥, 𝑦)⁄ . 

In the context of time-domain maFLIM data analysis, the fluorescence decay 𝑦ఒ(𝑥, 𝑦, 𝑡) measured at each spatial location (𝑥, 𝑦) can be modeled as the convolution of 
the fluorescence impulse response (FIR) ℎఒ(𝑥, 𝑦, 𝑡) of the sample and the measured in-
strument response function (IRF) 𝑢ఒ(𝑡) as shown in Equation (3). 𝑦ఒ(𝑥, 𝑦, 𝑡)  =  𝑢ఒ(𝑡) ∗  ℎఒ(𝑥, 𝑦, 𝑡)  (3)

Therefore, to estimate the sample FIR ℎఒ(𝑥, 𝑦, 𝑡), the measured IRF 𝑢ఒ(𝑡) needs to be 
temporally deconvolved from the measured fluorescence decay 𝑦ఒ(𝑥, 𝑦, 𝑡). In this work, 
temporal deconvolution was performed using a nonlinear least-squares iterative reconvo-
lution algorithm [23], in which the FIR was modeled as a multiexponential decay. The 
model order (number of exponential components) was determined based on the model-
fitting mean-squared error (MSE); since the addition of a third component did not reduce 
the MSE, a bi-exponential model (order of two) was selected (Equation 4). ℎఒ(𝑥, 𝑦, 𝑡)  =  𝛼௙௔௦௧,ఒ(𝑥, 𝑦)𝑒ି௧ ఛ೑ೌೞ೟,ഊ(௫,௬)ൗ + 𝛼௦௟௢௪,ఒ(𝑥, 𝑦)𝑒ି௧ ఛೞ೗೚ೢ,ഊ(௫,௬)ൗ  (4)

Here, 𝜏௙௔௦௧,ఒ(𝑥, 𝑦) and 𝜏௦௟௢௪,ఒ(𝑥, 𝑦) represent the time-constant (lifetime) of the fast 
and slow decay components, respectively; while 𝛼௙௔௦௧,ఒ(𝑥, 𝑦) and 𝛼௦௟௢௪,ఒ(𝑥, 𝑦) represent 
the relative contribution of the fast and slow decay components, respectively. Finally, the 
average fluorescence lifetime (𝜏௔௩௚,ఒ(𝑥, 𝑦)) for each pixel and emission spectral band were 
estimated from the FIR ℎఒ(𝑥, 𝑦, 𝑡) using Equation 5 [23]: 𝜏௔௩௚,ఒ(𝑥, 𝑦)  = ׬  𝑡ℎఒ(𝑥, 𝑦, 𝑡)𝑑𝑡׬ ℎఒ(𝑥, 𝑦, 𝑡)𝑑𝑡  (5)

In summary, a total of 21 maFLIM-derived features were computed per pixel as sum-
marized in Table 3. 
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Table 3. Summary of maFLIM-Derived Features Computed Per Pixel. 

maFLIM Feature Category 
Spectral Band 

Total Number 
390 ± 20 nm 452 ± 22.5 nm >500 nm 

Normalized Intensity 𝐼ଷଽ଴,௡(𝑥, 𝑦) 𝐼ସହଶ,௡(𝑥, 𝑦) 𝐼ହ଴଴,௡(𝑥, 𝑦) 3 

Absolute Intensity Ratio 

𝐼ଷଽ଴(𝑥, 𝑦)/𝐼ସହଶ(𝑥, 𝑦) 

6 

𝐼ଷଽ଴(𝑥, 𝑦)/𝐼ହ଴଴(𝑥, 𝑦) 𝐼ସହଶ(𝑥, 𝑦)/𝐼ହ଴଴(𝑥, 𝑦) (𝐼ସହଶ(𝑥, 𝑦) + 𝐼ହ଴଴(𝑥, 𝑦))/𝐼ଷଽ଴(𝑥, 𝑦) (𝐼ଷଽ଴(𝑥, 𝑦) + 𝐼ହ଴଴(𝑥, 𝑦))/𝐼ସହଶ(𝑥, 𝑦) (𝐼ଷଽ଴(𝑥, 𝑦) + 𝐼ସହଶ(𝑥, 𝑦))/𝐼ହ଴଴(𝑥, 𝑦) 

Time-Resolved 

𝜏௙௔௦௧,ଷଽ଴(𝑥, 𝑦) 𝜏௙௔௦௧,ସହଶ(𝑥, 𝑦) 𝜏௙௔௦௧,ହ଴଴(𝑥, 𝑦) 

12 
𝜏௦௟௢௪,ଷଽ଴(𝑥, 𝑦) 𝜏௦௟௢௪,ସହଶ(𝑥, 𝑦) 𝜏௦௟௢௪,ହ଴଴(𝑥, 𝑦) 𝛼௙௔௦௧,ଷଽ଴(𝑥, 𝑦) 𝛼௙௔௦௧,ସହଶ(𝑥, 𝑦) 𝛼௙௔௦௧,ହ଴଴(𝑥, 𝑦) 𝜏௔௩௚,ଷଽ଴(𝑥, 𝑦) 𝜏௔௩௚,ସହଶ(𝑥, 𝑦) 𝜏௔௩௚,ହ଴଴(𝑥, 𝑦) 

Total Number 21 

2.3. Classification Model Optimization Using the Training Set 
Four traditional ML classification models were evaluated with the computational 

framework depicted in Figure 1: Linear Discriminant Analysis (LDA) [24], Quadratic Dis-
criminant Analysis (QDA) [25], linear Support Vector Machines (SVM; L2-regularization; 
C = 100) [26], and Logistic Regression (LOGREG) [27]. First, a trained classification model 
was applied at the pixel level resulting in a posterior probability map, from which an im-
age-level score was computed consisting in the average of the squared pixel-level poste-
rior probabilities, similar to the Brier score [28]. Then, ROC analysis was performed on the 
image-level scores, and an image-level score threshold was optimized by selecting the 
point on the ROC curve with maximum sensitivity within the (1-specificity) range of 0–
30%. Finally, the whole image was classified as positive (dysplasia/cancer) if the image-
level score was greater than or equal to the threshold, or as negative (healthy) otherwise. 

To identify optimal classification models for each feature pool evaluated (spectral-
only and time-resolved-only), the dataset of 34 multiparametric maFLIM images of oral 
lesions and 34 paired contralateral healthy images was analyzed following a 7-fold cross-
validation strategy. The dataset consisting in a total of 68 maFLIM images was divided in 
seven folds, six of them containing 10 maFLIM images (5 lesion and 5 paired healthy im-
ages) each, and one containing 8 maFLIM images (4 lesion and 4 paired healthy images). 
At every iteration, six folds were used for training and one for validation. First, the six 
training folds entered a sequential forward search feature selection stage [29,30], in which 
feature sets containing up to three features were generated by iteratively adding one fea-
ture at a time based on the maximum receiver operating characteristic area under the 
curve (ROC-AUC) obtained from the training fold classification. At the end of this stage, 
three classification models with either one, two, or three features were identified, and their 
corresponding ROC-AUC values were recorded. The optimal classification model (and 
corresponding optimal feature set and image score threshold) was selected based on the 
largest ROC-AUC value. The selected optimal classification model was then applied to 
the validation fold. Finally, the whole process was repeated until each of the seven folds 
was used as the validation fold. 

The discriminatory power of the spectral and time-resolved feature pools combined 
was also investigated through the implementation of an ensemble classifier. After the op-
timal classification models with spectral-only and time-resolved-only features were iden-
tified, the 7-fold cross-validation strategy was applied to optimize an ensemble classifier 
combining the best performing spectral-only and time-resolved-only classification mod-
els. In this cross-validation strategy, the training folds were used to train the previously 
identified optimal models with their three most frequent either spectral or time-resolved 
features, respectively, and the weighted sum of their resulting posterior probability maps 
was computed. No additional feature selection was performed in this process. The image 
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level-scores were then computed from the weighted sum of the posterior probability maps 
and used to optimize an image-level threshold for the ensemble model. The trained en-
semble classifier and optimized image-level threshold were then applied to the validation 
fold. The weights used to compute the sum of the two posterior probability maps were 
normalized as 𝑤ଵ + 𝑤ଶ  =  1 and optimized by repeating the 7-fold cross-validation 
process for every value of 𝑤ଵ between 0 and 1 with an increment of 0.1.  

For each model, a confusion matrix was generated after completing the 7-fold cross-
validation, and the resulting sensitivity, specificity, and F1-score were computed using 
Equations (6)–(8), respectively. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 (6)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁𝑇𝑁 + 𝐹𝑃 (7)

𝐹1 =  𝑇𝑃𝑇𝑃 + 12 (𝐹𝑃 + 𝐹𝑁) (8)

where TP, FN, TN, and FP represent the number of true positives, false negatives, true 
negatives, and false positives, respectively. 

3. Results 
3.1. Classification Model Optimization Using the Training Set 

Table 4 summarizes the results of the 7-fold-cross-validation strategy applied to each 
combination of maFLIM feature pools (spectral-only vs. time-resolved-only) and classifi-
cation models (LDA, QDA, SVM, LOGREG). The best performing classification model us-
ing spectral-only features was SVM, while QDA was the best performing model using 
time-resolved-only features. It should be noticed that at each cross-validation fold, a dif-
ferent subset of features can be selected; thus, there is no unique optimal subset of fea-
tures. To identify the most relevant features, the frequency of the three most selected 
maFLIM features in the seven folds for each classification model evaluated is presented 
in Figure 2.  

Table 4. Cross-Validation Classification Performance On the Training Set For Each maFLIM Feature Pool and Classifica-
tion model. 

maFLIM Feature Pool Classification Model F1-Score Sensitivity Specificity 

Spectral  

LDA 0.78 82% 71% 
QDA 0.74 76% 71% 
SVM 0.79 82% 74% 

LOGREG 0.79 85% 71% 

Time-Resolved  

LDA 0.75 79% 68% 
QDA 0.83 91% 71% 
SVM 0.73 76% 68% 

LOGREG 0.76 79% 71% 
Top three Spectral  SVM 0.76 79% 71% 

Top three Time-Resolved  QDA 0.82 91% 68% 
Ensemble  

(Top three Spectral and Time-Resolved) 
SVM-QDA 0.85 94% 74% 
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Figure 2. Frequency of the top three maFLIM features selected for each feature pool and classification model. 

For the ensemble classifier, the SVM model was retrained with the top three spectral 
features (𝐼ଷଽ଴,௡, 𝐼ଷଽ଴/𝐼ହ଴଴, 𝐼ସହଶ,௡), and the QDA model was retrained with the top three 
time-resolved features (𝜏௔௩௚,ଷଽ଴ , 𝛼௙௔௦௧,ସହଶ , 𝜏௙௔௦௧,ସହଶ ). An optimal weight of 𝑤ଵ  = 0.4 was selected, as it maximized sensitivity (Equation (6)) and F1-score (Equation (8)) 
without decrementing too much specificity (Equation (7)). The best performance of the 
SVM-QDA ensemble classifier (with 𝑤ଵ  =  0.4) and the performance of the SVM and 
QDA models alone retrained with their corresponding top three features are also reported 
in Table 4. 

The confusion matrices resulting from the 7-fold cross-validation for the best per-
forming classification models are shown in Table 5, where the image-level classification 
model predictions are compared against the true histopathological classification (gold 
standard). The ensemble SVM-QDA classification model produced the highest cross-val-
idation sensitivity (94%), specificity (74%), and F1-score (0.85).  

Table 5. Confusion matrices from the 7-fold cross-validation using the optimal model for each maFLIM feature pool (MiD: 
Mild Dysplasia; MoD: Moderate Dysplasia; HiD: High-Grade Dysplasia, SCC: Squamous Cell Carcinoma). 

Confusion Matrices for Best Performing Mod-
els  

Predicted 
SVM  

(Spectral) 
QDA  

(Time-Resolved) 
SVM-QDA 
(Ensemble) 

(െ) (+) (െ) (+) (െ) (+) 

True 

Healthy (n = 34) 25 9 24 10 25 9 
MiD (n = 1) 1 0 0 1 0 1 
MoD (n = 1) 0 1 0 1 0 1 
HiD (n = 3) 1 2 0 3 0 3 

SCC (n = 29) 4 25 3 26 2 27 
 Total  31 37 27 41 27 41 

3.2. Independent Classification Performance Quantification in the Testing Set 
The identified optimal classification models (Table 4) were retrained using all the 

maFLIM images acquired from the patient population at Hamad Medical Corporation in 
Doha-Qatar (training set, n = 34). These classification models were then ‘locked’ and ap-
plied without any further modification to all the acquired maFLIM images from the pa-
tient population at the Texas A&M University, College of Dentistry in Dallas, TX (testing 
set, n = 23).  

Representative cases from the testing set independently classified are shown in Fig-
ure 3. The first case corresponds to a patient presenting a red, inflamed lesion of approxi-
mately 5 × 1 cm2 in the left maxillary gingiva (Figure 3A). Histological examination of an 
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incisional biopsy taken from the affected gingiva revealed moderately differentiated squa-
mous carcinoma (SCC) with a maximum depth of invasion of 2.4 mm (Figure 3B). The 
CAD system generates precancer/cancer posterior probability maps produced by apply-
ing the optimized classification model to each pixel of a maFLIM image. For visualization, 
the posterior probability map (red intensity scale) is superposed over the total fluores-
cence intensity map (grey intensity scale). The SVM-QDA ensemble classifier posterior 
probability map of the SCC lesion showed homogeneous probability values greater than 
0.5 in the region corresponding to the gingiva tissue; the white areas corresponded to teeth 
regions (Figure 3C).  

The second case corresponds to a patient presenting scattered white plaques on the 
left lateral ventral tongue (Figure 3D). Histological examination of an incisional biopsy 
taken from the affected tongue area revealed mild-to-moderate epithelial dysplasia with 
overlying hyperparakeratosis (Figure 3E). The corresponding SVM-QDA ensemble clas-
sifier posterior probability map showed two regions, one with probability values greater 
than 0.5, and another with probability values less than 0.5 (Figure 3F). The posterior prob-
ability maps generated by the SVM-QDA ensemble classification model for all maFLIM 
images included in the testing set are presented in Figure S1 in the Supplemental Materi-
als.  

 
Figure 3. Representative imaged, diagnosed, and classified cancerous and precancerous oral lesions from the testing set. 
Top: (A) Red, inflamed lesion in left maxillary buccal gingiva (black circle indicates approximate location of the acquired 
maFLIM image FOV). (B) Histological examination of an incisional biopsy revealed moderately differentiated squamous 
cell carcinoma (SCC) (Scalebar: 1 mm). (C) Posterior probability map (red intensity scale) superposed on the total fluores-
cence intensity map (grey intensity scale) of the gingiva lesion obtained from the SVM-QDA ensemble classifier (Scalebar: 
2 mm). Bottom: (D) White plaques in left lateral ventral tongue. (E) Histological examination of an incisional biopsy re-
vealed mild-to-moderate epithelial dysplasia (MoD) (Scalebar: 1 mm). (F) Posterior probability map (red intensity scale) 
superposed on the total fluorescence intensity map (grey intensity scale) of the tongue lesion obtained from the SVM-QDA 
ensemble classifier (Scalebar: 2 mm). 

The classification performance of each optimal classifier was independently quanti-
fied from the testing set classification results in terms of the ROC-AUC. The ROC curves 
from the complete testing set classification results for each classification model are pre-
sented in Figure 4. The ensemble classifier, combining both spectral and time-resolved 
features, showed the highest ROC-AUC (0.81). The confusion matrices resulting from the 
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application of the optimal classification models (SVM, QDA, and SVM-QDA ensemble) to 
the testing set are presented in Table S1 in the Supplemental Materials. 

 
Figure 4. ROC curves from the complete testing set classification results for each classification 
model. 

4. Discussion 
In this study, clinical widefield label-free metabolic imaging of cancerous and dys-

plastic oral lesions was successfully performed at two clinical centers using previously 
developed multispectral autofluorescence lifetime imaging (maFLIM) endoscopic instru-
ments [21]. The maFLIM metabolic images from 34 patients acquired at one of the clinical 
centers (Hamad Medical Corporation, Doha, Qatar) were used to optimize and train sta-
tistical classification models for automated detection of dysplastic and cancerous oral le-
sions. A CAD system was then developed based on the optimized classification models 
and applied to an independent set of maFLIM metabolic images from 23 patients acquired 
at the other clinical center (Texas A&M College of Dentistry, Dallas, TX, USA). 

We have previously demonstrated that clinical widefield maFLIM endoscopy ena-
bles to image a plurality of autofluorescence metabolic and compositional biomarkers of 
oral epithelial dysplasia and cancer [20]. Our current findings indicate that six of these 
maFLIM-derived autofluorescence biomarkers are particularly relevant in the discrimina-
tion of dysplastic and cancerous vs. healthy oral tissue: 𝐼ଷଽ଴,௡, 𝐼ସହଶ,௡, 𝐼ଷଽ଴/𝐼ହ଴଴, 𝜏௔௩௚,ଷଽ଴, 𝜏௙௔௦௧,ସହଶ, and 𝛼௙௔௦௧,ସହଶ (Figure 2). Collagen in the lamina propria is the main contributor 
to the oral tissue autofluorescence induced by a 355 nm excitation wavelength and meas-
ured at the 390 ± 20 nm emission spectral band. Previous studies have reported lower 
normalized autofluorescence intensity measured at this band in cancerous and precancer-
ous (↓ 𝐼ଷଽ଴,௡), relative to healthy, oral tissue associated to the breakdown of collagen cross-
links in the connective tissue [31,32] and increased epithelial thickness and tissue optical 
scattering, which are characteristic of premalignant and malignant oral tissue transfor-
mation [33]. We previously reported for the first time a faster average fluorescence lifetime 
measured at the 390 ± 20 nm emission spectral band in cancerous and dysplastic (↓𝜏௔௩௚,ଷଽ଴)  vs. healthy oral tissue [20]. Because of the spectral overlap of collagen and 
NADH at this band, this observation likely reflects a faster NADH autofluorescence tem-
poral response signal resulting from decreased slower-decaying collagen signal in dys-
plastic and cancerous tissue. NADH within oral epithelial cells is the main contributor to 
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the oral tissue autofluorescence induced by a 355 nm excitation wavelength and measured 
at the 452 ± 22.5 nm emission spectral band. Neoplastic cells are characterized by increased 
use of glycolysis in addition to oxidative phosphorylation [34], which reduces NAD+ into 
NADH, resulting in increased NADH/NAD+ ratio and quenched NADH autofluores-
cence [35]. This can be translated into increased normalized autofluorescence intensity 
(↑ 𝐼ସହଶ,௡ ) and shorter autofluorescence lifetime (↓ 𝜏௙௔௦௧,ସହଶ , ↑ 𝛼௙௔௦௧,ସହଶ) measured at the 
emission spectral band of 452 ± 22.5 nm in cancerous and dysplastic vs. healthy oral tissue. 
FAD within oral epithelial cells is the main contributor to the oral tissue autofluorescence 
induced by a 355 nm excitation wavelength and measured at the > 500 nm emission spec-
tral band. Oxidative phosphorylation requires the oxidation of FADH2 into FAD, resulting 
in a higher concentration of mitochondrial FAD in neoplastic cells [35]. Hence, a decrease 
in the ratio of the autofluorescence intensities measured at the 390 ± 20 nm and > 500 nm 
spectral bands in cancerous and dysplastic oral lesions (↓ 𝐼ଷଽ଴/𝐼ହ଴଴) compared to healthy 
oral tissue, which predominantly quantifies the contribution of collagen signal relative to 
that of FAD, could potentially represent a novel autofluorescence biomarker of oral can-
cer. 

Several in vivo human studies have evaluated the potentials of autofluorescence 
spectroscopy or imaging for the discrimination of precancerous and cancerous from 
healthy oral tissue. De Veld et al. performed autofluorescence spectroscopy at six UV–vis 
excitation wavelengths in healthy volunteers (n = 95) and patients presenting either 
premalignant (n = 21) or malignant (n = 20) oral lesions [36]. Discrimination between 
healthy vs. cancerous oral lesions was performed with a Karhunen–Loeve linear classifi-
cation model (KLLC) using features computed as ratios of intensities at specific emission 
wavelengths, and the performance was quantified in terms of ROC-AUC (> 0.9) following 
a leave-one-out cross-validation strategy. Discrimination between healthy and dysplastic 
lesions, on the other hand, was not achieved (ROC-AUC < 0.6). Kumar et al. performed 
autofluorescence spectroscopy at 405 nm excitation in healthy volunteers (n = 36) and pa-
tients presenting either premalignant (n = 38) or malignant (n = 67) oral lesions [37]. The 
data were divided into training and testing sets. Principal component analysis (PCA) was 
applied for feature extraction, and Mahalanobis-distance classification models were 
trained to discriminate autofluorescence spectra corresponding to either cancerous, pre-
cancerous, or healthy oral tissue. The classification performance was quantified in terms 
of sensitivity (70–100%) and specificity (86–100%). One limitation of this study was the 
use of multiple spectra per subject as independent datasets, resulting in not truly inde-
pendent training and testing sets. Huang et al. performed autofluorescence imaging of 
NADH and FAD in healthy volunteers (n = 77) and patients presenting either premalig-
nant (n = 34) or malignant (n = 49) oral lesions [38]. Different QDA classification models 
were trained to discriminate a manually selected region of interest (ROI) as either cancer-
ous, precancerous, or healthy oral tissue using the ROI mean and standard deviation of 
the NADH and FAD emission intensities and their ratio as features. These models classi-
fied healthy vs. cancerous oral tissue ROIs with 94.6% sensitivity and 85.7% specificity, 
and healthy vs. precancerous oral tissue ROIs with 97.4% sensitivity and 38.2% specificity. 
One limitation of this study was the use of the same data for both training and validation. 
Jeng et al. performed autofluorescence imaging using the VELscope instrument (LED 
Dental, Vancouver-Canada) in healthy volunteers (n = 22) and patients presenting either 
premalignant (n = 31) or malignant (n = 16) oral lesions [39]. The data were divided into 
training and testing sets, the average and standard deviation of the autofluorescence in-
tensity within ROIs were computed as features, and LDA and QDA models were trained 
for the discrimination among cancerous, precancerous, and healthy oral tissues. The clas-
sification performance was quantified in terms of ROC-AUC (0.8–0.97). One limitation of 
this study was the use of multiple (5) images per subject as independent datasets, resulting 
in not truly independent training and testing sets. Marsden et al. performed time-resolved 
autofluorescence spectroscopy (TRFS) in 53 patients undergoing upper aerodigestive on-
cologic surgery [40]. Different classification models were trained to discriminate an ROI 
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as either cancerous or healthy oral tissue based on the classification of point-spectroscopy 
measurements taken within the ROI. The best leave-one-out cross-validation performance 
was obtained using a Random Forest model (ROC-AUC: 0.79–0.88). An independent val-
idation performed on TRFS point measurements collected from nine patients excluded 
from the training stage resulted in significantly lower classification performance (ROC-
AUC: 0.44–0.85). Discrimination between precancerous vs. healthy oral tissue was not 
achieved. 

Our in vivo human study overcomes some limitations of the studies previously sum-
marized. For positive surgical margin assessment, the discrimination of oral tissue in 
healthy volunteers from premalignant/malignant lesions in patients as performed in [36–
39] is less relevant than the discrimination of healthy vs. premalignant/malignant oral tis-
sue within the same patient as performed in [40] and our study. Point-spectroscopy meas-
urements as performed in [36,37,40] are intrinsically slow and, thus, less suitable for sur-
gical margin assessment than imaging approaches as in [38,39] and our study. The poten-
tial to discriminate precancerous from healthy oral tissue, as demonstrated in [37,39] and 
our study but not in [36,38,40], will be also relevant for surgical margin assessment. Fi-
nally, a very important difference of our study is the quantification of the classification 
performance in a totally independent testing set. The training and testing sets used in our 
study were collected at two different clinical centers in two different countries and using 
two different maFLIM endoscopic systems. 

As previously discussed, automated detection of oral dysplasia and cancer based on 
autofluorescence spectroscopy and/or imaging can be attempted based on spectral/inten-
sity and/or time-resolved autofluorescence features. Results from this study indicate that 
classification models trained with only spectral/intensity autofluorescence features can 
provide higher specificity but lower sensitivity than models trained with only time-re-
solved autofluorescence features, while ensemble classification models trained with both 
spectral/intensity and time-resolved features performed the best (Table 4, Figure 4). While 
detection based on only spectral/intensity autofluorescence features can be implemented 
with much simpler and significantly less costly instrumentation, our results indicate that 
time-resolved autofluorescence features can provide complementary discriminatory in-
formation. We recently reported a versatile and cost-efficient frequency-domain FLIM im-
plementation that is being adopted in the design of novel multiwavelength-excitation and 
multispectral-emission FLIM endoscopic systems [41]; these novel instruments will fur-
ther facilitate the clinical translation of maFLIM endoscopy. 

The classification models explored in this study were limited to traditional ML mod-
els [24–27]. Even the optimal ML models identified during the training stage provided 
only modest (<80%) levels of specificity (Table 4). It is expected that with a more compre-
hensive training database and the adoption of more advanced ML models (e.g., deep 
learning methods) [42–44], it will be possible to enable automated discrimination of dys-
plastic and cancerous vs. healthy oral tissue with superior classification performance. 
Nevertheless, the classification results obtained in the independent maFLIM images used 
as testing set (ROC-AUC > 0.8, Figure 4) strongly support the potentials of an ML-enabled 
maFLIM-based strategy for automated and unbiased discrimination of dysplastic and 
cancerous vs. healthy oral tissue. 

Study Limitations 
Although the independently validated results of this study clearly demonstrate the 

feasibility for ML-driven automated discrimination of dysplastic/cancerous from healthy 
oral tissue based on maFLIM endoscopy (ROC-AUC > 0.8), some study limitations were 
identified. The small sample size of both the training (n = 34) and testing (n = 23) sets used 
for developing and evaluating the performance of the CAD systems prevented the use of 
better performing state-of-the-art classification models. The demographics of the two dif-
ferent patient populations included in the training (Doha, Qatar) and testing (Dallas, 
Texas) sets (Table 2) could impact the classification performance of the ML models. The 
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Qatar patient population mostly comprised Indian (35%) and Nepalese (21%) people with 
a 7.25:1 male-to-female ratio and an average age of 49 ± 11 years, while the Dallas patient 
population mostly comprised White people (77%) with a 1.09:1 male-to-female ratio and 
an average age of 62 ± 10 years. In addition, lesions imaged in Doha were clinically more 
advanced than those imaged in Dallas. These differences in race, gender, and age between 
patient populations and in malignancy stage could potentially affect the autofluorescence 
properties of the imaged oral tissues. Nevertheless, it was interesting to observe encour-
aging performance of a classification model that was trained with data from a particular 
patient/lesion population and independently tested on data from a distinct patient/lesion 
population. The lack of histopathology-based assessment of the maFLIM imaging data at 
the pixel-level and of images acquired specifically from lesion margins prevented to spe-
cifically quantify the capabilities of maFLIM endoscopy as a tool for discriminating nega-
tive vs. positive surgical margins. Finally, the current implementation of the optimized 
CAD systems did not allow for real-time processing of maFLIM data. Ongoing research 
efforts aiming to overcome these limitations include collecting maFLIM endoscopy im-
ages from both premalignant/malignant lesions and their visible margins, performing ac-
curate pixel-level registration between the lesion maFLIM imaging data and histopathol-
ogy tissue sections, and implementing optimized CAD systems using FPGA and GPU 
technologies for real-time maFLIM data processing, pixel-level classification, and tissue 
mapping visualization. 

5. Conclusions 
The results of this study further demonstrate the capabilities of maFLIM endoscopy 

to clinically image a plurality of metabolic and biochemical autofluorescence biomarkers 
of oral epithelial dysplasia and cancer. Moreover, these autofluorescence biomarkers were 
successfully used as features in machine-learning models optimized to discriminate dys-
plastic and cancerous from healthy oral tissue. Finally, this study demonstrates the first 
independent validation of a maFLIM endoscopy-based CAD system for automated clini-
cal detection of dysplastic and cancerous oral lesions. Further developments in maFLIM 
instrumentation and image analysis methods could result in novel clinical tools for auto-
mated intraoperative image-guided in situ detection of positive margins during head and 
neck cancer resection surgery. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/cancers13194751/s1, Figure S1: Posterior probability maps of 23 dysplastic/cancerous 
oral lesions and paired healthy oral tissues obtained from the SVM-QDA ensemble classifier, Table 
S1: Confusion matrices resulting from the application of the optimal classification models to the 
testing set. 

Author Contributions: Conceptualization, J.A.J.; Data curation, E.D.-S., S.C. and R.C.; Formal anal-
ysis, E.D.-S., R.C. and J.A.J.; Funding acquisition, J.A.J.; Investigation, E.D.-S. and J.A.J.; Methodol-
ogy, E.D.-S., S.C., R.C., B.A., J.J., M.M., M.A.-K., H.A.-E., Y.S.L.C., J.W. and J.A.J.; Project administra-
tion, J.A.J.; Resources, S.C., R.C., V.V.Y. and J.A.J.; Software, E.D.-S. and R.C.; Supervision, V.V.Y. 
and J.A.J.; Validation, J.A.J.; Writing—original draft, E.D.-S. and J.A.J.; Writing—review and editing, 
B.A., J.J., Y.S.L.C., C.B. and J.A.J. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This project was supported by the National Institutes of Health (NIH grants 
R01CA218739, 1R01GM127696, 1R21GM142107) and the Cancer Prevention and Research Institute 
of Texas (CPRIT grant RP180588). This work was also made possible by the grant NPRP8-1606-3-
322 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made 
herein are solely the responsibility of the authors. Research reported in this publication was also 
supported in part by the National Science Foundation (NSF) (DBI-1455671, CMMI-1826078), the Air 
Force Office of Scientific Research (AFOSR) (FA9550-15-1-0517, FA9550-20-1-0366, FA9550-20-1-
0367), and the Army Medical Research Grant (W81XWH2010777), and by the Oklahoma Tobacco 
Settlement Endowment Trust awarded to the University of Oklahoma, Stephenson Cancer Center. 



Cancers 2021, 13, 4751 15 of 16 
 

 

The content is solely the responsibility of the authors and does not necessarily represent the official 
views of the Oklahoma Tobacco Settlement Endowment Trust. 

Institutional Review Board Statement: The study was conducted according to the guidelines of the 
Declaration of Helsinki and approved by the Institutional Review Boards at Hamad Medical Cor-
poration (study 16332/16, approved on 13 September 2017) and Texas A&M University (study 
IRB2015-0491F, approved on 13 December 2018). 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of 

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424, doi:10.3322/caac.21492. 
2. Thomas Robbins, K.; Triantafyllou, A.; Suarez, C.; Lopez, F.; Hunt, J.L.; Strojan, P.; Williams, M.D.; Braakhuis, B.J.M.; de Bree, 

R.; Hinni, M.L.; et al. Surgical margins in head and neck cancer: Intra- and postoperative considerations. Auris Nasus Larynx 
2019, 46, 10–17, doi:10.1016/j.anl.2018.08.011. 

3. Buchakjian, M.R.; Tasche, K.K.; Robinson, R.A.; Pagedar, N.A.; Sperry, S.M. Association of Main Specimen and Tumor Bed 
Margin Status With Local Recurrence and Survival in Oral Cancer Surgery. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 1191–
1198, doi:10.1001/jamaoto.2016.2329. 

4. Zanoni, D.K.; Montero, P.H.; Migliacci, J.C.; Shah, J.P.; Wong, R.J.; Ganly, I.; Patel, S.G. Survival outcomes after treatment of 
cancer of the oral cavity (1985–2015). Oral Oncol. 2019, 90, 115–121, doi:10.1016/j.oraloncology.2019.02.001. 

5. Shah, A.K. Postoperative pathologic assessment of surgical margins in oral cancer: A contemporary review. J. Oral Maxillofac. 
Pathol. 2018, 22, 78–85, doi:10.4103/jomfp.JOMFP_185_16. 

6. Bulbul, M.G.; Tarabichi, O.; Sethi, R.K.; Parikh, A.S.; Varvares, M.A. Does Clearance of Positive Margins Improve Local Control 
in Oral Cavity Cancer? A Meta-analysis. Otolaryngol. Head Neck Surg. 2019, 161, 235–244, doi:10.1177/0194599819839006. 

7. Prabhu, A.V.; Sturgis, C.D.; Lai, C.; Maxwell, J.H.; Merzianu, M.; Hernandez-Prera, J.C.; Purgina, B.; Thompson, L.D.R.; Tuluc, 
M.; Yang, X.; et al. Improving margin revision: Characterization of tumor bed margins in early oral tongue cancer. Oral Oncol. 
2017, 75, 184–188, doi:10.1016/j.oraloncology.2017.10.013. 

8. Patel, R.S.; Goldstein, D.P.; Guillemaud, J.; Bruch, G.A.; Brown, D.; Gilbert, R.W.; Gullane, P.J.; Higgins, K.M.; Irish, J.; 
Enepekides, D.J. Impact of positive frozen section microscopic tumor cut-through revised to negative on oral carcinoma control 
and survival rates. Head Neck 2010, 32, 1444–1451, doi:10.1002/hed.21334. 

9. Szewczyk, M.; Golusinski, W.; Pazdrowski, J.; Masternak, M.; Sharma, N.; Golusinski, P. Positive fresh frozen section margins 
as an adverse independent prognostic factor for local recurrence in oral cancer patients. Laryngoscope 2018, 128, 1093–1098, 
doi:10.1002/lary.26890. 

10. Mahajan, A.; Ahuja, A.; Sable, N.; Stambuk, H.E. Imaging in oral cancers: A comprehensive review. Oral Oncol. 2020, 104, 104658, 
doi:10.1016/j.oraloncology.2020.104658. 

11. Joo, Y.H.; Cho, J.K.; Koo, B.S.; Kwon, M.; Kwon, S.K.; Kwon, S.Y.; Kim, M.S.; Kim, J.K.; Kim, H.; Nam, I.; et al. Guidelines for 
the Surgical Management of Oral Cancer: Korean Society of Thyroid-Head and Neck Surgery. Clin. Exp. Otorhinolaryngol. 2019, 
12, 107–144, doi:10.21053/ceo.2018.01816. 

12. Grillone, G.A.; Wang, Z.; Krisciunas, G.P.; Tsai, A.C.; Kannabiran, V.R.; Pistey, R.W.; Zhao, Q.; Rodriguez-Diaz, E.; A’Amar, 
O.M.; Bigio, I.J. The color of cancer: Margin guidance for oral cancer resection using elastic scattering spectroscopy. Laryngoscope 
2017, 127, S1–S9. 

13. Hamdoon, Z.; Jerjes, W.; McKenzie, G.; Jay, A.; Hopper, C. Optical coherence tomography in the assessment of oral squamous 
cell carcinoma resection margins. Photodiagnosis Photodyn. Ther. 2016, 13, 211–217. 

14. Jeng, M.-J.; Sharma, M.; Sharma, L.; Chao, T.-Y.; Huang, S.-F.; Chang, L.-B.; Wu, S.-L.; Chow, L. Raman Spectroscopy Analysis 
for Optical Diagnosis of Oral Cancer Detection. J. Clin. Med. 2019, 8, 1313. 

15. Halicek, M.; Fabelo, H.; Ortega, S.; Little, J.V.; Wang, X.; Chen, A.Y.; Callico, G.M.; Myers, L.; Sumer, B.D.; Fei, B. Hyperspectral 
imaging for head and neck cancer detection: Specular glare and variance of the tumor margin in surgical specimens. J. Med. 
Imaging 2019, 6, 035004. 

16. Nayak, G.; Kamath, S.; Pai, K.M.; Sarkar, A.; Ray, S.; Kurien, J.; D’Almeida, L.; Krishnanand, B.; Santhosh, C.; Kartha, V. Principal 
component analysis and artificial neural network analysis of oral tissue fluorescence spectra: Classification of normal 
premalignant and malignant pathological conditions. Biopolym. Orig. Res. Biomol. 2006, 82, 152–166. 

17. Pavlova, I.; Williams, M.; El-Naggar, A.; Richards-Kortum, R.; Gillenwater, A. Understanding the Biological Basis of 
Autofluorescence Imaging for Oral Cancer Detection: High-Resolution Fluorescence Microscopy in Viable Tissue. Clin. Cancer 
Res. 2008, 14, 2396–2404, doi:10.1158/1078-0432.ccr-07-1609. 



Cancers 2021, 13, 4751 16 of 16 
 

 

18. Skala, M.C.; Riching, K.M.; Gendron-Fitzpatrick, A.; Eickhoff, J.; Eliceiri, K.W.; White, J.G.; Ramanujam, N. In vivo multiphoton 
microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. 
Natl. Acad. Sci. USA 2007, 104, 19494–19499, doi:10.1073/pnas.0708425104. 

19. Skala, M.C.; Riching, K.M.; Bird, D.K.; Gendron-Fitzpatrick, A.; Eickhoff, J.; Eliceiri, K.W.; Keely, P.J.; Ramanujam, N. In vivo 
multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and 
precancerous epithelia. J. Biomed. Opt. 2007, 12, 024014. 

20. Duran-Sierra, E.; Cheng, S.; Cuenca-Martinez, R.; Malik, B.; Maitland, K.C.; Lisa Cheng, Y.S.; Wright, J.; Ahmed, B.; Ji, J.; 
Martinez, M.; et al. Clinical label-free biochemical and metabolic fluorescence lifetime endoscopic imaging of precancerous and 
cancerous oral lesions. Oral Oncol. 2020, 105, 104635, doi:10.1016/j.oraloncology.2020.104635. 

21. Cheng, S.; Cuenca, R.M.; Liu, B.; Malik, B.H.; Jabbour, J.M.; Maitland, K.C.; Wright, J.; Cheng, Y.-S.L.; Jo, J.A. Handheld 
multispectral fluorescence lifetime imaging system for in vivo applications. Biomed. Opt. Express 2014, 5, 921–931. 

22. America, L.I.O. (Ed.) Safe Use of Lasers, ANSI Z136.1–2007; American National Standards Institute: New York, NY, USA, 2007. 
23. Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2007. 
24. Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017, 30, 169–

190. 
25. Tharwat, A. Linear vs. quadratic discriminant analysis classifier: A tutorial. Int. J. Appl. Pattern Recognit. 2016, 3, 145–180. 
26. Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of support vector machine (SVM) learning in 

cancer genomics. Cancer Genom. Proteom. 2018, 15, 41–51. 
27. Ayer, T.; Chhatwal, J.; Alagoz, O.; Kahn, C.E., Jr; Woods, R.W.; Burnside, E.S. Comparison of logistic regression and artificial 

neural network models in breast cancer risk estimation. Radiographics 2010, 30, 13–22. 
28. Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3. 
29. Somol, P.; Novovicová, J.; Pudil, P. Efficient feature subset selection and subset size optimization. Pattern Recognit. Recent Adv. 

2010; Adam Herout (Ed.), InTech. ISBN 978-953-7619-90-9. Available online: http://www.intechopen.com/books/pattern-
recognition-recent-advances/efficient-featuresubset-selection-and-subset-size-optimization (accessed on 14 June 2021) 

30. Whitney, A.W. A direct method of nonparametric measurement selection. IEEE Trans. Comput. 1971, 100, 1100–1103. 
31. Pavlova, I.; Sokolov, K.; Drezek, R.; Malpica, A.; Follen, M.; Richards-Kortum, R. Microanatomical and Biochemical Origins of 

Normal and Precancerous Cervical Autofluorescence Using Laser-scanning Fluorescence Confocal Microscopy. Photochem. 
Photobiol. 2003, 77, 550–555. 

32. Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol. 2012, 196, 395–406. 
33. Drezek, R.A.; Sokolov, K.V.; Utzinger, U.; Boiko, I.; Malpica, A.; Follen, M.; Richards-Kortum, R.R. Understanding the 

contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications. J. 
Biomed. Opt. 2001, 6, 385–397. 

34. Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell 
proliferation. Science 2009, 324, 1029–1033. 

35. Kolenc, O.I.; Quinn, K.P. Evaluating cell metabolism through autofluorescence imaging of NAD (P) H and FAD. Antioxid. Redox 
Signal. 2019, 30, 875–889. 

36. de Veld, D.C.; Skurichina, M.; Witjes, M.J.; Duin, R.P.; Sterenborg, H.J.; Roodenburg, J.L. Clinical study for classification of 
benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy. J. Biomed. Opt. 2004, 9, 940–951. 

37. Kumar, P.; Kanaujia, S.K.; Singh, A.; Pradhan, A. In vivo detection of oral precancer using a fluorescence-based, in-house-
fabricated device: A Mahalanobis distance-based classification. Lasers Med. Sci. 2019, 34, 1243–1251. 

38. Huang, T.-T.; Chen, K.-C.; Wong, T.-Y.; Chen, C.-Y.; Chen, W.-C.; Chen, Y.-C.; Chang, M.-H.; Wu, D.-Y.; Huang, T.-Y.; Nioka, 
S. Two-channel autofluorescence analysis for oral cancer. J. Biomed. Opt. 2018, 24, 051402. 

39. Jeng, M.-J.; Sharma, M.; Chao, T.-Y.; Li, Y.-C.; Huang, S.-F.; Chang, L.-B.; Chow, L. Multiclass classification of autofluorescence 
images of oral cavity lesions based on quantitative analysis. PLoS ONE 2020, 15, e0228132. 

40. Marsden, M.; Weyers, B.W.; Bec, J.; Sun, T.; Gandour-Edwards, R.F.; Birkeland, A.C.; Abouyared, M.; Bewley, A.F.; Farwell, 
D.G.; Marcu, L. Intraoperative Margin Assessment in Oral and Oropharyngeal Cancer using Label-free Fluorescence Lifetime 
Imaging and Machine Learning. IEEE Trans. Biomed. Eng. 2020, 68, 857–868. 

41. Serafino, M.J.; Applegate, B.E.; Jo, J.A. Direct frequency domain fluorescence lifetime imaging using field programmable gate 
arrays for real time processing. Rev. Sci. Instrum. 2020, 91, 033708, doi:10.1063/1.5127297. 

42. Jeyaraj, P.R.; Nadar, E.R.S. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep 
learning algorithm. J. Cancer Res. Clin. Oncol. 2019, 145, 829–837. 

43. Welikala, R.A.; Remagnino, P.; Lim, J.H.; Chan, C.S.; Rajendran, S.; Kallarakkal, T.G.; Zain, R.B.; Jayasinghe, R.D.; Rimal, J.; 
Kerr, A.R. Automated detection and classification of oral lesions using deep learning for early detection of oral cancer. IEEE 
Access 2020, 8, 132677–132693. 

44. Jubair, F.; Al-karadsheh, O.; Malamos, D.; Al Mahdi, S.; Saad, Y.; Hassona, Y. A novel lightweight deep convolutional neural 
network for early detection of oral cancer. Oral Dis. 2021, doi:10.1111/odi.13825. 


