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ABSTRACT

The performance of wearable biosensors is highly influ-

enced by motion artifact. In this paper, a model is proposed for

analysis of motion artifact in wearable photoplethysmography

(PPG) sensors. Using this model, we proposed a robust

real-time technique to estimate fundamental frequency and

generate a noise reference signal. A Least Mean Square (LMS)

adaptive noise canceler is then designed and validated using

our synthetic noise generator. The analysis and results on

proposed technique for noise cancellation shows promising

performance.

I. INTRODUCTION

Wearable biosensors have the potential to become the

center piece in healthcare technology by offering their

capabilities for low-cost, pervasive and long term biosignal

monitoring [1]. Wearable Biomedical Sensors and Systems

(WBSS) are gaining momentum in both academia and

industry. IEEE EMBS founded a technical committee on this

topic in 2004. This committee has defined and characterized

sensing of biomedical signals as a core function of a WBSS

[2]. Extensive research on the topic has so far shown

that signal integrity (quality) is one of the most important

challenges in technical design of a wearable sensor system

[3]. Photoplethysmography (PPG) biosensors is one of the

main sensors with many applications in monitoring, diagnosis

and assessment. The signal quality is specifically critical for

wearable PPG-based systems [4]. PPG is a signal obtained

by an optical sensor consisting of an emitting LED and a

receiving photodiode. Briefly, a light is emitted towards blood

vessels and the optical density received by photodiode reflects

change of blood flow.

Despite various applications and proper form factor for

wearable applications, PPG signal is highly susceptible to

motion [5]. Overcoming motion artifacts presents one of

the most challenging problems. One of the commonly used

methods is adaptive noise cancellation using accelerometers

as a noise reference signal [6][7]. A two-dimensional adaptive

noise cancellation has been tried using the directional

accelerometer data for finger PPG sensor [8]. Addition of

a reflectance PPG sensor as the reference signal is also

implemented in [4] but the reflectance PPG sensor is also

susceptible to motion. The main drawback is addition of

another extra hardware for the noise reference. Additionally,

using 3-axis accelerometer data is computationally intensive

[4] and they reflect motion (as opposed to noise). There is

no direct and high correlation between acceleration data from

accelerometer and motion artifact in PPG signal [9].

Our contribution in this paper is multifold. First, we have

proposed a model for PPG signal and analyzed the effect of

motion artifact on PPG signal using this model. Second, we

have designed a motion-tolerant fundamental frequency esti-

mator using special windowing approach. Third, we have pro-

posed a synthetic noise generator using estimated fundamental

frequency and designed an LMS adaptive noise canceler to

extract PPG signal. Unlike other methods, estimation of the

fundamental frequency and extraction of the PPG signal are

all done by signal processing software. No extra hardware

such as accelerometers or other reference vital sign sensor has

been used in our approach. The proposed real-time adaptive

noise canceler shows promising performance for extracting

PPG signal. The developed model and fundamental frequency

estimator, can serve as a preprocessing stage for signal en-

hancement techniques. Such techniques can effectively reduce

motion noise and ultimately improve morphological features

extracted from wearable sensors.

The remaining of this paper is organized as follows. In Section

II, we propose a model for PPG signal production and motion

artifact. Using this model, a robust technique is proposed

to extract fundamental frequency in the presence of motion

artifact in Section III. In Section IV, a synthetic noise reference

generator and an adaptive noise canceler are explained to

reduce motion artifact in PPG signal. Simulation results in

Section V validate the advantages of our method. Finally,

Section VI contains the concluding remarks.

II. PPG MODEL AND MOTION ARTIFACT

Inspired by speech processing research and technology,

we have developed a model and a processing algorithm to

reduce motion artifact on a PPG sensor system. This model

enables us to characterize relation between PPG and motion

artifact. Moreover, we will build an experimental platform

to measure/reduce the effect of motion and test bench noise

reduction techniques and tune their parameters. Here, we first

introduce the model for PPG signal and then do experimenta-

tion with and without motion to see how motion artifact affects

extraction and estimation of model parameters.

Excitation
Fundamental 

Frequency
PPG Signal

Noise (Motion Artifact)

s(n)u(n)

Gain

G

s(n) + d(n)

d(n)

Noisy PPG Signal

H(z)

Digital Filter

Time-Varying

Figure 1. Proposed PPG model for characterization and experimentation.
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As shown in Figure 1, PPG signal is modeled and generated

with two key elements, i.e., a linear time-varying digital filter

and an excitation unit. PPG signal is produced using the

following equation:

s(n) = Gu(n)+
p

∑
k=1

aks(n− k) (1)

where s(n) is the PPG signal, G is the gain factor, u(n) is

a pulse train and ak’s are coefficients of time-varying digital

filter of order p with z-domain transfer function of:

H(z) =
S(z)

G U(z)
=

1

1−∑
p
k=1 akz−k

(2)

The fundamental frequency, f0, is defined as the lowest

frequency of a periodic vital sign estimating the heart rate.

PPG signal, s(n), is modeled as output of a linear time-varying

digital filter which is excited by a pulse input. Noise input d(n)
also represents noise due to motion artifact.

A. Linear Time-Varying Digital Filter

Linear time-varying digital filter in this model is an all-pole

filter and the location of the poles determines system behavior

over time. Figure 2 shows frequency domain representation

of a sample stream of PPG signal collected using our finger

PPG sensor with sampling frequency of 250 Hz. F1, F2 and

F3 determine location of poles in all-pole model. F1, F2 and

F3 are the frequencies where concentration of energy is high

in wide-band spectrogram. Figure 2 shows the spectrogram of

PPG signal and the location of F1, F2 and F3 over time when

there is no motion of the hand.
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Figure 2. (Upper) Spectrogram of the clean PPG signal without motion
(Lower left) Spectrum of clean PPG signal at t = 4 Sec (Lower right) Spectrum
of the clean PPG at t = 8 Sec

Figure 3 shows the spectrogram of PPG signal and the

location of F1, F2 and F3 for the left-right motion of the hand

of wearer. Excitation unit produces a series of harmonics, those

whose frequency is close to poles representing F1, F2 and F3

pass through the filter and creates these patterns showing high

concentration of energy.

The locations of F1, F2 and F3, containing main component

of the signal energy, can be clearly seen in Figure 2. In Figure

3, we can fairly observe location of F1, F2 and F3 but there are

also new components due to motion artifact. Comparing these
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Figure 3. (Upper) Spectrogram of the noisy (motion corrupted) PPG signal
(Lower left) Spectrum of the noisy PPG signal at t = 4 Sec (Lower right)
Spectrum of the noisy PPG at t = 8 Sec

two scenarios leads us to the potential benefit of application of

an adaptive comb filter [10] keeping energy concentrated har-

monics and reducing motion artifact component of Figure 3.

Another observation here is that separating noise components

of Figure 3, using an adaptive comb filter, from the main signal

is useful in generation of a synthetic noise reference which is

correlated to the motion artifact of the corrupted PPG signal.

This is the principle behind synthetic noise generator proposed

in this paper and to be described in Section IV.

B. Excitation Unit

The excitation unit generates a pulse train using funda-

mental frequency which changes in a limited range over time

(i.e. typical human heart rate). A p-th order linear predictor

estimates s(n) in a system of the form:

s̃(n) =
p

∑
k=1

αks(n− k). (3)

The difference between actual PPG signal and the predicted

sequence defined by e(n) = s(n)− s̃(n) is the output of a

system with transfer function of:

A(z) =
E(z)

S(z)
= 1−

p

∑
k=1

αkz−k (4)

called residual error signal. Defining H(z) to be an inverse

filter for A(z), the output of the all-pole filter, H(z), to

approximated residual signal is an approximation of the true

PPG signal.

Motion artifact may significantly change shape of the signal.

New excitation pulses are also generated in the residual

error signal and consequently in the excitation signal. This

fact limits application of conventional techniques such as

Average Magnitude Difference Function (AMDF) [11], signal

correlation in time domain or other peak searching techniques

in time domain for estimation of fundamental frequency. To

overcome these limitations, we have designed a novel real-time

algorithm for fundamental frequency estimation.

III. FUNDAMENTAL FREQUENCY ESTIMATION

The autocorrelation function C(P) preserves periodicity

information of the input signal and it can be expressed as:

C(P) =
1

N

N−1

∑
n=0

s(n)s(n+P) (5)
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Figure 4. Example of autocorrelation and windowing.
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Figure 5. Real-time fundamental frequency estimator.

where s(n) denotes PPG signal from sensor, P is lag value and

n is discrete time. When s(n) is similar to s(n+P), C(P) will

have a large value. If s(n) is periodic with period P0, C(P) has

local peaks at P0 and integer multiples of P0. Location of the

peak value at P0 is an estimation of the fundamental frequency

since P0 =
Fs
f0

where Fs is the sampling frequency.

As shown in autocorrelation function of sample motion cor-

rupted PPG signal in Figure 4, there are cases where the

peak at 2P0 is larger than peak at P0, or there are peaks

corresponding to P’s less than P0 (e.g. point d and a). Also,

there might be other peaks such as points labeled c, e and f due

to motion artifact. So, in the presence of the motion artifact,

autocorrelation function may not provide a robust estimation

of fundamental frequency. The maximum likelihood method

used for pitch detection in speech signals [12] works well

when the signal is noisy. Adopting this technique from speech

processing, we have developed a novel fundamental frequency

estimator for wearable biosensors shown in Figure 5.

The three key steps involved in this technique are:

(1) The autocorrelation of PPG signal is computed (e.g.

1000 data samples sampled at 250 Hz), i.e. point X in

Figure 5.

(2) For each P in the limited range of the period, a special

window is generated (e.g. 10 window for 1000 data

samples corresponding to 0.7 Hz to 1.9 Hz), i.e. point Y

in Figure 5. Windows are multiplied with autocorrelation

function in time domain. One sample shaped autocorre-

lation function and window can be seen in Figure 4.

(3) Step (2) results new modified autocorrelation function

for each window in point Z in Figure 5. For all modi-

fied autocorrelations, summation of the autocorrelation

function is computed and the window passing maximum

energy defines period and thus fundamental frequency.

Since This technique searches the window passing maximum

energy instead of searching for peaks in the autocorrelation

function, this technique shows promising performance in noisy

environment of wearable sensors. Different window types can

be designed and optimized for PPG signal in the presence

of motion artifact. In this paper, we have used a window

whose shape in time domain is frequency spectrum of a

comb filter. In the frequency domain, this window is a train

of pulse with fundamental frequency fw which reduces the

leakage from motion noise components. Proposed technique

in frequency domain can be interpreted as finding fw such that

maximum correlation exists between spectrum of the window

and spectrum of PPG signal.

IV. NOISE REDUCTION USING SYNTHETIC NOISE

REFERENCE

Adaptive filter and in particular Least Mean Square (LMS)

adaptive filter has been used with accelerometers to reduce

motion artifact in PPG signals [6][7]. Adaptive filters work

based on the self adjusting of the their coefficients using an

adaptive algorithm to minimize error cost function. As shown

in Figure 6, the LMS algorithm requires a primary input

signal, i.e. s(n)+d(n), and a secondary reference noise source

g(n). Primary input signal contains the PPG signal corrupted

by additive motion noise and the secondary noise source is

correlated with the motion noise. The adaptive filter produces

an estimate of the noise which is subtracted from the primary

noisy signal to reduce the noise level. Researchers have used

an extra hardware such as accelerometers to generate the

noise reference signal [6][7]. Also, in [13] a synthetic noise

reference is generated using concurrent usage of Singular

Value Decomposition (SVD), Independent Component Anal-

ysis (ICA) and Fast Fourier Transform (FFT) methods.

To avoid using extra hardware for reference noise, we cap-

italize the estimated parameter of PPG model of Figure 1,

fundamental frequency, to implement a novel noise reference

generator. The quasi-periodic behavior of PPG signal leads

to harmonic structure in magnitude spectrum of the PPG

signal. Comb filters can be designed to have large values at

the specified fundamental frequency of the signal, f0 and its

harmonics, and low values between them. The complement of

this comb filter can be used to pass motion artifact of Figure 3,

and reject signal component, s(n). Different comb filters [10]

[14] are investigated and the comb filter with transfer function

(1− z−P0)/2 where P0 = Fs
f0

performs well in generating a

noise reference signal. The generated noise reference, g(n)
in Figure 6, is highly correlated with motion artifact. This

transfer function is implemented with a time-domain shift and

summation and despite its simple structure shows superior

performance. Figure 6 depicts real-time algorithm developed

for adaptive noise cancellation using generated synthetic noise

reference based on the fundamental frequency.

The fundamental frequency estimator tracks fundamental

frequency over time. Synthetic noise generator basically ac-

cepts current fundamental frequency and generates a noise

reference using transfer function (1− z−P0)/2. LMS algorithm

minimizes output error to obtain the best estimation, d̂(n), of

the true noise d(n). Estimation of the true noise, d̂(n), and d(n)
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Figure 6. Proposed adaptive noise canceler using synthetic noise reference.

effectively cancel each other out. The proposed noise generator

is by far more computationally efficient than concurrent usage

of SVD, ICA and FFT and switching between outputs of these

processing blocks as reported in literature [13].

V. EXPERIMENTAL RESULTS

To evaluate our real-time fundamental frequency estimator,

corrupted and noisy PPG signal named a44091c dataset from

MIT MIMIC II waveform database [15] is used. The sampling

frequency of this database is 125Hz and total number of

simulated samples is 360000, 48 minutes of data gathered from

an Intensive Care Unit (ICU) monitor. Figure 7 shows a small

portion (72 sec) of noisy signal of this database. This sample

of data includes noise-free segment (approximately t = 18 to

t = 30 sec) and noisy part (t = 50 to t = 72 sec). Figure

8 shows raw PPG signal, extracted fundamental frequency

using our real-time fundamental frequency estimator and au-

tocorrelation method. Note that, in autocorrelation technique,

the corresponding autocorrelation function is computed and

a peak searching is used to find the fundamental frequency

between 0.6 Hz and 3.3 Hz. In this experiment 2000 data

samples are used for computation of autocorrelation. The

heart rate is almost stable and the fundamental frequency is

around 1 Hz as it can be visually confirmed in Figure 7.

As we discussed earlier, the autocorrelation function does not

provide a robust estimation of fundamental frequency. Some

of erroneous outputs are marked by “*” on bottom plot in

Figure 8. The result of our estimator is shown in middle plot

of Figure 8. It can be seen that our estimator has no error

providing a robust estimation of the fundamental frequency.
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Figure 7. Portion of noisy and corrupted PPG signal in “a44091c”.

A data collection platform is developed using a finger

probe with Red LED and Infrared LED working on 660nm

and 895nm, respectively. Analog conditioning circuit limits

bandwidth of the signal to 70 Hz and it is acquired with

sampling rate of 250 using TMS320C5515 Evaluation Module
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Figure 8. Simulation of fundamental frequency estimator on PPG signal
from MIT MIMIC II database.

by Texas Instrument [16]. FIR hamming window low-pass

filter with cutoff frequency at 10 Hz attenuates the unwanted

signals.
To validate proposed methods on real data, PPG signal

from user with different motions is collected for 12 min-

utes as shown in Figure 9. This data includes clean data

without motion (No Motion), vertical movement of the hand

(UP-Down Motion), horizontal movement of the hand (Left-

Right Motion), bending of the finger (Bending) and walking.

Movements have different accelerations and variations within

each segment. 2500 samples of data is used for computation

of autocorrelation function in both autocorrelation and our

proposed algorithm and results are shown in Figure 9. The

proposed method shows superior and robust performance

compared to autocorrelation function in which many errors

have occurred (see bottom plot in Figure 9) during bending of

the finger and walking.

Figure 10 and 11 show a portion of results on collected
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Figure 10. Noise reduction in PPG signals.

data of Figure 9 during left-right movement of the hand.

Figure 10 shows motion corrupted PPG signal, improved PPG

signal, ŝ(n), at the output of adaptive filter and synthetic noise

reference in time domain. Spectrum of motion corrupted PPG

signal, improved PPG signal and synthetic noise reference is
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Figure 11. Spectrogram of noisy signal, enhanced signal and synthetic noise
reference.

shown in Figure 11. As shown, motion artifact components

are picked up by comb filter and the adaptive LMS filter sig-

nificantly improves the signal spectrogram by reducing noise

components of the spectrogram. Normalized LMS adaptive

filter of order 20 is used in this experiment.

VI. CONCLUSION

We have studied the effect of motion artifact on the pro-

posed PPG model for wearable PPG sensors. An algorithm is

developed for robust estimation of the fundamental frequency

using motion corrupted PPG signal. This parameter is used to

generate a synthetic noise reference for adaptive noise cancel-

lation of motion artifact. The proposed real-time adaptive noise

canceler is validated through extensive experimentations that

show promising performance eliminating the need for extra

hardware such as accelerometer for reference noise.
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