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Abstract

The traditional power spectral subtraction algorithm is computationally simple to implement but suffers from musical noise distor-
tion. In addition, the subtractive rules are based on incorrect assumptions about the cross terms being zero. A new geometric approach to
spectral subtraction is proposed in the present paper that addresses these shortcomings of the spectral subtraction algorithm. A method
for estimating the cross terms involving the phase differences between the noisy (and clean) signals and noise is proposed. Analysis of the
gain function of the proposed algorithm indicated that it possesses similar properties as the traditional MMSE algorithm. Objective eval-
uation of the proposed algorithm showed that it performed significantly better than the traditional spectral subtractive algorithm. Infor-
mal listening tests revealed that the proposed algorithm had no audible musical noise.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The spectral subtraction algorithm is historically one of
the first algorithms proposed for noise reduction (Boll,
1979; Weiss et al., 1974), and is perhaps one of the most
popular algorithms. It is based on a simple principle.
Assuming additive noise, one can obtain an estimate of
the clean signal spectrum by subtracting an estimate of
the noise spectrum from the noisy speech spectrum. The
noise spectrum can be estimated, and updated, during peri-
ods when the signal is absent. The enhanced signal is
obtained by computing the inverse discrete Fourier trans-
form of the estimated signal spectrum using the phase of
the noisy signal. The algorithm is computationally simple
as it only involves a single forward and inverse Fourier
transform.

The simple subtraction processing comes with a price.
The subtraction process needs to be done carefully to avoid
any speech distortion. If too much is subtracted, then some
speech information might be removed, while if too little is
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subtracted then much of the interfering noise remains.
Many methods have been proposed to alleviate, and in
some cases, eliminate some of the speech distortion intro-
duced by the spectral subtraction process (see review in
Loizou, 2007, Ch. 5). Some suggested over-subtracting esti-
mates of the noise spectrum and spectral flooring (rather
than setting to zero) negative values (Berouti et al.,
1979). Others suggested dividing the spectrum into a few
contiguous frequency bands and applying different non-lin-
ear rules in each band (Kamath and Loizou, 2002; Lock-
wood and Boudy, 1992). Yet, others suggested using a
psychoacoustical model to adjust the over-subtraction
parameters so as to render the residual noise inaudible
(Virag, 1999).

While the spectral subtraction algorithm can be easily
implemented to effectively reduce the noise present in the
corrupted signal, it has a few shortcomings. The spectra
obtained from the subtractive rules may contain some neg-
ative values due to errors in estimating the noise spectrum.
The simplest solution is to set the negative values to zero to
ensure a non-negative magnitude spectrum. This non-linear
processing of the negative values, however, creates small,
isolated peaks in the spectrum occurring randomly in time
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and frequency. In the time-domain, these peaks sound like
tones with frequencies that change randomly from frame to
frame and introduce a new type of ‘‘noise”, often called
musical noise (Berouti et al., 1979). In some cases, the musi-
cal noise can be more annoying to the listeners than the ori-
ginal distortions caused by the interfering noise. Other
factors contributing to the musical noise phenomenon
include the large variance in the estimates of the noisy
and noise signal spectra and the large variability in the sup-
pression function.

The derivation of the spectral subtraction equations is
based on the assumption that the cross terms involving
the phase difference between the clean and noise signals
are zero. The cross terms are assumed to be zero because
the speech signal is uncorrelated with the interfering noise.
While this assumption is generally valid since the speech
signal and noise are statistically uncorrelated, it does not
hold when applying the spectral subtraction algorithm over
short-time (20–30 ms) intervals. Consequently, the result-
ing equations derived from spectral subtraction are not
exact but approximations. Several attempts have been
made to take into account or somehow compensate for
the cross terms (Yoma et al., 1998; Kitaoka and Nakaga-
wa, 2002; Evans et al., 2006) in spectral subtraction. These
studies, however, focused on improving speech recognition
performance rather than improving speech quality. The
study in Evans et al. (2006) assessed the effect of neglecting
the cross terms on speech recognition performance. Signif-
icant degradations in performance were noted at SNR
levels near 0 dB, but not at high SNR levels (>10 dB).

In the present paper, we take a new approach to spectral
subtraction based on geometric principles. The proposed
algorithm is based on a geometric approach (GA), and
we will henceforth refer it to as the GA algorithm. It
addresses the two aforementioned major shortcomings of
spectral subtraction: the musical noise and invalid assump-
tions about the cross terms being zero. The approach taken
is largely deterministic and is based on representing the
noisy speech spectrum in the complex plane as the sum
of the clean signal and noise vectors. Representing the
noisy spectrum geometrically in the complex plane can pro-
vide valuable insights to the spectral subtraction approach
that might otherwise not be obvious. For one, such geo-
metric viewpoint can provide upper bounds on the differ-
ence between the phases of the noisy and clean spectra
(Vary, 1985). It will also tell us whether it is theoretically
possible to recover exactly the clean signal magnitude given
the noisy speech spectrum, and under what conditions.
Finally, it will inform us about the implications of discard-
ing the cross terms in as far as obtaining accurate estimates
of the magnitude spectrum.

This paper is organized as follows. Section 2 provides an
overview of the power spectral subtraction algorithm and
the assumptions made. Section 3 presents the proposed
geometric algorithm, Section 4 provides the implementa-
tion details, Section 5 presents the simulation results and
finally Section 6 presents our conclusions.
2. Power spectral subtraction: background and error analysis

Let y(n) = x(n) + d(n) be the sampled noisy speech sig-
nal consisting of the clean signal x(n) and the noise signal
d(n). Taking the short-time Fourier transform of y(n), we
get

Y ðxkÞ ¼ X ðxkÞ þ DðxkÞ ð1Þ

for xk = 2pk/N and k = 0,1,2, . . . ,N � 1, where N is the
frame length in samples. To obtain the short-term power
spectrum of the noisy speech, we multiply Y(xk) in the
above equation by its conjugate Y*(xk). In doing so, Eq.
(1) becomes

jY ðxkÞj2 ¼ jX ðxkÞj2 þ jDðxkÞj2 þ X ðxkÞ � D�ðxkÞ
þ X �ðxkÞDðxkÞ

¼ jX ðxkÞj2 þ jDðxkÞj2 þ 2jX ðxkÞj
� jDðxkÞj cosðhX ðkÞ � hDðkÞÞ: ð2Þ

The terms jD(xk)j2, X(xk) � D*(xk) and X*(xk) � D(xk) can-
not be obtained directly and are approximated as
E{jD(xk)j2}, E{X*(xk) � D(xk)} and E{X(xk) � D*(xk)},
where E [�] denotes the expectation operator. Typically,
E{jD(xk)j2} is estimated during non-speech activity, and
is denoted by jbDðxkÞj2. If we assume that d(n) is zero mean
and uncorrelated with the clean signal x(n), then the terms
E{X*(xk) � D(xk)} and E{X(xk) � D*(xk)} reduce to zero.
Thus, from the above assumptions, the estimate of the
clean speech power spectrum, denoted as jbX ðxkÞj2, can
be obtained by

jbX ðxkÞj2 ¼ jY ðxkÞj2 � jbDðxkÞj2: ð3Þ

The above equation describes the so called power spectrum

subtraction algorithm. The estimated power spectrum
jbX ðxkÞj2 in Eq. (3) is not guaranteed to be positive, but
can be half-wave rectified. The enhanced signal is finally
obtained by computing the inverse Fourier transform of
jbX ðxkÞj using the phase of the noisy speech signal.

Eq. (3) can also be written in the following form:

jbX ðxkÞj2 ¼ H 2ðxkÞjY ðxkÞj2; ð4Þ

where

HðxkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j

bDðxkÞj2

jY ðxkÞj2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðkÞ � 1

cðkÞ

s
ð5Þ

is the gain (or suppression) function and cðkÞ,
jY ðxkÞj2=jbDðxkÞj2. Assuming that the cross terms in (2)

are zero, H(xk) is always positive taking values in the range
of 0 6 H(xk) 6 1.

The cross terms, however, are not necessarily zero and
can in some instances be extremely large relative to
jY(xk)j2. To assess the error introduced by Eq. (3) when
the cross terms are left out, we rewrite Eq. (2) as follows:
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cXD , cos(hX � hD).
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jY ðxkÞj2 ¼ jX ðxkÞj2 þ jDðxkÞj2 þ DY ðxkÞ

¼ jbY ðxkÞj2 þ DY ðxkÞ; ð6Þ

where jbY ðxkÞj2 , jX ðxkÞj2 þ jDðxkÞj2 and DY(xk) denotes
the cross terms. From the above equation, we can define
the following relative error introduced when neglecting
the cross terms:

eðkÞ ,
jY ðxkÞj2 � jbY ðxkÞj2
��� ���

jY ðxkÞj2
¼ jDY ðxkÞj
jY ðxkÞj2

: ð7Þ

Note that the above cross term error e(k) is normalized
with respect to the noisy power spectrum of speech. Also,
it is assumed in Eq. (7), that the noise spectrum jD(xk)j2
is known exactly. Consequently, the cross term error e(k)
underestimates the true error incurred when in practice
the noise spectrum needs to be estimated via a voice activ-
ity detection algorithm or a noise estimation algorithm.

Of great interest is finding out how this relative error
e(k) varies as a function of the SNR at frequency bin k.
The answer to this question will tell us about the range
of SNR values for which the assumption that the cross
terms are zero are valid. That is, it will tell us the conditions
under which the power spectral subtraction rule Eq. (3) is
accurate.

It is easy to show that the normalized cross term error
e(k) can be written in terms of the SNR (in bin k) as follows
(see proof in Appendix A):

eðkÞ ¼ 2
ffiffiffiffiffiffiffiffiffi
nðkÞ

p
cosðhX ðkÞ � hDðkÞÞ

1þ nðkÞ þ 2
ffiffiffiffiffiffiffiffiffi
nðkÞ

p
cosðhX ðkÞ � hDðkÞÞ

�����
�����; ð8Þ

where n(k) , jX(xk)j2/jD(xk)j2 denotes the true SNR in bin
k. As expected, e(k) = 0 when cos (hX(k) � hD(k)) = 0, con-
sistent with Eq. (2). From Eq. (8), we can see that e(k) ? 0
when n(k) ?1 or when n(k) ? 0. Hence, asymptotically
as the SNR ? ±1, it is safe to make the assumption that
the cross terms are negligible. For SNR values in between,
however, the cross term error e(k) is not negligible and it
can be quite large reaching a maximum when n(k) = 1
(i.e., SNR = 0 dB).

Fig. 1 plots e(k) as a function of n(k) (expressed in dB)
for fixed values of cos(hX(k) � hD(k)). It is clear from this
figure that e(k) is large for a wide range of n(k) values cen-
tered around 0 dB, and particularly within the [�20, 20] dB
range. Outside this range, e(k) is extremely small. The error
e(k) depends on the value of cos(hX(k) � hD(k)), but is more
sensitive to the values of cos (hX(k) � hD(k)) for SNR
values near 0 dB. The error is largest when cos
(hX(k) � hD(k)) < 0 and n(k) � 1 (i.e., SNR � 0 dB), with
e(k) =1 when cos (hX(k) � hD(k)) = �1 and n(k) = 1.
The error is considerably smaller when cos
(hX(k) � hD(k)) > 0. In fact, it is bounded in the range
0 6 e(k) 6 0.5, with the upper bound attained when cos
(hX(k) � hD(k)) = 1 and n(k) = 1.

As it is evident from Fig. 1, the cross term error e(k) is
large particularly when the SNR is near 0 dB. Unfortu-
nately, this is the spectral SNR that most speech enhance-
ment algorithms operate. To illustrate this, we show in
Figs. 2 and 3 histograms (normalized) of e(k) obtained
using real speech data embedded at low ( 5 dB SNR) and
high (15 dB SNR) global SNR levels (estimated using the
rms levels of speech and noise) in multi-talker babble and
car noise respectively. These figures also show the corre-
sponding histograms of n(k) (in dB) for the same data
and SNR levels (note that the histograms show n(k) for
all frequency bins). A total of 30 sentences (>1 min of
speech) taken from the NOIZEUS corpus (Hu and Loizou,
2007) was used for the computation of these histograms.
As shown in Figs. 2 and 3, the instantaneous SNR n(k)
has a wide distribution which spans the range of �40 dB
to +40 dB, with a peak near 0 dB in both types of noise
and SNR levels. Hence, the n(k) = 0 dB value is quite com-
mon even at high SNR levels. Examining the distribution
of the cross term error e(k) (right column in Figs. 2 and
3), we note that it spans for the most part the range of
[0, 0.5], with a small portion exceeding 0.5. As mentioned
earlier (see also Eq. (7)), the error e(k) is expressed relative
to the value of jY(xk)j2 and is not absolute. So, if for
instance, e(k) = 0.5, then the magnitude of the cross terms
will be 50% of the value of jY(xk)j2, i.e., it will be quite sig-
nificant. The fact that the distribution of e(k) is not concen-
trated at zero (see right panels in Fig. 2) provides further
support to our hypothesis that the cross terms in Eq. (2)
are not necessarily zero and should not be ignored.

To summarize, the above error analysis suggests that the
implicit assumption in Eq. (3) that the cross terms are zero
is not valid for spectral SNR (i.e., n(k)) values near 0 dB,
which is the region wherein most speech enhancement algo-
rithms operate. Consequently, large estimation errors can
result from the approximation given by Eq. (3). The con-
clusion that the cross term error e(k) is largest for SNR lev-
els near 0 dB is consistent with the analysis in Evans et al.
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Fig. 2. Plots on the left show histograms of n (in dB) for speech embedded in multi-talker babble at 5 and 15 dB SNR. Plots on the right show histograms
of the normalized cross-error term e(k) for speech embedded in multi-talker babble at 5 and 15 dB SNR.
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(2006). Significant degradations in speech recognition per-
formance were noted in Evans et al. (2006) for SNR levels
near 0 dB, but not at high SNR levels (>10 dB). Next, we
present a new algorithm that makes no assumptions about
the cross terms in Eq. (2) being zero.
3. A geometric approach to spectral subtraction

From Eq. (1) we note that the noisy spectrum Y(xk) at
frequency xk is obtained by summing two complex-valued
spectra at frequency xk. As such, Y(xk) can be represented
geometrically in the complex plane as the sum of two com-
plex numbers, X(xk) and D(xk). This is illustrated in Fig. 4
which shows the representation of Y(xk) as a vector addi-
tion of X(xk) and D(xk) in the complex plane.

Eq. (5) gave the commonly used gain function of power
spectrum subtraction algorithms that is obtained after
making the assumption that the cross terms are zero or
equivalently that the phase difference [hX(k) � hD(k)] is
equal to ±p/2. Next, we derive the general gain function
for spectral subtraction that makes no assumptions about
the value of the phase difference between the noise and
clean signals. We first rewrite Eq. (1) in polar form as

aY ejhY ¼ aX ejhX þ aDejhD ; ð9Þ
where {aY,aX,aD} are the magnitudes and {hY, hX,hD} are
the phases of the noisy, clean and noise spectra respec-
tively. We henceforth drop the frequency index k for
convenience.

Next, consider the triangle shown in Fig. 5. Using the

Law of Sines or equivalently the right triangle ABC
M

with
AB ? BC, we have

AB ¼ aY sinðhD � hY Þ ¼ aX sinðhD � hX Þ;
) a2

Y sin2ðhD � hY Þ ¼ a2
X sin2ðhD � hX Þ;

) a2
Y ½1� cos2ðhD � hY Þ� ¼ a2

X ½1� cos2ðhD � hX Þ�;
) a2

Y ð1� c2
YDÞ ¼ a2

X ð1� c2
XDÞ;

ð10Þ
where cYD , cos(hY � hD) and cXD , cos(hX � hD). From
the above equation, we can obtain the new gain function

HGA ¼
aX

aY
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

YD

1� c2
XD

s
: ð11Þ

The above gain function is always real and positive (i.e.,
HGA P 0) since the terms cYD and cXD are bounded by
one. Unlike the power spectral subtraction gain function
Eq. (5) which is always positive and smaller (or equal) than
one, the above gain function can be larger than one if
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jcYDj < jcXDj. Eq. (11) is one of many equations that can be
derived using trigonometric principles. Alternative equa-
tions can be found in Loizou (2007, Ch. 5).

It is worthwhile noting that the above suppression func-
tion reduces to the suppression function of the power spec-
tral subtraction method (i.e., Eq. (5)) if cXD = 0, i.e., if the
signal and noise vectors are orthogonal to each other. Sta-
tistically, if the signal and noise are orthogonal to each
other (i.e., E[X(xk) � D(xk)] = 0) and are zero mean, then
they are also uncorrelated (Papoulis and Pillai, 2002, p.
211). To prove that the above suppression function reduces
to that given in Eq. (5) when cXD = 0, it is easy to see from
Fig. 4 that when the noise and clean signal vectors are
orthogonal to each other (i.e., cXD = 0), then
cYD ¼
aD

aY
: ð12Þ
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Substituting the above equation in Eq. (11), we get Eq. (5).
In view of the above analysis, we can say that the suppres-
sion rule given in Eq. (11) is the true and exact suppression
rule for spectral subtractive algorithms if no assumptions
are made about the statistical relationship between the sig-
nal and the noise. In contrast, the suppression rule given in
Eq. (5) is merely an approximation since it assumes that
cXD = 0, i.e., that the clean signal and noise vectors are
orthogonal to each other over short-time intervals (20–
30 ms). Multiplication of the noisy signal by the suppres-
sion function given in Eq. (5) would not yield the clean
signal magnitude spectrum even if we had access to the true
noise magnitude spectrum (i.e., jD(xk)j). In contrast, mul-
tiplication of the noisy magnitude spectrum (aY) by the
suppression function given in Eq. (11) would yield exactly
the clean signal magnitude spectrum (i.e., aX).

The aforementioned suppression function relies on the
estimation of the phase differences between the noisy (or
clean) and noise signals. That by itself, however, is a diffi-
cult task and no methods currently exist to determine the
values of these phases accurately. One possibility is to
derive and make use of explicit relationships between the
phases of noisy and noise signals using trigonometric prin-
ciples. In doing so, we can solve explicitly for cYD and cXD

yielding (see proof in Appendix B)

cYD ¼
a2

Y þ a2
D � a2

X

2aY aD
; ð13Þ

cXD ¼
a2

Y � a2
X � a2

D

2aX aD
: ð14Þ

Clearly, the main obstacle in utilizing the above equations
to estimate the phase differences between the signal and
noise signals is their dependency on the clean signal ampli-
tude, which we do not have. We can however derive an
alternative equation for cYD and cXD by dividing both
numerator and denominator of Eqs. (13) and (14) by a2

D.
In doing so, we get

cYD ¼
cþ 1� n

2
ffiffiffi
c
p ; ð15Þ

cXD ¼
c� 1� n

2
ffiffiffi
n
p ; ð16Þ

where the variables c and n are defined as follows:

c ,
a2

Y

a2
D

; ð17Þ

n ,
a2

X

a2
D

: ð18Þ

Note that the terms c and n are the instantaneous versions
of the a posteriori and a priori SNRs, respectively used in
MMSE algorithms (Ephraim and Malah, 1984; Loizou,
2005). Substituting Eqs. (15) and (16) into Eq. (11), we
get the following expression for the suppression function
in terms of c and n:
HGAðn; cÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðcþ1�nÞ2

4c

1� ðc�1�nÞ2
4n

vuuut : ð19Þ

The above suppression function can in principle be larger
than one. Much like the gain function of MMSE-based
enhancement algorithms (Ephraim and Malah, 1984), the
above gain function depends on two parameters, c and n.
To better understand the dependency of these two param-
eters on suppression, we plot in Fig. 6, HGA(n,c) as a func-
tion of (c � 1) for fixed values of n. The suppression curves
of the MMSE algorithm (Ephraim and Malah, 1984) are
superimposed for comparison. It is clear that the gain func-
tions of the GA algorithm follow for the most part the pat-
tern of the MMSE gain functions. For values of (c � 1)
smaller than 5 dB, the gain functions of the GA approach
follow closely the MMSE gain functions, and deviate there-
after. For values of (c � 1) greater than 5 dB, the gain func-
tions of the GA algorithm become increasing more
suppressive than the MMSE gain functions.

Fig. 7 plots HGA(n,c) as a function of n for fixed values
of (c � 1). The Wiener gain function (e.g., HW = n/(n + 1))
and the MMSE gain function are also plotted for compar-
ison. Overall, for the same value of (c � 1), the GA gain
function follows closely the MMSE gain function for small
and negative values of (c � 1). The GA gain function, how-
ever, becomes more suppressive than the MMSE gain func-
tion for values of (c � 1) larger than 5 dB, consistent with
the suppression curves in Fig. 6.

The fact that the gain function of the GA algorithm has
similar characteristics as those found in the MMSE algo-
rithms, suggests that it inherits the properties and behavior
of the MMSE algorithm (Cappe, 1994). Much like in the
MMSE algorithm, the a posteriori parameter c acts as a
correction parameter that influences attenuation only when
n is low. The correction, however, is done in an intuitively
opposite direction. As shown in Fig. 6, strong attenuation
is applied when c is large, and not when c is small as one
would expect. This counter-intuitive behavior is not an
artifact of the algorithm, but it is in fact useful when deal-
ing with low-energy speech segments. In segments contain-
ing background noise, the c values are in some frames
unrealistically high, and those frames are assigned an
increased attenuation. This over-attenuation is done
because the suppression rule puts more ‘‘faith” in the n val-
ues, which are small in those frames compared to the c val-
ues. Since the attenuation in the MMSE algorithm is
primarily influenced by the smoothed value of the a priori

SNR, the attenuation itself will not change radically from
frame to frame. Consequently, the musical noise will be
reduced or eliminated altogether. In contrast, the standard
power spectral subtraction algorithm depends on the esti-
mation of the a posteriori SNR which can change radically
from frame to frame. As a result, musical noise is pro-
duced. In summary, it is the smoothing behavior of the
‘‘decision-directed” approach in conjunction with the
MMSE suppression rule that is responsible for reducing
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the musical noise effect in the MMSE algorithm (Cappe,
1994). Since the GA algorithm inherits the behavior of
the MMSE algorithm, we expect little or no musical noise
with the GA algorithm.

We should point out here that there are two main differ-
ences between the proposed GA algorithm and the MMSE
algorithm. First, the GA algorithm is deterministic and is
not derived using any statistical model. The clean magni-
tude spectrum is treated as unknown, but deterministic.
Consequently, no assumptions are made about the statisti-
cal distributions of the speech and noise Fourier transform
coefficients, as done in the MMSE algorithm. Second, the
parameters c and n are instantaneous values and not
long-term, statistical average values. Consequently, differ-
ent techniques need to be employed to estimate these
parameters, and these techniques are discussed next. For
completeness, we assess and compare the performance of
the proposed GA algorithm using both instantaneous
and long-term average measurements of c and n.

4. Implementation

The gain function given in Eq. (19) is the ideal one and
in practice it needs to be estimated from the noisy observa-
tions. The implementation of the gain function requires
estimates of c and n. According to Eqs. (17) and (18), c
and n are instantaneous values and not long-term, statisti-
cal average values as in Ephraim and Malah (1984). Note
that in Ephraim and Malah (1984), these two terms were
defined as nM , E½a2

X �=E½a2
D� and cM , a2

Y =E½a2
D�. Therefore,

the methods proposed in Ephraim and Malah (1984) can-
not be used to estimate c and n in Eq. (19). Alternative
methods are thus proposed in this paper for estimating c
and n.

To estimate n, we propose to use present as well as past
spectral information. More specifically, we can make use of
the enhanced magnitude spectrum obtained in the past
frame and approximate n as

n̂Iðk; kÞ ¼ â2
X ðk� 1; kÞ=â2

Dðk� 1; kÞ; ð20Þ

where n̂Iðk; kÞ indicates the estimate of n at frame k and bin
k, and the subscript I indicates instantaneous measure-
ment. The above estimate of the instantaneous value of n
utilizes only (immediate) past spectral information. We
can also utilize the relationship between the true values
of c and n (see Appendix B, Eq. (29)) and get an estimate
of n based on spectral information available in the present
frame. More precisely, as shown in Appendix B,
n ¼ cþ 1� 2

ffiffiffi
c
p � cYD, and after exploiting the fact that

cYD is bounded, we can use the lower bound of n (see
Appendix B, Eq. (29)) as its estimate, i.e., n̂ðk; kÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

ĉðk; kÞ
p

� 1
� �2

, where ĉðk; kÞ denotes the estimate of c at
frame k and bin k. Combining the two estimates of n de-
rived using past and present spectral information, we get
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n̂ðk; kÞ ¼ a � âX ðk� 1; kÞ
âDðk� 1; kÞ

� �2

þ ð1� aÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉðk; kÞ

p
� 1

� 	2

;

ð21Þ
where a is a smoothing constant, and âDðk; kÞ is the esti-
mate of the magnitude spectrum of the noise. The above
equation is a weighted average of past and present SNR
instantaneous measurements, and the smoothing constant
controls the weight placed on past and present spectral
information. Note that Eq. (21) gives an average estimate
of n utilizing past and present spectral information. On that
regard it is similar to the decision-directed approach used
in Ephraim and Malah (1984). If a = 1, then Eq. (21) re-
duces to the instantaneous estimate of n given in Eq.
(20). Both estimates (instantaneous and average) of n will
be explored and evaluated.

For ĉðk; kÞ, we use the following instantaneous estimate:

ĉIðk; kÞ ¼
aY ðk; kÞ
âDðk; kÞ


 �2

; ð22Þ

where âDðk; kÞ is an estimate of the noise spectrum obtained
using a noise-estimation algorithm. We considered smooth-
ing and limiting the values of ĉðk; kÞ in order to reduce the
rapid fluctuations associated with the above computation
of ĉðk; kÞ and also to limit the over-suppression of the sig-
nal for large values of ĉðk; kÞ (see Fig. 6). We consider
smoothing ĉðk; kÞ as follows:
ĉGAðk; kÞ ¼ b � ĉGAðk� 1; kÞ þ ð1� bÞ �min½ĉIðk; kÞ; 20�;
ð23Þ

where ĉGAðk; kÞ is the smoothed estimate of c, ĉIðk; kÞ is gi-
ven by Eq. (22) and b is a smoothing constant. The min

operation was used to limit the value of ĉIðk; kÞ to a max-
imum of 13 dB (=10log10 (20)) and avoid over-attenuation
of the signal (see Fig. 6). Note that when b = 0 in Eq. (23),
we get ĉGAðk; kÞ ¼ ĉIðk; kÞ. We found that the smoothing of
ĉðk; kÞ improved the estimate of âX ðk; kÞ in the mean-square
error sense (see experiments in the next section). Note also
that Eq. (21) gives an average estimate of c utilizing past
and present spectral information. If b = 0, then Eq. (23) re-
duces to the instantaneous estimate of c given in Eq. (22).
Both estimates (instantaneous and average) of c will be ex-
plored and evaluated.

The above estimated values of c and n (i.e., ĉGAðk; kÞ and
n̂ðk; kÞ) are used to approximate the gain function in Eq.
(19). In principle, the transfer function given in Eq. (19)
is based on instantaneous values of c and n. In practice,
however, the true values of c and n may vary drastically
from frame to frame and it is extremely challenging to esti-
mate those values with high degree of accuracy and reliabil-
ity. Furthermore, we cannot compute the true value of n as
we lack access to the clean signal spectrum. We are thus
forced to rely on past estimates of the clean signal spectrum
to approximate n. Given that c and n can be estimated



1 Available from: http://www.utdallas.edu/~loizou/speech/noizeus/.
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using either instantaneous (e.g., Eq. (22)) or average esti-
mates (e.g., Eq. (23)), we will explore both possibilities.
In doing so, we will make use of two transfer functions.
The first transfer function, denoted as bH GAI ðn̂I ; ĉIÞ, is based
on the instantaneous measurements of c and n given by Eq.
(22) and Eq. (20) respectively. The second transfer func-
tion, denoted as bH GAðn̂; ĉGAÞ, is based on the long-term
average measurements of c and n given by Eqs (23), (21)
respectively. Both transfer functions will be explored and
compared.

As mentioned earlier, HGA(n,c) (as well as bH GAðn̂; ĉGAÞ
or bH GAI ðn̂I ; ĉIÞÞ can be larger than one. From Eq. (2) we
see that HGA(n,c) > 1 when cXD < 0. But, as shown in
Fig. 1, when cXD < 0, the normalized cross term error
e(k) can be large, particularly if n � 0 dB. This suggests
that the cross term error e(k), and possibly the magnitude
spectrum estimation error, can be large whenbH GAðn̂; ĉGAÞ > 1. For that reason, we decided to limit the
value of bH GAðn̂; ĉGAÞ to be always smaller (or equal) to 1.

To summarize, the proposed GA algorithm involved the
following steps, which were applied to each frame of noisy
speech

Step 1: Using the FFT, compute the magnitude spectrum
aY(k,k) of the noisy signal at frame k.

Step 2: Using a noise estimation algorithm (e.g., Martin,
2001), update the power spectrum of the noise sig-
nal, i.e., update ½âDðk; kÞ�2.

Step 3: Compute ĉGAðk; kÞ according to Eqs. (23) and
(22).

Step 4: Use ĉGAðk; kÞ to estimate n̂ðk; kÞ according to Eq.
(21). Floor n̂ðk; kÞ to nmin for values of n̂ðk; kÞ
smaller than nmin, where nmin = �26 dB.

Step 5: Estimate the gain function bH GAðn̂; ĉGAÞ using Eq.
(19) and limit it to 1.

Step 6: Obtain the enhanced magnitude spectrum of the
signal by: âX ðk; kÞ ¼ bH GAðn̂; ĉGAÞ � aY ðk; kÞ.

Step 7: Compute the inverse FFT of âX ðk; kÞ � ejhY ðk;kÞ,
where hY(k,k) is the phase of the noisy signal, to
obtain the enhanced speech signal.

The above algorithm uses the transfer functionbH GAðn̂; ĉGAÞ that is based on smoothed measurements of
c and n (Eqs. (21) and (23)). The algorithm which uses
the transfer function bH GAI ðn̂I ; ĉIÞ, based on instantaneous
measurements of c and n, can be implemented in a similar
fashion by setting b = 0 in Eq. (23) and a = 1 in Eq. (21).
We will be referring to the instantaneous version of the
GA algorithm as the GAi algorithm.

The proposed GA algorithm was applied to 20-ms dura-
tion frames of speech using a Hamming window, with 50%
overlap between frames. The overlap-and-add method was
used to reconstruct the enhanced signal. The smoothing
constants used in Eqs. (21) and (23) were set to a = 0.98
and b = 0.6, respectively. These constants were chosen
based on listening experiments as well as experiments
assessing the mean-square error between the estimated
and true magnitude spectra (see evaluation in next section).
For the GAi algorithm, these constants were set to a = 1
and b = 0. The minimum statistics noise estimation algo-
rithm (Martin, 2001) was used for estimating/updating
the noise spectrum.

5. Evaluation

We performed two types of evaluation of the proposed
GA algorithm. In the first evaluation, we computed the
mean square error (MSE) between the estimated
(enhanced) magnitude ðâX Þ and the true (clean) magnitude
spectra (aX). This evaluation was done for both the pro-
posed algorithm and the traditional spectral-subtraction
algorithm which assumes that the cross terms are zero. This
comparison will tell us whether the MSE value will be
reduced when the cross terms are taken into account. Small
values of MSE, however, might not necessarily imply better
speech quality as the MSE is not a perceptually motivated
error criterion (Loizou, 2005). For that reason, we conduct
a second evaluation in which we compare the quality of
enhanced speech by the proposed and standard spectral
subtractive algorithms using objective measures.

5.1. MSE evaluation

The MSE between the true and estimated magnitude
spectra is defined as

MSE ¼ 1

M � N
XM�1

k¼0

XN�1

k¼0

ðaX ðk; kÞ � âX ðk; kÞÞ2; ð24Þ

where aX(k,k) is the true (clean) magnitude spectrum at
frame k and bin k; âX ðk; kÞ is the estimated magnitude spec-
trum (following enhancement), M is the total number of
frames in a sentence, and N is the number of frequency bins.

The MSE was computed for the proposed algorithm and
compared against the corresponding MSE values obtained
by the traditional spectral subtraction algorithm. To assess
whether smoothing ĉðk; kÞ as per Eq. (23) provided any sig-
nificant reductions in MSE, we also conducted another set
of experiments in which we varied the smoothing constant
b Eq. (23) from 0 to 1. A value of b = 0 corresponds to no
smoothing of ĉðk; kÞ. The smoothing constant a was fixed
at a = 0.98 (this was based on prior experiments demon-
strating that best performance is obtained with high values
(close to one) of a. As an additional comparison, we
included the evaluation of the GAi algorithm in which
b = 0 and a = 1. In fairness, we also implemented the basic
spectral subtractive algorithm given in Eq. (5), and
replaced ĉðkÞ in Eq. (5) with its smoothed version given
in Eq. (23). We refer to this algorithm as SSsm. Thirty sen-
tences from the NOIZEUS database (Hu and Loizou,
2007) were used for the MSE evaluation of the proposed
algorithm. The NOIZEUS sentences1 were sampled at

http://www.utdallas.edu/~loizou/speech/noizeus/


Table 1
MSE values obtained by the GA algorithm, the GAi algorithm (a = 1, b = 0), the spectral subtraction (SS) algorithm and the smoothed spectral
subtractive (SSsm) algorithm for different values of b

Algorithm SNR (dB) b = 0 b = 0.2 b = 0.4 b = 0.6 b = 0.8 b = 0.98 b = 0, a = 1

GA 0 2.74 2.70 2.72 2.67 2.41 1.97 4.51
SSsm 0 4.26 4.22 4.11 3.95 3.79 3.76 4.26
SS 0 4.26 4.26 4.26 4.26 4.26 4.26 4.26
GA 5 1.49 1.53 1.55 1.52 1.35 1.07 2.78
SSsm 5 1.33 1.31 1.28 1.24 1.21 1.32 1.33
SS 5 1.33 1.33 1.33 1.33 1.33 1.33 1.33
GA 10 0.81 0.86 0.87 0.85 0.76 0.59 1.60
SSsm 10 0.41 0.41 0.40 0.39 0.39 0.49 0.41
SS 10 0.41 0.41 0.41 0.41 0.41 0.41 0.41

2 The objective evaluation of the MMSE algorithm is only included in
this paper for completeness; as it shares some of its properties with the GA
algorithm (see Section 3). The MMSE algorithm cannot be directly (or
fairly) compared with the GA algorithm as it is based on different
principles, designed using different assumptions and belonging to a
different class of algorithms, namely the statistical-model based
algorithms.
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8 kHz, and were corrupted by white noise at 0, 5 and 10 dB
SNR levels. The results are given in Table 1.

It is clear from Table 1 that the proposed GA algorithm
produced significantly smaller MSE values than the tradi-
tional spectral subtraction algorithm, and the difference
was particularly evident at low SNR levels (0 and 5 dB)
with b = 0.98. The MSE values obtained by the two algo-
rithms at 10 dB were comparable, with the traditional
spectral subtraction algorithm yielding slightly smaller
MSE values. Best performance (smaller MSE values) was
obtained with the GA algorithm with b = 0.98, clearly
indicating that the smoothing of ĉðk; kÞ helped reduce
the MSE. The benefit brought by smoothing ĉðk; kÞ in
the SS algorithm was relatively small. Worst performance
(larger MSE values) were obtained by the GA algorithm
when c and n were not smoothed (i.e., when instantaneous
measurements were used) suggesting that inclusion of past
and present spectral information can be beneficial. The
outcome that the SS algorithm performed reasonably well
and its performance was comparable to that obtained by
the GA algorithm is consistent with the earlier observation
(see Fig. 1) that the cross terms are negligible and can be
ignored when the SNR is high. In stark contrast, the cross
terms cannot be ignored when the SNR is near 0 dB (but
can be ignored for extremely low SNR, i.e., SNR ? �1).
In brief, the derived gain function Eq. (19) remains robust
even at low SNR levels (0–5 dB), whereas the SS gain
function Eq. (5) becomes inaccurate at low SNR levels
(0 dB).

5.2. Quality evaluation

The proposed geometric approach (GA) algorithm was
evaluated using the PESQ and log likelihood ratio (LLR)
objective measures, which were found in Hu and Loizou
(2008) to correlate moderately high with subjective judg-
ments of speech quality. Thirty sentences from the NOIZ-
EUS database (Hu and Loizou, 2007) were used for the
objective evaluation of the proposed algorithm, with half
of the sentences produced by 3 female speakers and the
other half produced by 3 male speakers. The NOIZEUS
sentences were sampled at 8 kHz, and were corrupted by
multi-talker babble, street, and car noise taken from the
AURORA database (Hirsch and Pearce, 2000) at 0, 5
and 10 dB SNR levels. The sentences were also corrupted
by white noise at 0, 5 and 10 dB SNR levels.

The PESQ (ITU, 2000) and LLR objective measures
(Hu and Loizou, 2006) were used to assess speech qual-
ity. The PESQ measure obtained a correlation of
q = 0.67 in predicting overall quality of noise-suppressed
speech (Hu and Loizou, 2006; Hu and Loizou, 2008), and
the LLR measure obtained a correlation of q = 0.61.
Higher correlations were obtained with the PESQ
(q = 0.89) and LLR (q = 0.85) measures in Hu and Loi-
zou (2008) after averaging objective scores and ratings
across the various noise conditions. The segmental SNR
measure, which is often used to evaluate the performance
of speech enhancement algorithms, performed very
poorly (q = 0.31) in Hu and Loizou (2008) and was
therefore not used in this study.

For comparative purposes, we evaluate the performance
of the traditional spectral subtraction (SS) algorithm
implemented using Eq. (5), and implemented using the
smoothed version of ĉðkÞ given in Eq. (23). We refer to
the latter implementation as the SSsm algorithm. In fair-
ness, we used the same smoothing constant b as in the
GA algorithm. For completeness, and for reference pur-
poses only2, we report the performance of the traditional
MMSE algorithm (Ephraim and Malah, 1984) along with
an implementation based on a smoothed version of ĉðkÞ
(i.e., Eq. (23)), which we refer to as the MMSEsm algo-
rithm. The decision-directed approach was used in the
implementation of the MMSE algorithm to estimate n
with a = 0.98. All algorithms were tested using two differ-
ent values of b (b = 0.6 and b = 0.98) and with a = 0.98.
The latter value of b was found (see Table 1) to yield smal-
ler MSE values than the traditional spectral subtraction
algorithm.



Table 2
Objective evaluation (in terms of PESQ values) and comparison of the proposed GA algorithm against the spectral subtraction (SS), the smoothed spectral
subtractive (SSsm) algorithm, the MMSE (Ephraim and Malah, 1984) algorithm and the smoothed MMSE algorithm (MMSEsm)

Algorithm Noise type SNR = 0 dB SNR = 5 dB SNR = 10 dB

b = 0.6 b = 0.98 b = 0.6 b = 0.98 b = 0.6 b = 0.98

GA Babble 1.81 1.62 2.16 2.07 2.50 2.44
GAi 1.65 1.88 2.14
SS 1.73 1.73 2.04 2.04 2.37 2.37
SSsm 1.75 1.72 2.06 2.03 2.39 2.34
MMSE 1.76 1.76 2.12 2.12 2.51 2.51
MMSEsm 1.73 1.80 2.05 2.12 2.38 2.43

GA Car 1.84 1.81 2.19 2.18 2.51 2.52
GAi 1.69 1.74 2.04
SS 1.69 1.69 1.98 1.98 2.31 2.31
SSsm 1.72 1.67 2.00 1.93 2.34 2.23
MMSE 1.93 1.93 2.28 2.28 2.66 2.66
MMSEsm 1.88 1.81 2.16 2.15 2.45 2.43

GA Street 1.76 1.69 2.16 2.11 2.50 2.47
GAi 1.43 1.79 2.11
SS 1.70 1.70 2.00 2.00 2.36 2.36
SSsm 1.71 1.66 2.02 1.94 2.37 2.27
MMSE 1.80 1.80 2.20 2.20 2.58 2.58
MMSEsm 1.75 1.76 2.10 2.08 2.38 2.41

GA White 1.81 1.90 2.20 2.24 2.53 2.58
GAi 1.47 1.77 2.08
SS 1.66 1.66 1.95 1.95 2.29 2.29
SSsm 1.69 1.61 1.98 1.88 2.31 2.19
MMSE 2.00 2.00 2.39 2.39 2.74 2.74
MMSEsm 1.85 1.74 2.17 2.10 2.45 2.42

Table 3
Objective evaluation (in terms of LLR values) and comparison of the proposed GA algorithm against the spectral subtraction (SS), the smoothed spectral
subtractive (SSsm) algorithm, the MMSE (Ephraim and Malah, 1984) algorithm and the smoothed MMSE algorithm (MMSEsm)

Algorithm Noise type SNR = 0 dB SNR = 5 dB SNR = 10 dB

b = 0.6 b = 0.98 b = 0.6 b = 0.98 b = 0.6 b = 0.98

GA Babble 1.06 1.13 0.86 0.91 0.69 0.70
GAi 1.19 1.02 0.81
SS 0.94 0.94 0.75 0.75 0.55 0.55
SSsm 0.93 0.90 0.74 0.72 0.54 0.53
MMSE 1.15 1.15 0.90 0.90 0.67 0.67
MMSEsm 1.24 1.15 1.00 0.90 0.83 0.70

GA Car 0.98 1.04 0.80 0.83 0.66 0.65
GAi 1.24 1.05 0.87
SS 1.00 1.00 0.78 0.78 0.59 0.59
SSsm 0.98 0.98 0.76 0.77 0.57 0.58
MMSE 1.01 1.01 0.79 0.79 0.63 0.63
MMSEsm 1.12 1.10 0.92 0.87 0.78 0.70

GA Street 1.04 1.12 0.84 0.88 0.70 0.71
GAi 1.23 1.05 0.85
SS 1.01 1.01 0.81 0.81 0.62 0.62
SSsm 1.00 0.98 0.79 0.80 0.60 0.61
MMSE 1.12 1.12 0.88 0.88 0.68 0.68
MMSEsm 1.27 1.19 1.04 0.95 0.89 0.76

GA White 1.55 1.60 1.28 1.31 1.09 1.09
GAi 1.73 1.43 1.20
SS 1.74 1.74 1.47 1.47 1.22 1.22
SSsm 1.72 1.66 1.45 1.39 1.20 1.15
MMSE 1.54 1.54 1.25 1.25 1.05 1.05
MMSEsm 1.86 1.83 1.57 1.50 1.37 1.25
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The objective results are given in Table 2 for the PESQ
measure and in Table 3 for the LLR measure. High values
of PESQ indicate better performance, while high values of
LLR indicate poor performance. The GA algorithm,
implemented with b = 0.6, performed significantly and
consistently better than the spectral subtractive algorithms
(SS and SSsm) in all conditions. Statistical analysis
(paired samples t-tests) confirmed that the differences
were statistically significant (p < 0.05). The GA algorithm
performed relatively worse when implemented with
b = 0.98, particularly at the low-SNR levels. This suggests
that the GA algorithm is sensitive to the value of b used
for estimating and updating ĉðk; kÞ. A value of b = 0.6
provides roughly equal weight to the use of past and spec-
tral information when estimating ĉðk; kÞ. In contrast, the
performance of the spectral subtractive algorithm was
not affected significantly when ĉðk; kÞ was smoothed. The
GAi algorithm, based on instantaneous measurements of
c and n, performed the worst in all conditions. This is
not surprising given that the instantaneous values of c
and n vary dramatically from frame to frame causing in
turn high levels of musical noise (Cappe, 1994) resulting
from rapid fluctuations (over time) of the gain function.
This outcome suggests that the smoothing of c and n is
necessary to obtain high quality speech free of musical
tones. The pattern in performance was very similar when
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Fig. 8. Spectrograms of the IEEE sentence ‘‘Wipe the grease off his dirty face”

proposed GA algorithm (bottom Panel e), the spectral subtractive algorithm (
panels show the spectrogram of the sentence in quiet and in noise, respectivel
the algorithms were evaluated using the LLR objective
measure (Table 3).

The performance of the MMSE algorithm was signifi-
cantly better (p < 0.05) than the GA algorithm in most con-
ditions, except in babble at 0 and 5 dB SNR (see Table 2).
Smoothing of c in the MMSE algorithm yielded a decre-
ment in performance in all conditions (see MMSEsm
entries in Table 2). Computationally, the GA algorithm
has the advantage over the MMSE algorithm in that its
implementation only requires a few multiply and add oper-
ations (see Eq. (19)). The MMSE algorithm, on the other
hand, requires implementations of Bessel functions or
alternatively requires sufficient storage for two-dimensional
(c and n) look-up tables. Computationally simple imple-
mentations of the MMSE algorithm were reported in
Wolfe and Godsill (2001).

Fig. 8 shows spectrograms of an example sentence pro-
cessed by the subtractive (SS and SSsm) and GA algo-
rithms (b = 0.6) in 5 dB SNR (babble). It is clear that the
GA algorithm yielded significantly lower residual noise
than the spectral subtractive algorithms. Informal listening
tests confirmed that the GA-enhanced speech signal had a
smoother background with no audible musical noise, at
least for the SNR levels and types of noise tested. As men-
tioned earlier (see Section 3), we believe that the GA algo-
rithm does not have musical noise because it inherits some
1500 2000

1500 2000

1200 1400 1600 1800 2000

1200 1400 1600 1800 2000

ecs)
1200 1400 1600 1800 2000

(a)

(b)

(c)

(d)

(e)

(sp05.wav in NOIZEUS database) in 5 dB SNR babble processed by the
Panel c) and smoothed spectral subtractive algorithm (Panel d). Top two
y.



Y. Lu, P.C. Loizou / Speech Communication 50 (2008) 453–466 465
of the properties of the MMSE algorithm. In contrast, the
spectral subtractive algorithms yielded large amounts of
musical noise3.

6. Conclusions

The present paper presented a new approach (GA algo-
rithm) to spectral subtraction based on geometric princi-
ples. Unlike the conventional power spectral subtraction
algorithm which assumes that the cross terms involving
the phase difference between the signal and noise are zero,
the proposed algorithm makes no such assumptions. This
was supported by error analysis that indicated that while
it is safe to ignore the cross terms when the spectral SNR
is either extremely high or extremely low, it is not safe to
do so when the spectral SNR falls near 0 dB. A method
for incorporating the cross terms involving phase differ-
ences between the noisy (and clean) signals and noise
was proposed. Analysis of the suppression curves of the
GA algorithm indicated that it possesses similar properties
as the traditional MMSE algorithm (Ephraim and Malah,
1984). Objective evaluation of the GA algorithm showed
that it performed significantly better than the traditional
spectral subtraction algorithm in all conditions. Informal
listening tests and visual inspection of spectrograms
revealed that the GA algorithm had no audible musical
noise (at least for the SNR levels tested) and had a
smooth and pleasant residual noise. The main conclusion
that can be drawn from the present study is that in the
context of spectral subtraction algorithms, phase estima-
tion is critically important for accurate signal magnitude
estimation. In fact, it is not possible to recover the magni-
tude spectrum of the clean signal exactly even if we had
access to the noise signal. Access to phase information
is needed.
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Appendix A

In this appendix, we derive the expression for the cross
term error e(k) given in Eq. (8). After dividing both sides
of Eq. (2) by jY(xk)j2 we get

eðkÞ ¼ 1� jX ðxkÞj2 þ jDðxkÞj2

Y ðxkÞj j2

�����
�����: ð25Þ

After substituting jY(xk)j2 from Eq. (2) in the above equa-
tion, and dividing both numerator and denominator by
(jX(xk)j2 + jD(xk)j2) we get
3 Audio demonstrations of example sentences enhanced by the GA
algorithm can be found at: http://www.utdallas.edu/~loizou/speech/
demos/. MATLAB code is available from the second author.
eðkÞ ¼ 1� 1

1þ
ffiffiffiffiffiffi
nðkÞ
p
nðkÞþ1

2 cosðhX ðkÞ � hDðkÞÞ

�������
�������; ð26Þ

where n(k) , jX(xk)j2/jD(xk)j2. Finally, after computing
the common denominator and simplifying the above equa-
tion, we get Eq. (8).

Appendix B

In this appendix, we derive the expressions given in Eqs.
(15) and (16) for cYD and cXD. It is easy to show that the
following relationships hold:

a2
X ¼ a2

Y þ a2
D � 2aY aD cosðhY � hDÞ; ð27Þ

a2
Y ¼ a2

X þ a2
D þ 2aX aD cosðhX � hDÞ: ð28Þ

Eq. (27) was derived by applying the Law of Cosines to the
triangle shown in Fig. 4. Eq. (28) was derived in the main
text and is copied for completeness from Eq. (2). After
dividing both sides of the above equations by a2

D and using
the definitions of c and n given in Eqs. (17), and (18), we get

n ¼ cþ 1� 2
ffiffiffi
c
p � cYD; ð29Þ

c ¼ nþ 1þ 2
ffiffiffi
n

p
� cXD: ð30Þ

After solving for cYD and cXD in the above equations, we
get Eqs. (15) and (16).

It is worth noting here that after using the fact that cYD

and cXD are bounded (e.g., jcYDj 6 1), we can use Eq. (29)
to derive the following bounds on n:ffiffiffi

c
p � 1ð Þ2 6 n 6

ffiffiffi
c
p þ 1ð Þ2: ð31Þ

Restricting n to lie within the above range, ensures that
jcYDj 6 1 and jcXDj 6 1.
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