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Abstract-The foot complications constitute a tremendous
challenge for diabetic patients, caregivers, and the healthcare
system. With current technology, in-shoe monitoring systems can
be implemented to continuously monitor foot's at-risk ulceration
sites and send feedback to patients and physicians. The few
available high resolution in-shoe pressure measuring systems are
extremely expensive and targeting clinical use only. The more
affordable price ranges can be reached by limiting the number
of sensors in the shoe. Precise subject-specific sensor placement
is still a challenge in such platforms. Moreover, there is no good
way to estimate pressure on other points of the foot. In this
paper, we address these technical challenges by proposing SCPM
algorithm that reconstructs a continuous foot plantar pressure
image from a sparse set of sensor readings. Using our technique,
sensor placement can be the same in every electronic insole.
However, the SCPM's trained parameters are unique for every
subject and foot.

Index Terms-Continuous Image Reconstruction, Diabetic
Foot Ulcers, In-shoe Pressure Monitoring, Plantar Pressure
Modeling.

I. INTRODUCTION

A. Motivation
According to the American Diabetes Association (ADA),

about 25.8 million people in the United States suffer from
diabetes [1]. Up to 25% of diabetic individuals will develop
a foot ulcer during their lifetime [2]. Of these people, 12%
to 24% eventually must undergo amputation as a result of
infection due to the foot ulcer [3]. Any reduction in the rate of
diabetic foot complications would be significant to healthcare
providers, and more importantly, would improve the quality
of life for many individuals.

Diabetes over time can damage the nervous system and
cause neuropathy. A patient with neuropathy is not able to
feel his or her feet properly to allow the traumatized foot
to recover [4]. With current technology, electronic pressure
monitoring systems can be placed as insoles into normal shoes
to continuously monitor at-risk ulceration sites of foot and give
early warning/feedback to patients and physicians.

B. Related Works
Several systems for measuring high resolution plantar pres­

sure of foot are commercially available. Among these are
the Pedar [5], F-Scan [6] and Parotec [7]. These systems are
extremely expensive (order of $10k-$20k in 2012 models) and
mostly aim at athletic foot/running or clinical analysis.

For such a system to be affordable to regular patients, it
would need to be at a much lower price. This price point
can be reached primarily by limiting the number of sensors in
the shoes. An early foot-to-ground force measurement device
was reported by Spolek and Lippert in 1976 [8]. The system
was restricted to measure heel and toe forces during several
steps. Wertsch et. al. presented a portable plantar pressure
measurement system with seven sensors located under high
risk area of foot [9]. The more recent studies aimed at more
in-situ processing ability by using a computing device/gateway
attached to the waist [10-12].

In all of these system, a limited number of sensors are
mounted on a few regions of foot plantar area. These regions
are selected and fixed based on either the medically-predefined
high risk ulceration sites of foot [12], or foot pressure image
obtained from a pressure indicating film while subject standing
on it [10]. The main draw back of these systems is except
for a few exact points under the sensors, pressure distribution
information on other points of plantar area is completely lost.
Moreover, plantar pressure distribution based on foot shapes
and existing deformities is very subject-specific. So, sensor
placements should be carefully adjusted for every patients, and
even for a given subject, exact sensor placement is critical to
capture accurate data. Therefore, finding sensor placements
remained as a research problem and did not become practical
for widely-used reasonable-priced electronic insoles.

Plantar pressure modeling can be used as a method to
estimate the foot pressure distribution all over plantar area
for each individual by using limited number of parameters.
Foot modeling in diabetes research are mainly offered in two
categories. First, Finite Element (FE) approaches to model
foot mechanical structure and tissue characteristics [13]. These
models can be used to predict the effect of accommodative
in-shoe orthoses or insoles. The complexity of this approach
prevents its real-time applications. Second, various mathemat­
ical modeling methods to extract relevant features for differ­
ent classification purposes. Authors in [14] applied Principal
Component Analysis (PCA) on dynamic foot pressure image
to extract eigenvalues as features and used a Fuzzy classifier
to distinguish normal and diabetic subjects. In this line of
research, models are not used to predict more detailed data,
but only used for classification.
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Fig. 1. Generating continuous pressure map using SCPM

Fig. 2. Actual and reconstructed model for different phases of step

F (.) is a function of pressure point coordinate, x, y, and
the model parameters, 8. Any continuous function, F, can
be used, although in this paper, Gaussians are considered
exclusively. The model must be trained uniquely for each
subject and foot to extract parameter 8.

C. LSQ Weight Computation

Once trained, the pressure weight vector, w(t), can be
estimated using LSQ algorithm from a set of observations,
Z(t). Each observation, Zj in Z(t) == {Zl' Z2, ... , ZN}, is a
3-tuple containing the coordinate and pressure value at time
t: Zj == (Xj, Yj, Pj).

B. Computing Pressure Map

The SCPM models plantar pressure with a compact set of
K basis functions. In this model, plantar pressure at time t
is represented by the finite pressure weight vector W(t) ==
[wit), ... ,w~)]. From this vector, an estimate of the plantar
pressure, r», at coordinate <x,y> at time t is obtained as
follows:

(1)
K

p(t) (x, y) == 2:: w~t) F(x, y, 8 i )

i=l

An overview of SCPM that generates a continuous pressure
map is illustrated in Fig. 1. The reconstructed sensor image is
compared with the actual image for several spots in the gait
cycle for a single step and subject in Fig. 2. This figure was
made from a K == 10 SCPM with full covariance matrices as
explained in Section III.

The SCPM takes advantage of high resolution pressure
data during training to create an accurate pressure model
of the subject's foot. Subsequently, only a small number of
sensors is required to estimate pressure anywhere on the foot.
Furthermore, the sensors do not need to be placed on exact
peak pressure areas to generate an accurate map. This allows
mass production of generic sensor insoles rather than the per­
subject customization required for other methods. While high
resolution pressure mapping systems are too expensive for
individual's at-home use, they can be affordably used in-office
to generate the pressure model during training phase.

A. Model Overview

In this paper, we model the foot pressure distribution by
using a sparse set of sensor readings called Sparse sensing
Continuous Plantar pressure Model (SCPM). This model uses
a modified Gaussian Mixture Model (GMM) to reconstruct a
continuous plantar pressure map. In the SCPM, each pressure
point is represented by one or more Gaussian functions.
Gaussians were chosen since GMMs are among the most
statistically mature methods for clustering and density esti­
mation [15]. The number of Gaussians, their centers, and
their covariance (shape) are trained using data from a high
resolution pressure mapping system.

SCPM is unique for every subject and foot. After training,
a sparse set of sensor readings can be used to estimate the
weights (amplitudes) of each Gaussian using a least squares
(LSQ) method. The pressure can be estimated anywhere on the
foot by summing the weighted contributions of each Gaussian.

II. SPARSE SENSING CONTINUOUS PLANTAR PRESSURE
MODEL (SCPM)

The foot has a number of key points of contact with the
ground/shoe based on bone structure and walking patterns. In
each step, the weight shifts among these contact points and
between two feet. Many in-shoe monitoring systems depend
on pressure sensors placed precisely at these pressure points.
There are several problems with this method: a) the pressure
sensors have to be uniquely placed for each subject, b) small
misplacement greatly affects accuracy, and c) there is no good
way to estimate pressure on other points on the foot.

C. Key Contribution

To deal with the problems of pressure measurement systems
with limited number of sensors, a method to model the
pressure distribution all over the plantar area is presented in
this paper. Our proposed Sparse sensing Continuous Plantar
pressure Model (SCPM) is developed such that by using sparse
number of pressure sensors a continuous image of foot plantar
pressure can be reconstructed during walking.

Patient-specific parameters of this model can be tuned
during patient clinical visit by performing a short software
training phase. In training phase, patients are asked to walk
on a high resolution pressure mat and the pressure data is
used to create an accurate foot pressure model of the patients.
In our technique, sensor placement can be the same in every
electronic insole, but the SCPM is unique for every subject
and foot.
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Fig. 3. SCPM per-subject training procedure

K

2:: ui, F(XN' YN, 8 i )

i=l

In general, if the number of observations is greater than
the number of basis functions (N > K), the pressure weight
vector would need to be estimated with the LSQ approach [16].
Let's define matrix A with Aij == F(xj,Yj,8i) as elements.

-----+ ~Eqn. (2) can now be converted to A W == P. By applying the
technique of linear least squares, we get:

A. Step Splitting
The two aspects to step splitting are a) differentiating

between one step and the next, and b) determining whether the
step is a right step or left step. The pressure mat used for this
research [6], only had room enough for one foot, so subjects
were instructed to walk three steps in one direction, turn
around, and walk three steps in the opposite direction. Only
the middle step was recorded, and subjects were instructed to
alternate between right and left foot when touching the mat.

Once a step started, there was always some pressure
recorded on the pressure mat until the step finished, followed
by some period with no pressure recorded until the next step
began. The steps were separated based on these zero-pressure
intervals. The steps were then split into odd steps (left foot)
and even steps (right foot).

B. Image Registration
In order to align the foot pressure image of different steps,

the first walking step in each set of steps was used as the
registration template for each subject and foot. The image
registration algorithm is a modified version of the methods
presented in [18, 19] with the following steps:

1) Create Peak Pressure Image (PPI): Each pixel of
PPI holds the maximum pressure value on that spatial
coordinate among all frames in a given step.

2) Rotational Alignment: The PPI is test-rotated by each
of several evenly spaced angles over an initial window
of 3600

• The rotated PPI is translationally aligned (as
described in step 3). The alignment with the lowest Root
Mean Square (RMS) erro between the template and step
PPIs is saved.

3) Translational Alignment: Translation in the space­
domain corresponds to a phase shift in the frequency­
domain. Spatial translation can be determined by apply­
ing two-dimensional Discrete Fourier Transform (DFT)
on the PPIs to measure the shift between each PPI and
the template.

4) Iteratively Converge: The angular window from step 2
is shrunk by a constant factor and centered on the saved
alignment. Steps 2 and 3 are applied iteratively until
alignment precision is sufficient, such that the angle
difference between this iteration and the previous one
becomes less than E.

C. Training SCPM with EM
The model parameters are trained using an EM process. As

SCPM is derived from the GMM, it's important to highlight
some of the differences. The key difference is that SCPM
is used for curve-fitting or interpolation, while a GMM is a
probability distribution.

• Basis function weights can sum to a number other
than 1 Probability distribution functions must integrate
to 1. Since the component functions in a mixture model
have this property, as long as the weights sum to 1, this
is maintained. The SCPM has no such limitation, either
for the basis functions or the weights.

(3)

(2)

Using Z(t) and Eqn. (1), we can now generate a system
of linear equations at each time frame (for simplicity, the
superscript (t) is eliminated):

K

2:: ui, F(Xl' Yl, 8 i )

i=l
K

2:: ui, F(X2' Y2, 8 i )

i=l

High Resolution
Pressure Data

Once the pressure weight vector is found for a sampling
frame, as shown in Fig. 1, the continuous plantar pressure
map can be estimated using Eqn. (1).

III. SCPM TRAINING PROCEDURE
SCPM is able to reconstruct a spatially-continuous map of

the foot pressure from spatially sparse sensor data. This is
achieved by using basis functions to approximate the pressure
distribution from a small number of contact points. Choosing
the basis function parameters that best describe a particular
foot requires high resolution pressure data from that subject.
The training process uses that data to choose the model
parameters, 8, to maximize fit according to some objective
function.

Prior to training, the data has to be preprocessed. The
preprocessing consists of splitting each subject's walking data
into steps and then aligning the individual steps (transla­
tion and rotation). Every frame in a step is considered to
have the same alignment-once the subject's foot touches
the ground, the subject does not slide or rotate the foot.
After this preprocessing, the parameters are trained using a
modified Expectation Maximization (EM) as formulated for
mixture models [17]. An overview of the SCPM per-subject
training procedure is shown in Fig. 3. The preprocessing and
training steps are described in this section. After presenting a
generalized model, we look at the specific details when using
Gaussians for the basis function.
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• Value associated with each observation In a traditional
GMM, each observation only has a coordinate, but no
value. For the SCPM, each observation has a coordinate
and an associated pressure. The EM algorithm can be
adopted by assigning a weight to each observation equal
to the pressure. These weights are different than the basis
function weights [20].

• Basis function weights calculated per frame, other
parameters per-foot This is equivalent to saying that
there is a separate mixture model for each frame with
the basis function parameters tied across all frames from
the same subject and foot [21].

Our generalized EM training algorithm is shown in Algo­
rithm. 1. On line 3, the parameters are randomly initialized
based on the observations. For this work, the center of each
Gaussian, /-L, was randomly selected among the observation
coordinates, and the covariance matrix was set to a fixed value.

During the expectation phase, the basis function mem­
bership (n) is calculated for each observation. This value
represents the contribution from a particular basis function
to the value of the observation. z~l holds the per-frame
weighted observations (where the pressure is weighted by
the set membership) for calculating the frame weight of the
basis function (line 20). These per-frame weighted observa­
tions combine to form ZWi, the weighted observations. These
weighted observations are used to calculate the optimal fit of
basis function i for i == 1 -----+ K.

The function G (Zwi) maximizes the fit of the basis function
i to the weighted observations according to some objective
function. For this paper, Gaussian functions are used with
maximum likelihood criteria used in [15].

D. Gaussians as Basis Functions

GMM is a weighted sum of K component Gaussian den­
sities that can be served as the continuous basis functions in
SCPM. Each component density, 9 (.), is a D-variate Gaussian
function of the form:

where X is a D-dimensional continuous-valued data vector
with mean vector /-Li and covariance matrix ~i [22].

To adapt the Gaussian density to the SCPM, the model
parameters would be 8 i == {/-Li, ~i}, and X corresponds to
a 2-dimensional coordinate data <r, y>. In our case, the mean
vector and covariance matrix of coordinate data will be:

x = G), p = (~:), ~ = C::aypa:~y) (5)

where p is the correlation between coordinate vector, x and y.
In general, the geometric interpretation of a Gaussian distri­

bution is an ellipsoid centered at the mean. For a given model,
the covariance matrix, ~ can be forced to have a specific
structure. The three common types are "full", "diagonal", and
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Algorithm 1 Expectation-Maximization
1: {=== Initialize Parameters ===}
2: for i == 1 -----+ K do {For each basis function}
3: 8 i +----- randInit(Z) {Randomly initialize parameters}
4: for t == 1 -----+ T do {For each frame}
5: w;t) +----- 1 {Initialize weights to I}
6: end for
7: end for
8: {=== Main Algorithm ===}
9: for m == 1 -----+ M do {For each training iteration}

10: for i == 1 -----+ K do {For each basis function}
11: Zwi +----- 0 {Initialize weighted observation data}
12: for t == 1 -----+ T do {For each frame}
13- Z(t~ +----- r!I- w~ VJ
14: for all (x, y, P) E Z(t) do {For each sample}
15: {Expectation: per-point function membership}
16:

n +----- ",K (t) ( )
Dk=l w k F x, y, 8k

z~l +----- z~l U {(x,y,np)}
end for
{Maximization: Weights}

(t) 1 '" P
Wi +----- TIZlT D(x,y,P)Ez~i

(t)
21: Zwi +----- Zwi U Zwi
22: end for
23: {Maximization: Basis function parameters}
24: 8 i +----- G(Zwi)
25: end for
26: end for

"equal" covariance matrices. A full covariance matrix can be
an ellipsoid rotated at any angle. A diagonal covariance matrix
has p == 0 which results in an ellipsoid aligned to the x or y
axes. Finally, an equal matrix is a diagonal matrix with both
elements set to the same value. This results in a circle.

IV. EXPERIMENTAL RESULTS

In order to collect pressure data for SCPM training, we use
the MatScan pressure measurement system [6]. This floor mat
can capture barefoot plantar pressure with Ld sensora/cm'
density. There were 44 x 52 sensing cells on the pressure mat.

Five healthy subjects including two females, in age range
from 20 to 51 years old, were asked to perform the training
phase for two minutes and pressure sensor data was sampled
at 50 Hz. The high resolution pressure mat was placed in the
middle of a 5 meter long walkway and subjects were asked to
walk normally across it in one direction, then to turn around
and walk in the other direction. Subjects were asked to put
the right foot on the mat while walking one direction, and the
left foot in the other. The subjects were asked to practice for 1
minute before the test started to ensure proper foot placement
and to get them used to the system. 70% of the steps were
used for training the model to extract SCPM parameters and



Fig. 4. Per-sensor RMS error across all subjects and trials

the rest used to test the accuracy and efficiency of our proposed
algorithm.

In most sampling experiments, the Root Mean Square
(RMS)-per sensing cell error is used. This is considered supe­
rior to average error as it considers both positive and negative
deviations, and it emphasizes the larger errors. Specifically,
RMS error is equivalent to:

(6)

where e is the arithmetic mean and a e is the standard deviation
of per-sensor errors.

A. Effect of Number of Gaussians

To show the effect of K, the number of Gaussian mixtures
used in our modeling, the accuracy of data reconstruction is
evaluated at K == 2, 4, 6, 8 and 10 Gaussians. Since the EM
algorithm is sensitive to initial value of parameters, for a given
K, the parameter estimation was run 5 different times. The
RMS model error for different number of Gaussians (K) is
shown in Fig. 4. This was evaluated across all sensors covered
by the foot and all subjects. The RMS error decreases by
adding more degree of freedom to ~. We consider three dif­
ferent structures for ~ from Eqn. (5): 1) Full: with full degree
of freedom, 2) Diag: diagonal matrix by setting p == 0, and
3) Equal:equal-elements diagonal matrix by setting diagonal
with p == 0, a x == au Also, for a given ~ structure, greater K
results in less RMS error. The training and test errors in full
~ structure are almost identical that indicates no overfitting
happened in the training phase.

The training model with least RMS error among all 5
trials for each subject was used in test phase and the test
RMS modeling error is also shown in Fig. 4 as "Full (best)".
This error is less that all-trial error which indicates the more
accurate training model guarantees more accurate test results.
As EM is sensitive to initial conditions, it makes sense to
train several and select the best. This should also offer greater
stability.

Fig. 5. Per-subject error for 10 Gaussian mixtures

To compare the individual subject's results, SCPM for K ==
10 with different ~ structures was computed. The RMS model
error in test phase for each subject is shown in Fig. 5. As you
can see, the individual's results follow all-subject results on
effect of ~ structure.

B. Effect of Number of Sensors

So far, to reconstruct the plantar pressure image, all sensor
data from high resolution mat was used to calculate the
optimal values for the pressure weight vector w. However, the
anticipated application is sensor insole with very few sensors.
To study the effect of N, the number of sensors, we randomly
choose a subset of pressure sensors from all sensing cell
locations and compute the RMS modeling error with them
for a SCPM with K == 10 and a full covariance matrix as is
shown in Fig. 6. For each value of N, 10 different randomly
chosen sensor sets were used. Given that no effort was made
to select a "good" set, it is not surprising that the error goes
high as the sensors become more sparse.

This is addressed in Table I by using exactly N == K

Fig. 6. Per-location error from sparse sensor data
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TABLE I
PER-LOCATION RMS ERROR (KPA) FOR SPARSE SENSORS AT GAUSSIAN

CENTERS (N = K)
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