Abstract

Background:
- Singing is a popular performance in entertainment
- Singing varies across styles of singing (genres, languages and cultures)
- Professional music teachers can determine singing quality
 - Listening to hours of songs is a tedious and time-consuming task
- We establish a system to estimate singing quality based on acoustic features, and lip and eye movements

Data Preparation and Proposed System

Database
- Audiovisual data from videos downloaded from a video sharing website
 - Each video has a duration between 5 and 15 seconds
 - 96 auditions for an American TV talent singing show
- Most candidates sang pop genre
- Participants are not professional singers at the time of the audition
- From different states and cities in The United States
- The ground truth or each candidate is provided by the judges
 - “Qualified” candidates move to next phase
 - “Nonqualified” candidates leave the show

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualified</td>
<td>25</td>
<td>30</td>
<td>55</td>
</tr>
<tr>
<td>Nonqualified</td>
<td>21</td>
<td>20</td>
<td>41</td>
</tr>
</tbody>
</table>

Audiovisual Feature
- **Audio:**
 - 12D Mel-frequency cepstral coefficients (MFCCs) with first- and second-order difference (36D in total)
- **Video:**
 - 17 landmarks around lips; 10 landmarks around each eye
 - Calculate the lip and eye areas as visual features

Classification Scheme
- Classification on each frame:
 - Logistic Regression linear classifier
 - Naive Bayes non-linear classifier
 - k-NN classifier

Fusion Scheme
- Concatenate audio and visual feature
- Fusion applied on each frame

Recognition Result with Unimodal Feature:

Recognition Result with Bimodal Feature:

Recognition Result Analysis:
- K-NN has best performance for both audio and visual features
- Systems with audio features outperform the ones with visual features
- System with audio + eyes + lips features has the best performance

Recognition Result between Genders:
- Male
 - 78.25%
 - 76.24%
 - 85.88%
- Female
 - 84.67%
 - 76.24%
 - 82.47%

Conclusions

Conclusion and Future Work:
- We performed classification of singing skill based on audio, lip and eye features
- It is observed that the performance can be improved (up to 2% absolute) when eyes and lips features are added
- Fusing eyes and lips features provides complementary information
- Other features, e.g. Gabor filter feature, can be incorporated into current system
- The work can be applied to automatic singing skill assessment system