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Abstract— The focus of this paper is to develop a software-
hardware platform that addresses one of the most costly, acute
health conditions, pressure ulcers - or bed sores. Caring for
pressure ulcers is extremely costly, increases the length of
hospital stays and is very labor intensive. The proposed platform
collects information from various sensors incorporated into the
bed, analyzes the data to create a time-stamped, whole-body
pressure distribution map, and commands the bed’s actuators
to periodically adjust its surface profile to redistribute pressure
over the entire body. These capabilities are combined to form
a cognitive support system, that augments the ability of a care
giver, allowing them to provide better care to more patients in
less time. For proof of concept, we have implemented algorithms
and architectures that cover four key aspects of this platform:
1) data collection, 2) modeling & profiling, 3) machine learning,
and 4) acting.

I. INTRODUCTION

A. Motivation

Pressure ulcers (PUs) usually develop over a bony promi-
nence as a result of pressure, or pressure in combination with
shear stress and/or friction. Additional contributing factors in-
clude immobilization and malnourishment [1]. Groups known
to have a high risk of developing PUs include bedridden
patients, wheelchair-bound individuals, frail elderly persons
[2] with no or limited mobility, as well as individuals with
diabetes, poor nutrition, and chronic blood-flow diseases [3].

Pressure ulcers represent an enormous burden on our
health care system and an enormous problem for health care
providers [4]. In 1990, a large epidemiologic study reported
that the 1-year incidence of PU development in nursing homes
was 13.2%; a systematic review reported that in U.S. the preva-
lence ranged from 7% to 23% [5]. In hospitalized patients,
the prevalence ranges from about 3% to 11% (approximately
1.5-3.0 million patients in the United States). Pressure ulcers
result in both an increased length of hospital stay and increased
hospital costs [6]. The current cost to our health care system
resulting from PUs is more than $1.2 billion annually [7].
Once developed, PUs represent an acute health condition that
results in increased costs and suffering over many months and
even years. Effective ulcer prevention and early detection will
greatly reduce patient suffering/discomfort.

B. Background and State of the Art

The current approach used to identify PUs relies on health
care workers, primarily nurses. Diagnosis is made through a
combination of actions. At the time of hospital admission, a
physical examination is conducted and a medical history is
taken, with a focus on physical and mental problems such

as incontinence or confusion. The Braden Scale [8], which
has been identified as the most reliable and valid tool for
predicting ulcer risk, is used by nurses to assess the patient’s
risk of bed sores. Clinicians observe the patient’s skin on
a regular schedule to identify any discolorations or warmth
indicating potential skin breakdown. Unfortunately, underlying
tissue can be compromised by the time the skin actually opens.
Additional concerns include the location of the bed sore,
mobility, shearing, and the potential for exposure of the PU to
urine or feces because of incontinence. Early detection of any
compromised skin area is the first and the most important step
to preventing an open sore [9]. However, because of higher
patient acuity and increasing demands on nurses [10], it is
difficult, if not impossible, for health care personnel to check
their patients’ skin several times throughout the day.

There are several hospital beds which perform various
functions to assist in the care and prevention of pressure
ulcers. The proposed bed is the first to provide a holistic
solution to pressure ulcer care and prevention that address
the four key aspects: data collection, learning, reasoning &
deciding, and acting. Providing support for the hospital staff in
all of these areas allows the bed to truly amplify their abilities
such that they can be more efficient, and successful in caring
for patients, especially with regard to pressure ulcers. The
investigators have not found an existing or a research hospital
bed that follows the proposed approach towards system design.

Various sensors have been used to record different signals
but there is some research that goes further such as body pres-
sure image, respiration rate, heart rate and even blood pressure
information in a non-invasive manner [11]. A signal processing
unit is often needed to extract the desired information.

Several attempts have been made to develop hardware and
control of hospital beds for pressure ulcer prevention, includ-
ing passive and active approaches. These include low air loss
mattresses which showed some improvement over standard
mattresses [12]. Also the DeCube mattresses have been shown
to somewhat prevent the occurrence and accelerate healing of
pressure ulcers [13]. However, there is no record as to why
they are not currently used. Several other technologies were
studied such as alternating pressure mattresses, air fluidized
beds, and mechanically assistive beds. A review of these
passive technologies mentioned shows that their actual benefits
were unclear and inconclusive [14]. The one clinically proven
method for preventing pressure ulcers is to turn the patient
frequently, which none of these mattresses can do [15].

The mechanical solutions, including those offered by Hill-
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Rom, as well as other manufacturers, offer several assistive
solutions, but none actually turn the patient. Another approach
is the IANSiS bed, developed at the University of Wisconsin
[16], comprised of 5724 plastic, pneumatically actuated, pins
with a small head diameter of 15.6 mm. The drawback of this
approach is that pins close together can apply very different
forces which can increase shear forces in the skin. Still,
none of these beds can provide the large rotations involved
in turning, or achieve the same effect by other means. The
proposed bed can achieve the pressure distributions associated
with turning the patient using a lesser, although significant,
amount of rotational motion than manual turning.

C. Key Contribution and Paper Organization

In this paper, we present implementation of a proof-of-
concept platform for pressure ulcer monitoring and prevention.
This platform has combined four key aspects of a support
system, i.e. data collection, modeling, machine learning, and
acting. Our platform has been successfully tested using pre-
recorded data and favorable performance and accuracy have
been observed. Due to lack of space, our discussion will be
limited to the system level. The details of these algorithms are
beyond the scope of this paper and will be reported in future
publications.

The remaining part of this paper is organized as follows:
Section II explains the four main units of the smart bed
platform. Experimental results are outlined in Section III.
Section IV contains the concluding remarks.

II. SMART BED PLATFORM

Since interaction with the hospital bed is a key cause of
pressure ulcers, a smart bed can provide a first line of defense
in preventing them. With this goal in mind, the hospital
bed can be viewed as a source of biosignal data collection,
because it is where patients spend a large amount of their
time. The goal of this work, in general, is to enhance the
capabilities of the bed with respect to its intellectual and
physical characteristics, such that it can provide cognitive
support to hospital staff. More specifically, the combination
of a sensor network, machine intelligence, a morphable, tiled
surface, and computer control can produce a smart bed capable
of providing support to the staff that significantly improves
the care, epidemiological analysis and prevention of pressure
ulcers. The smart bed reduces the staff needed to turn patients.
That means the nurse can spend more direct care time at the
bedside assessing for complications or adverse events instead
of looking for help to turn the patient. There are four aspects
of interest related to a pressure-ulcer aware smart bed system
as pictured in Figure 1 and to be explained next.

A. Data Collection & Monitoring

In order to measure pressure over the entire body, pressure
sensors are distributed over the bed’s surface in an array
format. Resistive and capacitive sensors are the two main
types of commercially available surface pressure sensors. The
technology behind large area sensing using a sensor matrix
has been advanced in the past decade and currently several
pressure sensor arrays are offered in the market. Examples

are Tekscan, Xsensor and Sensor Product Inc. that offer off-
the-shelf sensor and/or body pressure measurement mats.

These devices are necessary but not sufficient. Off-the-
shelf sensor arrays can be used to capture the pressure map,
but the level and sophistication of the processing required
for the smart bed application, is not commercially available.
Specifically, a time-stamped pressure distribution image that
can be constructed to facilitate body part identification, pos-
ture detection/classification and body movement analysis. To
simplify the monitoring, we have also designed a GUI that
facilitates access and visualization of relevant data.

B. Modeling & Profiling

This unit generates a profile from the initial, fused sensor
data in order to capture the most important metrics such as the
pressure map, level of moisture, temperature, mobility/activity,
and blood pressure. As shown in Figure 1, the key units
here include: (a) preprocessing and signal conditioning, (b)
detecting body posture and limbs, and (c) extracting critical
features from the sensed data (patient’s profile/model). The
most critical information for a patient likely to experience
a pressure ulcer can be collected directly from the sensor
readings or through data fusion such as deriving probabilistic
models and/or Bayesian data fusion methods [17]. Fused data
are expected to be more informative in terms of interpretation.

The Braden pressure ulcer risk assessment chart [8] is
widely used by hospitals to informally estimate the risk
of developing pressure ulcers for bedbound and chairbound
patients. Typically, a nurse manually records his/her judgment
as a number between 1 (highest risk) and 4 (lowest risk)
for six categories: (1) sensory perception, (2) moisture, (3)
activity, (4) mobility, (5) nutrition and (6) friction & shear.
Patients with a total score of 12 or less are considered to
be at risk of developing pressure ulcers, (i.e. 15-16=low risk,
13-14=moderate risk, 12 or less=high risk). Available Braden
chart data is used for training and validation of the results
produced by our support vector machine (SVM) approach [18].

1) Body Posture Detection: Figure 2 depicts an overview
of posture classification algorithm developed for this platform.
The posture detection algorithm has two main steps, i.e.
training and test. The goal in training phase is to generate
required data set for classification. To build the training set,
a complete set of pressure maps in 5 different postures are
collected using our platform. Training set goes into prepro-
cessing unit which extracts the body segment and enhances
quality of pressure images. Dimension of data is reduced
by projecting images from a correlated high dimension input
space into an uncorrelated low dimension data space using
Principal Component Analysis (PCA) [19]. During test, each
new pressure image is projected into new dimension space.
Distance between extracted features for new pressure map and
the training set is measured in kNN classifier to assign labels.

2) Limb Detection & Tracking: Most of pressure ulcers
form over bony areas of the body such as sacrum, over the
hip bones, back of the head and shoulder. Limb detection
allows us to track at-risk regions of the body and assess those
parts more accurately. After classifying patient’s posture on
the bed, we fit a model to classified pressure map using an
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Figure 1. Smart bed system architecture.
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Figure 2. Posture Detection Process.

articulated human body model. Flexible and parametric human
body model is developed for all postures. During the training
phase a database of human body model is generated. During
test, the most similar sample of classification algorithm will
serve as the initial estimation of the model parameters. After
initial estimation of location, size and angle of the assigned
model, blob analysis is done to tune model parameters [19].

3) Feature Extraction: We want to extract relevant infor-
mation from the data collection unit that can be used in the
machine learning unit. There are two types of sensor data:
(1) posture-independent (e.g physiological) data such as blood
pressure, and (2) posture-dependent values such as pressure,
temperature or moisture on each point of body in contact
with bed. Posture-dependent values will be obviously limb-
dependent too. For uniformity, we assume each metric is
sampled periodically but the sampling period for each may
be different. We assume there are M posture-independent, N
posture-dependent metrics and L limbs to monitor. The tem-
poral resolution of the posture-independent metrics is bounded
by the sampling frequency of the data collection system. The
spatial resolution of the posture-dependent metrics is confined
by the distance between every two adjacent sensor nodes in the
array of sensors. We use the concept of moments (m) to uni-
formly extract features. In mathematical modeling, moments
are widely used to extract quantitative measures of the shape
for a set of points. In general, the kth bounded moment of a
real value function f (t) is defined by µk =

∫

t
tk f (t)dt. The first

four moments are mean, variance, skewness (a measure of the
asymmetry) and kurtosis (a measure of the peakedness).

The development of bed sores is directly influenced by the

time duration the patient stays in each posture and how the
whole body is exposed to the risk factors. For a given period
of time, Δt, we construct a vector of the first to the fourth
moment or variation of the moment for both posture-dependent
and independent data metrics.
(1) Posture-Independent Features:
Suppose g j(t) (1 ≤ j ≤ M) indicate the posture-independent
samples (e.g. blood pressure) taken over a period of time. For
a given period of time, Δt, the feature vector for each function
will be the combination of four moments:

G⃗ j = [m1,g j , m2,g j , m3,g j , m4,g j ] 1 ≤ j ≤ M (1)

The extracted feature vector can now be defined as a
combination of the above feature vectors:

Φ⃗body = [G⃗1, . . . , G⃗M] (2)

(2) Posture-Dependent Features:
There are at least three metrics to consider, i.e. based on limb’s
posture, mobility and center of pressure. For the first metric,
let fi,l(x,y, t) represent the biosignal value (1≤ i≤N) sampled
for limb l (1 ≤ l ≤ L) at bed-coordinate (x,y) at time t. For
each function in a given time interval, Δt, we can compute:

F⃗i,l = [m1, fi,l , m2, fi,l , m3, fi,l , m4, fi,l ] 1≤ i≤N 1≤ l ≤ L (3)

And the overall extracted feature vector can now be defined
as a combination of the above feature vectors:

Φ⃗posture = [F⃗1,1, . . . , F⃗N,1, . . . , F⃗1,L, . . . , F⃗N,L] (4)

The second and third metrics (based on mobility and center
of pressure) are associated with the limb’s movement (i.e. large
displacement shown in x and y axes) and limb’s repositioning
(slight movement that redistribute forces but does not make
any large displacement), respectively. In order to obtain a
numerical discrete level feature vector of the mobility level
of patient, motion analysis [20] and center of pressure (CoP)
[21] techniques are used. For mobility, we obtain two mobility
functions px,l(t) and py,l(t). Similarly, for the second type of
mobility, CoP for each of L limbs of interest (e.g. trunk, hip,
leg, head) are computed and mapped to horizontal and vertical
axes to give us qx,l(t) and qy,l(t). Briefly, for an area of interest
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with K pressure value (vi) points, CoP is formally defined as:

(xcop,ycop) = (
∑K

i=1 x⋅vi

∑K
i=1 vi

,
∑K

i=1 y⋅vi

∑K
i=1 vi

).

Similar to Equation 3, functions Ps and Qs are computed
and the extracted feature vector for limb’s mobility and CoP
and are defined:{

Φ⃗mobility = [P⃗x,1, P⃗y,1, . . . , P⃗x,L, P⃗y,L]

Φ⃗cop = [Q⃗x,1, Q⃗y,1, . . . , Q⃗x,L, Q⃗y,L]
(5)

The final feature vector is a combination of vectors shown in
Equations 2, 4 and 5. It’s easy to verify that the total number
of features will be 4[M + LN + 2L+ 2L] = 4[M + L(N + 4)].
Ultimately, the most relevant features will be chosen for
machine learning unit.

Φ⃗overall = Φ⃗body ∪ Φ⃗posture ∪ Φ⃗mobility ∪ Φ⃗cop (6)

C. Machine Learning

The primary goal of this unit is to apply machine learning
techniques to train a model for assessing a patient’s risk of
developing pressure ulcer, by combining the features extracted
in the modeling and profiling unit. The predictions made
by this model will enable us to (1) issue an early warning
(alert) flag indicating the existence of high risk of developing
ulcer and (2) control command/data for pressure redistribution
around high-risk limbs (i.e. provided to the care giver or the
actuation unit).

To train this risk assessor, we have employed SVM [18],
a learning algorithm that achieved state-of-the-art results on
a variety of tasks, both within and outside the health-care
domain. In our training set, each instance corresponds to the
data collected from a particular body part of a patient at a
particular time step, and is represented as a vector composed
of the features discussed in the previous subsection. The label
of an instance, which is manually assigned by a health-care
professional, can be either a simple binary classification (i.e.
whether the patient is at high risk of developing PU or not)
or one of the three classes (e.g. high, moderate and low risk).
Given this training set, we can use an SVM in combination
with a variety of kernels to assign one of the risk levels to
a test instance (if the label is one of its three classes) or a
classifier for determining whether a patient has a high risk
of developing ulcer (if the class label is binary). One may
argue that the binary decision returned by a classifier is not
particularly useful in practice, since what we typically desire is
a real value that indicates the risk of developing ulcer. In fact,
this real value can be easily derived from an SVM classifier.
Hence, we derive a risk function R that computes the risk
associated with a test instance based on its distance from the
hyperplane in SVM, assigning the highest (lowest) risk value
to the instance that is farthest away from the hyperplane in
the positive (negative) region.

D. Acting

The general requirements on the design of the bed hardware
are to provide a means for moving and manipulating the
patient. The bed uses soft, non-grasp manipulation for this
purpose. The non-grasp approach is used because it is safe in
that there is no attempt to grasp or constrain the patient’s body.
The “soft” aspect allows for fine control of the contact/pressure

Bed Surface

Bed Base

Motor

Worm
Gear

Lead
Screw

Air
Bladder

Figure 3. Tiled architecture: (a) base and surface, (b) one tile and its 3 DOF.

forces along the patient’s skin. Manipulation is the key issue
here because manipulating/moving the patient is the most-
effective current practice used by nurses to prevent pressure
ulcers, referred to as “turning the patient”.

In this work, soft manipulation is accomplished using a
combination of mechanical and pneumatic actuation; pneumat-
ically controlled, air mattresses are often used in pressure ulcer
prevention. Thus the idea here is to add mechanical actuation,
enhancing the bed’s ability to finely control the pressure along
the patient’s skin.

The overall design of the bed consists of a segmented or
tiled surface where each tile can be actuated independently
or in concert with the others. This creates a movable surface
that can manipulate a patient without grasping her/him. A
preliminary version of the bed, along with a closeup of an
individual tile, is shown in Figure 3. It consists of 1 foot x
1 foot units yielding a bed approximately 7 foot in length x
4 foot in width, which would accommodate a wide range of
patients. It is designed to handle a wide range of patients,
including bariatric ones, up to 315 kg.

Each unit is comprised of a parallel mechanism with an air
bladder attached to the top; however, many configurations are
possible. Each unit has 3 degrees-of-freedom (DOF) of move-
ment, and an infinite number of DOF from the deformable
bladder on top; the actual bladder will have a flatter, more
square surface with more area. The pneumatic pumps required
to inflate the air bladders are not shown in Figure 3. Pressure
sensors are embedded in the surface and/or underneath the air
bladder to provide force feedback to the motor controllers.
Currently, a tile can tilt a maximum of 60.9∘, which, in
addition to the other features of the bed, should be sufficient
to achieve the same effect as turning the patient.

III. EXPERIMENTAL RESULTS

A. Posture Detection

Table I summarizes experimental result extracted for our
posture detection algorithm. Each column of this matrix rep-
resents instances in actual class while each row of this matrix
represents the instances in a predicted class. For example,
the entries of the first column of the above confusion matrix
have the following meaning: 99.2% of actual Right Foetus
instances are predicted correctly while 0.7% of actual Right
Foetus instances are erroneously predicted as Right Yearner
and 0.1% as Supine. The overall accuracy (correct predictions)
of the method with kNN classifier is 97.7% .
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TABLE I

PCA CONFUSION MATRIX(%)

Right Left Right Left Supine
Foetus Foetus Yearner Yearner

Right Foetus 99.2 0 9.3 0 0.1
Left Foetus 0 99.6 0 0.2 0.1
Right Yearner 0.7 0 90.7 0 0.3
Left Yearner 0 0.4 0 99.8 0.2
Supine 0.1 0 0 0 99.3
Recall 99.2 99.6 90.7 99.8 99.3
Precision 91.3 99.7 98.9 99.4 99.9
Accuracy 97.7

Figure 4. Effect of tissue (layer) softness on pressure distribution:
hard (left), medium (middle) and soft (right).

B. Risk Assessment

The next experiment is a simulation study to conduct
comparison between the risk factors for different body limb
tissues. Figure 4 shows the pressure image of three identical
objects with the same weight and shape over pressure mat.
For each object, we used a different layer underneath in terms
of softness to mimic the role of various body tissues and be
able to show the risk factor. We simulated the bony limbs with
harder layer and muscles with softer one. The left object had
the hardest layer underneath and the right one has the softest
layer. The overall pressure of all three objects is the same
since the weight and the contact area are the same. However,
the pressure distribution is expectedly different. Table II shows
the extracted features (four moments) for these three objects.
As expected, the mean values are approximately the same
for all. The harder the layer, the higher the variance over
the surface. To calculate the risk factor (R), we applied a
simple normalization method to compute relevant weight (ωi)
for each feature (i.e. moments mi). The last column of this
table shows the risk factor (0 ≤ R ≤ 1) for each scenario. The
results indicate the harder the layer or tissue, the higher the
risk factor. While simple, this experiment shows that we can
certainly assess the risk associated with various limbs and the
whole body.

IV. CONCLUSION

Design and implementation of a proof-of-concept platform
of a smart bed that will monitor a patient’s in-bed body

TABLE II

FEATURES AND RISK FACTORS (R) FOR THREE SCENARIOS.

Tissue Mean Variance Skewness Kurtosis Risk
Softness (m1) (m2) (m3) (m4) (R)

Hard 0.0138 0.0074 9.4657 98.6307 0.8460
Medium 0.0135 0.0065 4.7368 25.4770 0.4995

Soft 0.0129 0.0016 3.6443 16.4165 0.2712

pressure and other parameters is presented. Machine intel-
ligence is used to analyze data, assess the risk and alert
care-givers to intervene at an early stage to prevent pressure
ulcers. Specifically, the key algorithms for posture detection,
limb tracking and risk assessment and also the architectural
structure of the platform are discussed. In near future, we hope
to report a life-scale sensor-actuator network with embedded
computation, intelligence and networking capabilities that is
ready for clinical trial.
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