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Abstract—Sleep efficiency measures provide an objective as-
sessment to gauge the quality of individual’s sleep. In this study
we present a home–based, automated and non–intrusive system
that is based on Electrocardiogram (ECG) measurements and
uses a multi–stage Support Vector Machines (SVM) classifier to
measure three indices for sleep quality assessment per 30 s epoch
segment: Sleep Efficiency Index, Delta–Sleep Efficiency Index
and Sleep Onset Latency. This method provides an alternative to
the intrusive and expensive Polysomnography (PSG) and scoring
by Rechtschaffen and Kales visual method.

I. INTRODUCTION

SLEEP, a physical and mental resting state, is primarily
a restorative process that influences the homeostatic

regulation of the autonomic, neuroendocrine, and immune
systems. The efficiency of a person is directly proportional
to the amount and quality of sleep that a person had in the
prior night. The behavioral habits, sleep related breathing
disorders such as apnea, drugs such as sleeping pills and
alcoholic beverages can suppress certain stages of sleep
leading to poor sleep quality or even sleep deprivation that
have serious effects on individual’s health and wellness and
lead to various medical problems like cognitive impairment
and heart diseases [1].

In this paper we present a home–based automated and a
non–intrusive system, based on an Electrocardiogram (ECG)
recording and a multi–stage Support Vector Machines (SVM)
classifier [3]. For each 30 s interval, the system detects sleep
state from the 4 sleep states: Wake or non–sleep (SW ),
REM (SREM ), delta deep sleep (stages 3 and 4) known as
slow wave sleep (SSWS), and shallow sleep (S12) (stages
1 and 2). Three quantitative measures are used to assess an
individual’s sleep quality [2]. Sleep Efficiency Index (SEI )
is the proportion of sleep in the period potentially filled by
sleep or the ratio of the total sleep time to the time in bed.
For a normal sleep, SEI should at least be 85 % (of total bed–
time). Delta–Sleep Efficiency Index (DSEI ) is the proportion
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of delta–sleep relative to total time in bed. The delta–sleep is
the most restorative stage of sleep, which normally is about
20 % of the night. In this stage, the electroencephalographic
delta waves are predominant (sleep stages 3/4). Sleep Onset
Latency (SOL) is the duration of time from ‘lights out’ or
bedtime, to the onset of sleep, which is normally ~15 minutes.

II. METHODOLOGY

A. System Architecture

The increased processing power available in today’s smart-
phones and its capability to connect locally through Bluetooth
(IEEE 802.15.1) and to the internet through Wi-Fi (IEEE
802.11) or 3G make it an attractive platform to implement a
simplified personal sleep apnea monitor. The architecture and
the various system modules of “Apnea MedAssist” monitor
are described in Fig. 1.

The system is implemented in a client/server configura-
tion. The real–time monitoring, filtering, characteristic points
detection and feature extraction are implemented on a smart-
phone (Android–based smartphone). The client communi-
cates the feature vector (xk) comprising of both Heart Rate
Variability (HRV) and surrogate ECG–Derived Respiratory
(EDR) features (total of 112) to the server to perform
sleep stage identification using a multi–stage SVM classifier
(SVC) and to calculate sleep quality indices. The server
can best handle the high computational cost of SVM–based
classification in both memory requirement and cimputational
counts.

B. Automated ECG Processing

Fig. 2 illustrates the processing components of the pro-
posed automated system, which are described in the fol-

Fig. 1. System architecture of Sleep MedAssist showing components and
functionalities.

32nd Annual International Conference of the IEEE EMBS
Buenos Aires, Argentina, August 31 - September 4, 2010

978-1-4244-4124-2/10/$25.00 ©2010 IEEE 1178



Fig. 2. Functional flowdiagram of automated system for sleep quality assessment using single–lead ECG measurements.

lowing sections. The ECG measurements with a sampling
period of 4 ms are segmented into 30 s epochs and then
analyzed using signal processing module which is a wavelet–
based analysis stage for denoising, detrending and detection
of ECG characteristic points: the QRS complex, P and T
waves. The wavelet transform algorithm used here is based
on the undecimated lifting scheme (ULWT) [6]. The ULWT
has reduced computational cost compared to basic FIR
implementation. Single–decomposition phase with 7–stages
yields details {Ds}7s=1. To separate QRS–complex from PT–
waves, we extract two signals by reconstructing two groups
of ULWT sub–bands: {Ds}5s=2 are used for QRS–complex
signal reconstruction and{Ds}7s=5 are used for P and T waves
reconstruction. We performed adaptive thresholding to all
details before each reconstruction stage to minimize spectral
overlap between the QRS and the PT signals. A rules-based
detection algorithm is used to detect the 5 characteristic
points of QRS–complex (PQ, Q, R, S and J), and the 6
characteristic points of P and T waves (Pstart, Ppeak, Pend,
Tstart, Tpeak and Tend). The derived RR–interval time–series
is denoted as {RR(m) : rri, i = 1 · · ·m}, where rri is the
ith RR interval.

We then used the T–wave characteristic points to extract
the surrogate EDR signal [7]. The derived respiratory time
series is denoted as {EDR(q) : edri, i = 1 · · · q}, where q
is the number of elements for the segment’s EDR time series
after preprocessing.

C. Feature Measures

Based on the extracted RR(m) and EDR(q) time series, we
consider the following time–based features [8]:
• mean and standard deviation of RR–interval,
• NN50 and pNN50 measures: variant 1 defined as the

number of pairs of adjacent RR–intervals where the first
RR–interval exceeds the second RR–interval by more
than 50 ms, and variant 2 where the second RR–interval
exceeds the first RR–interval by more than 50 ms,

• the SDSD measure and its root-mean-square (RMS),
SDSD defined as the standard deviation of the differ-
ences between adjacent RR–intervals,

• the first five serial correlation coefficients and the Allan
factor A(T) evaluated at a time scale T of 5 s, 10 s and
15 s of the RR–intervals, and

• mean and standard deviation of the EDR amplitude.

In addition, we considered spectral–based features for the
autonomous system (ANS) frequency ranges [4]: VLF, LF
and HLF, based on both the variances of decimated wavelet
transform (DWT) coefficients and the power spectral density
estimates using the Fast Fourier Transform (FFT) for both
RR(m) and EDR(q) time series.

Each 30 s ECG segment is now mapped to a full set of
112 extracted feature measures; 60 for RR time series and
52 for EDR time series.

D. Multi–Stage Support Vector Classifier

The sleep stage detection is a multi–class classification
problem with four mutually exclusive sleep classes/states:
SW , SREM , SSWS and S12. Applying SVMs to multiclass
classification problems usually decomposes the multi–class
problems into several two–class problems that can be ad-
dressed using several SVMs.

In this paper we use a binary decision tree (BDT) technique
[9] for our N = 4 classes with a modified root node selection
due to the order of sleep states classification. In the original
BDT method, N-1 SVMs are needed to be trained for an N–
classes problem, but at the most only dlog2Ne SVMs are
required to classify a sample. The root node is selected to
build a balanced tree which will reduce the number of levels
required to arrive at a final decision on the tested sample
class. Fig. 3 shows our three–stage multi–class SVMs for
detecting the four classes SW , SREM , S12 and SSWS . BDT–
SVM takes advantage of both the efficient computation of
the tree architecture and the high classification accuracy of
SVMs, leading to an improvement in the speed of the test
phase.

The Gaussian radial basis function (RBF) kernel was used
because it was shown to perform similar to or better than

Fig. 3. Three–stage binary decision tree (BDT) SVM.
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linear or polynomial kernels for appropriately selected values
of kernel parameters (C,γ) [3]. We use here K–fold cross–
validation (CV) method to evaluate the performance of the
classifier after normalizing all features to be within [-1 +1].

Training was performed using the MIT–BIH polysomno-
graphic database [5]. It is a collection of recordings for
16 subjects (Slpxx: xx is subject id) monitored in a sleep
laboratory using ECG, EEG and respiration signals and
annotated with respect to sleep stages and apnea for every
30 s epoch. The sleep state distribution over the total training
9450 epochs of 30 s were: SW → 2773, SREM → 686,
S12 → 5280 and SSWS → 711.

The SVMW was trained with un–balanced soft–margin
penalties (C+,C–) biased towards (–1: “sleep–states”) class
to increase the specificity performance by an order of 1:5.
This will decrease the false wake “non–sleep” state and
increase true sleep state in SVMW classifier which enhances
the performance of the next two SVM stages by reducing the
outliers rippled into them. We used LIBSVM [10] for SVM
training and classification.

E. Performance and Sleep Indicators

The three classification efficiency parameters: predictivity,
specificity and accuracy, are calculated for all subjects in our
sleep database for the classifier stages SVMW , SVMREM

and SVMSWS . We also use a more robust measure of
the reliability for our classifiers. Cohen’s Kappa coefficient
(κ) is used to assess the inter-rater agreement with the
referenced sleep–studies experts and gives an indication if
it was partially due to chance [11]. It is defined as

κ = (Pr(a)− Pr(e)) / (1− Pr(e)) (1)

where Pr(a) is the relative observed agreement among clas-
sifiers and Pr(e) is the hypothetical probability of chance
agreement using the observed data to calculate the proba-
bilities of each observer randomly choosing a category. If
the raters are in perfect agreement, then κ = 1. When there
is no agreement among the raters (other than what would be
expected by chance), then κ ≤ 0 .

Using just SVMW stage alone, we can calculate the Sleep
efficiency index (SEI ) for each subject as

SEI = 1− Tot (SW ) /Nc (2)

where Tot(SW ) is the total number of SW classified epochs
and Nc is the number of total number of classified samples.
The Sleep Onset Latency (SOL) is the duration of time of
the total initial SW states (in minutes) till first SnonW . SOL

can be adversely affected by mis-classified epochs or outliers.
We require 2–continuous epochs of SnonW stages to declare
a subject as being in that sleep state.

All three SVM stages are needed for (DSEI ) calculation

DSEI = Tot (SSWS) /Nc (3)

where Tot(SSWS) is the total number of SSWS classified
epochs. The efficiency index errors are defined as ESEI

=
SEI − S

′

EI for the sleep efficiency and EDSEI
= DSEI −

DS
′

EI for the deep sleep efficiency, where (•)′ is the actual
efficiency index. We also assess the reliability of our SVM–
based sleep indices using the classification efficiency rate
Eff defined as

Eff = 1− (FP + FN) / (TP + TN) . (4)

III. RESULTS

Table I shows the cross–validation performance results
computed using our automated sleep quality assessment sys-
tem for both SEI and DSEI on the sleep data from the MIT–
BIH polysomnographic database. It lists the efficiency index
predicted by the SVM classifier, the actual index calculated
from sleep data annotations, the difference between predicted
and actual indices, and the Cohen’s kappa coefficient (κ). The
table details the results for the various subjects and shows the
performance variations exhibited by the calculated efficiency
indices.

First examining the sleep efficiency (SEI ) determined by
SVMW stage, we observe less variation and more consistency
of the classifier performance for various subjects. This is also
indicated by the kappa coefficient (κ) results. Very high κ–
values (0.6 < κ ≤ 0.8) are indicative of substantial agree-
ment between the SEI predictor and the actual measurement
[11]. Note that for slp01 subject, we observe a high efficiency
index error, but with a high κ result. This is mostly related
to noisy ECG data measurements and not to the classifier
performance.

Regarding the deep sleep efficiency (DSEI ) determined
by the SVMSWS stage, we observe more variation and less
consistency of the classifier performance for various subjects.
Note that κ values of (0.4 < κ ≤ 0.6) are indicative of
moderate agreement between the DSEI –predictor and actual
measurement.

Table II shows the cross–validation performance (sensitiv-
ity, specificity and accuracy) results for the various subjects
and the performance variations exhibited by each of the
three–stage sleep state classifiers. The SVMW ’s degraded
sensitivity (~78 %) increases false positives though it does
not affect our overall system because it does not contribute
to the predictivity of our efficiency indices.

IV. CONCLUSIONS

Our study presented an automated real–time system pro-
viding three sleep quality and efficiency measures: sleep
efficiency, deep sleep efficiency and sleep onset latency.
Sleep Efficiency Index (SEI ) determined by SVMW stage
demonstrated high classification efficiency (Eff ~87 %) and
substantial agreement with R&K method (κ ~0.68) mostly
due to the presence of no prior SVMs to inject outliers
(misclassifications) into the input stream of this SVM. On
the other hand, Delta–Sleep Efficiency Index (DSEI ) deter-
mined by SVMSWS stage demonstrated an Eff ~78 % and
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Table I
PERFORMANCE OF SLEEP EFFICIENCY (SEI ) AND DEEP SLEEP EFFICIENCY (DSEI ) COMPUTED USING OUR ALGORITHM ON MIT–BIH DATABASE

SEI DSEI

Record SVMW Actual Error Eff Kappa SVMSWS Actual Error Eff Kappa
(%) (%) (%) (%) (κ) (%) (%) (%) (%) (κ)

Slp01 68.78 50.25 -18.53 68.64 0.52 27.71 18.86 8.85 53.40 0.41
Slp02 79.46 76.06 -3.40 91.53 0.77 1.19 1.19 0.00 93.75 0.24
Slp03 81.23 81.66 0.43 88.68 0.66 32.95 11.17 21.78 52.32 0.34
Slp04 77.50 77.78 0.28 85.51 0.64 11.11 4.64 6.47 84.48 0.45
Slp14 55.13 54.85 -0.28 79.70 0.66 7.88 5.91 1.97 82.78 0.61
Slp16 54.70 63.10 8.39 81.48 0.68 2.60 3.47 -0.87 95.56 0.60
Slp32 40.80 37.46 -3.34 92.06 0.85 20.90 10.03 10.87 50.00 0.39
Slp37 87.96 90.30 2.34 95.45 0.78 0.33 0.00 0.33 99.60 0.00
Slp41 71.99 81.65 9.66 83.90 0.62 3.64 1.82 1.82 91.40 0.40
Slp45 99.03 96.94 -2.09 96.99 0.27 34.77 21.42 13.35 53.56 0.42
Slp48 70.33 68.52 -1.81 90.38 0.79 5.85 0.28 5.57 85.77 0.08
Slp59 69.43 77.07 7.64 86.35 0.70 24.02 17.47 6.55 80.58 0.66
Slp60 51.86 49.83 -2.03 86.59 0.76 4.56 0.00 4.56 84.21 0.00
Slp61 82.16 81.87 -0.29 89.86 0.69 23.88 14.82 9.06 66.67 0.47
Slp66 59.05 60.45 1.39 91.21 0.83 5.29 0.56 4.74 90.86 0.18
Mean 69.96 69.85 4.13 87.22 0.68 13.78 7.44 6.45 77.66 0.35

Table II
SLEEP ASSESSMENT PERFORMANCE {SVMW , SVMREM AND SVMSWS}

SVMW SVMREM SVMSWS

Record sens spec accu sens spec accu sens spec accu
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Slp01 91.44 69.17 76.13 34.29 96.62 89.37 98.73 56.29 68.21
Slp02 89.26 92.95 92.19 97.14 28.86 44.87 100 94.06 94.12
Slp03 71.76 94.00 89.83 58.90 89.94 85.96 100 61.60 67.71
Slp04 71.25 92.01 87.34 86.96 72.45 73.06 100 85.56 86.56
Slp14 81.50 84.44 83.12 97.22 49.72 54.10 100 82.31 85.31
Slp16 73.48 93.39 84.37 98.44 62.90 68.12 100 95.59 95.74
Slp32 96.61 86.89 92.64 100 92.41 92.41 100 54.30 66.67
Slp37 72.22 98.86 95.65 100 91.85 91.85 100 99.60 99.60
Slp41 58.00 97.08 86.13 93.98 47.00 53.69 100 91.85 92.08
Slp45 57.14 97.47 97.08 78.90 62.59 65.14 100 53.21 68.29
Slp48 88.26 92.48 91.23 87.10 68.76 69.92 100 87.46 87.54
Slp59 67.86 96.86 87.99 82.86 75.47 76.20 100 77.27 83.74
Slp60 89.82 86.64 88.17 85.71 72.66 73.90 100 86.36 86.36
Slp61 75.00 94.22 90.79 88.14 71.57 73.29 100 68.90 75.00
Slp66 88.44 94.34 91.92 100 93.55 93.55 100 91.54 91.63
Mean 78.14 91.39 88.97 85.98 71.76 73.70 99.92 79.06 83.24

moderate agreement (κ ~0.35) because the prior two SVM
stages can inject outliers to degrade its performance.
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