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Reasons why Current Speech-Enhancement
Algorithms do not Improve Speech

Intelligibility and Suggested Solutions
Philipos C. Loizou, Senior Member, IEEE, and Gibak Kim

Abstract—Existing speech enhancement algorithms can improve
speech quality but not speech intelligibility, and the reasons for
that are unclear. In the present paper, we present a theoretical
framework that can be used to analyze potential factors that can
influence the intelligibility of processed speech. More specifically,
this framework focuses on the fine-grain analysis of the distortions
introduced by speech enhancement algorithms. It is hypothesized
that if these distortions are properly controlled, then large gains in
intelligibility can be achieved. To test this hypothesis, intelligibility
tests are conducted with human listeners in which we present pro-
cessed speech with controlled speech distortions. The aim of these
tests is to assess the perceptual effect of the various distortions that
can be introduced by speech enhancement algorithms on speech in-
telligibility. Results with three different enhancement algorithms
indicated that certain distortions are more detrimental to speech
intelligibility degradation than others. When these distortions were
properly controlled, however, large gains in intelligibility were ob-
tained by human listeners, even by spectral-subtractive algorithms
which are known to degrade speech quality and intelligibility.

Index Terms—Ideal binary mask, speech distortions, speech en-
hancement, speech intelligibility improvement.

I. INTRODUCTION

M UCH progress has been made in the development of
speech enhancement algorithms capable of improving

speech quality [1], [2]. In stark contrast, little progress has been
made in designing algorithms that can improve speech intelli-
gibility. The first intelligibility study done by Lim [3] in the
late 1970s found no intelligibility improvement with the spec-
tral subtraction algorithm for speech corrupted in white noise
at 5 to 5 dB signal-to-noise ratio (SNR). In the intelligibility
study by Hu and Loizou [4], conducted 30 years later, none
of the eight different algorithms examined were found to im-
prove speech intelligibility relative to unprocessed (corrupted)
speech. Noise reduction algorithms implemented in wearable
hearing aids revealed no significant intelligibility benefit, but
improved ease of listening and listening comfort [5] for hearing-
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impaired listeners. In brief, the ultimate goal of devising an al-
gorithm that would improve speech intelligibility for normal-
hearing or hearing-impaired listeners has been elusive for nearly
three decades.

Little is known as to why speech enhancement algorithms,
even the most sophisticated ones, do not improve speech in-
telligibility. Clearly, one reason is the fact that we often do
not have a good estimate of the background noise spectrum,
which is needed for the implementation of most algorithms. For
that, accurate voice-activity detection algorithms are required.
Much progress has been made in the design of voice-activity
detection algorithms and noise-estimation algorithms (see re-
view in [1, Ch. 9], some of which (e.g., [6]) are capable of
continuously tracking, at least, the mean of the noise spectrum.
Noise-estimation algorithms are known to perform well in sta-
tionary background noise (e.g., car) environments. Evidence of
this was provided by Hu and Loizou [4] wherein a small im-
provement in intelligibility was observed with speech
processed in car environments, but not in other environments
(e.g., babble). We believe that the small improvement was at-
tributed to the stationarity of the car noise, which allowed for
accurate noise estimation This suggests that accurate noise esti-
mation can contribute to improvement in intelligibility, but that
alone cannot provide substantial improvements in intelligibility,
since in practice we will never be able to track accurately the
spectrum of nonstationary noise. For that reason, we believe that
the absence of intelligibility improvement with existing speech
enhancement algorithms is not entirely due to the lack of accu-
rate estimates of the noise spectrum.

In this paper, we discuss other factors that are responsible for
the absence of intelligibility improvement with existing algo-
rithms. The majority of these factors center around the fact that
none of the existing algorithms are designed to improve speech
intelligibility, as they utilize a cost function that does not neces-
sarily correlate with speech intelligibility. The statistical-model
based algorithms (e.g., MMSE, Wiener filter), for instance, de-
rive the magnitude spectra by minimizing the mean-squared
error (MSE) between the clean and estimated (magnitude or
power) spectra (e.g., [7]). The MSE metric, however, pays no at-
tention to positive or negative differences between the clean and
estimated spectra. A positive difference between the clean and
estimated spectra would signify attenuation distortion, while a
negative spectral difference would signify amplification distor-
tion. The perceptual effect of these two distortions on speech
intelligibility cannot be assumed to be equivalent. The subspace
techniques (e.g., [8]) were designed to minimize a mathemat-
ically-derived speech distortion measure, but make no attempt

1558-7916/$26.00 © 2010 IEEE



48 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 1, JANUARY 2011

Fig. 1. Plot showing the relationship between SNR and SNR for fixed values of SNR.

to differentiate between the two aforementioned distortions. In
this paper, we will show analytically that if we can somehow
manage or control these two types of distortions, then we should
expect to receive large gains in intelligibility. To further support
our hypothesis, intelligibility listening tests are conducted with
normal-hearing listeners.

II. IMPOSING CONSTRAINTS ON THE ESTIMATED

MAGNITUDE SPECTRA

To gain a better understanding on the impact of the two dis-
tortions on speech intelligibility, we use an objective function
that has been found to correlate highly with speech
intelligibility [9]. This measure is the frequency-domain version
of the well-known segmental SNR measure. The time-domain
segmental (and overall) SNR measure has been used widely and
frequently for evaluating speech quality in speech coding and
enhancement applications [10], [11]. Results reported in the pre-
vious studies [9], [12], however, demonstrated that the time-do-
main SNR measure does not correlate highly with either quality
or speech intelligibility. In contrast, the frequency domain ver-
sion of the segmental SNR measure [13] has been shown to cor-
relate highly with both speech quality and speech intelligibility.
In the present study, we refer to this measure as the signal-to-
residual spectrum measure SNR (defined below). The cor-
relation of the SNR measure with speech intelligibility was
found to be 0.81 [9] and the correlation with speech quality
was found to be 0.85 [12]. The two main advantages in com-
puting the SNR measure in the frequency domain include: 1)
the use of critical-band frequency spacing for proper modeling
of the frequency selectivity of normal-hearing listeners; 2) the
use of perceptually motivated weighting functions which can
be applied to individual bands [9]. The use of signal-dependent
weighting functions in the computation of the SNR measure
was found to be particularly necessary for predicting the intelli-
gibility of speech corrupted by (fluctuating) nonstationary noise

[9]. We thus believe that it is the combination of these two at-
tractive features in the computation of the SNR measure that
contributes to its high correlation with speech intelligibility.

Let SNR denote the signal-to-residual spectrum ratio
at frequency bin

SNR (1)

where denotes the clean magnitude spectrum and
denotes the magnitude spectrum estimated by a speech-en-
hancement algorithm. Dividing both numerator and denom-
inator by , where denotes the noise magnitude
spectrum, we get

SNR
SNR

SNR SNR
(2)

where SNR is the true instantaneous SNR at
bin , and SNR is the enhanced SNR.1

Fig. 1 plots SNR as a function of SNR , for fixed
values of SNR. The singularity in the function stems from the
fact that when SNR SNR , SNR .
Fig. 1 provides important insights about the contributions of the
two distortions to SNR , and for convenience, we divide
the figure into multiple regions according to the distortions in-
troduced.

Region I. In this region, , suggesting only
attenuation distortion.
Region II. In this region, sug-
gesting amplification distortion up to 6.02 dB.
Region III. In this region, suggesting
amplification distortion of 6.02 dB or greater.

1Note that the defined enhanced SNR is not the same as the output SNR,
since the background noise is not processed separately by the enhancement al-
gorithm.
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TABLE I
PERCENTAGE OF FREQUENCY BINS FALLING IN THE THREE REGIONS AFTER PROCESSING NOISY SPEECH BY THE THREE ENHANCEMENT ALGORITHMS

From the above, we can deduce that in the union of Regions I
and II, which we denote as Region I II, we have the following
constraint:

(3)

The constraint in Region I stems from the fact that in this re-
gion, SNR leading to . The con-
straint in Region II stems from the fact that in this region SNR
SNR dB. Finally, the condition in Re-
gion III stems from the fact that in this region SNR

dB. It is clear from the above definitions of these
three regions that in order to maximize in some respect the
SNR (and consequently maximize speech intelligibility), the
estimated magnitude spectra need to be contained in re-
gions I and II (note that the trivial, but not useful, solution that
maximizes SNR is ). Intelligibility listening tests
were conducted to test this hypothesis. If the hypothesis holds,
then we expect to see large improvements in intelligibility.

It is reasonable to ask how often the above distortions occur
when corrupted speech is processed by conventional speech-en-
hancement algorithms. To answer this question, we tabulate in
Table I the frequency of occurrences of the two distortions for
speech processed by three different (but commonly used) algo-
rithms at two different SNR levels. Table I provides the average
percentage of frequency bins falling in each of the three regions.
To compute, for instance, the percentage of bins falling in Re-
gion I we counted the number of bins satisfying the constraint
in Region I, and divided that by the total number of frequency
bins, as determined by the size of the discrete Fourier transform
(DFT). This was done at each frame after processing corrupted
speech with an enhancement algorithm, and averaging the per-
centages over all frames in a sentence. As can be seen, nearly
half of the bins fall in Region I which is characterized by atten-
uation distortion, while the other half of the bins fall in Region
III, which is characterized by amplification distortion in excess
of 6.02 dB. A small percentage (12%–18%) of bins was found to
fall in Region II which is characterized by low amplification dis-
tortion, less than 6.02 dB. The perceptual consequences of the
two distortions on speech intelligibility are not clear. For one, it
is not clear which of the two distortions has the most detrimental
effect on speech intelligibility. Listening tests are conducted to
provide answers to these questions, and these tests are described
next.

III. INTELLIGIBILITY LISTENING TESTS

Algorithms Tested

The noise-corrupted sentences were processed by three dif-
ferent speech enhancement algorithms that included the Wiener

algorithm based on a priori SNR estimation [14] and two spec-
tral-subtractive algorithms based on reduced delay convolution
[15]. The sentences were segmented into overlapping segments
of 160 samples (20 ms) with 50% overlap. Each segment was
Hann windowed and transformed using a 160-point discrete
Fourier transform (DFT). Let denote the magnitude of
the noisy spectrum at time frame and frequency bin . Then,
the estimate of the signal spectrum magnitude is obtained by
multiplying with a gain function as follows:

(4)

Three different gain functions were considered in the present
study. The Wiener gain function is based on the a priori SNR
and is given by

SNR
SNR

(5)

where SNR is the a priori SNR estimated using the decision-
directed approach as follows:

SNR

(6)

where is the estimate of the power spectral density of
background noise and is a smoothing constant (typically set
to ). The spectral subtractive algorithms are based on
reduced delay convolution [15] and the gain functions for mag-
nitude subtraction and power subtraction are given respectively
by

SNR
(7)

SNR
(8)

where SNR denotes the a
posterior SNR, and denotes the estimate of the noisy
speech power spectral density computed using the periodogram
method, and is the subtraction factor which was set to

as per [15]. We denote the magnitude spectral-subtrac-
tion algorithm as RDC mag and the power spectral-subtraction
algorithm as RDC pow.

The three gain functions examined are plotted in Fig. 2. As
can be seen, the three algorithms differ in the shape of their gain
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Fig. 2. Suppression curves of the Wiener filtering algorithm (top panel) and
two spectral-subtractive algorithms (bottom panel).

functions. The Wiener gain function is the least aggressive, in
terms of suppression, providing small attenuation even at ex-
tremely low SNR levels, while the RDC mag algorithm is the
most aggressive eliminating spectral components at extremely
low SNR levels. The three gain functions span a wide range of
suppression options, which is one of the reasons for selecting
them. We will thus be able to test our hypotheses about the ef-
fect of the constraints on speech intelligibility with algorithms
encompassing a wide range of suppression varying from aggres-
sive to least aggressive. The RDC mag algorithm, in particular,
was chosen because it performed poorly in terms of speech in-
telligibility [4]. The intelligibility of speech processed by the
RDC mag algorithm was found in several noisy conditions to be
significantly lower than that obtained with unprocessed (noise
corrupted) speech. We will thus examine whether it is possible
to obtain improvement in intelligibility with the proposed con-
straints, even in scenarios where the enhancement algorithm
(e.g., RDC mag) is known to perform poorly relative to unpro-
cessed speech.

Oracle experiments were run in order to assess the full
potential on speech intelligibility when the proposed con-
straints are implemented. We thus assumed knowledge of the
magnitude spectrum of the clean speech signal. The various
constraints were implemented as follows. The noisy speech
signal was first segmented into 20 ms frames (with 50%
overlap between frames), and then processed through one of
the three enhancement algorithms, producing at each frame
the estimated magnitude spectrum . The noise estimation
algorithm proposed by Rangachari and Loizou [16] was used
for estimating the noise spectrum in (6)–(8). The estimated
magnitude spectrum was compared against the true spec-
trum , and spectrum components satisfying the constraint
were retained, while spectral components violating the con-
straints were zeroed-out. For the implementation of the Region
I constraint, for instance, the modified magnitude spectrum

was computed as follows:

if
else.

(9)

An inverse discrete Fourier transform (IDFT) was finally taken
of (using the noisy speech signal’s phase spectrum) to
reconstruct the time-domain signal. The overlap-and-add tech-
nique was subsequently used to synthesize the signal. As shown
in (9), the constraints are implemented by applying a binary
mask to the estimated magnitude spectrum (more on this later).

Fig. 3 shows example spectrograms of signals synthesized
using the Region I constraints [panel (d)]. The original signal
was corrupted with babble at 5 dB SNR. The Wiener algo-
rithm was used in this example, and speech processed with the
Wiener algorithm is shown in panel (c). As can be seen in panel
(d), the signal processed using the Region I constraints resem-
bles the clean signal, with most of the residual noise removed
and the consonant onsets /offsets made clear.

A. Methods and Procedure

Seven normal-hearing listeners participated in the listening
experiments, and all listeners were paid for their participation.
The listeners participated in a total of 32 conditions ( 2 SNR
levels ( 5 dB, 0 dB) processing conditions).
For each SNR level, the processing conditions included speech
processed using three different speech enhancement (SE) algo-
rithms with 1) no constraints imposed, 2) Region I constraints,
3) Region II constraints, 4) Region I II constraints, and 5)
Region III constraints. For comparative purposes, subjects were
also presented with noise-corrupted (unprocessed) stimuli.

The listening experiment was performed in a sound-proof
room (Acoustic Systems, Inc.) using a PC connected to a
Tucker-Davis system 3. Stimuli were played to the listeners
monaurally through Sennheiser HD 250 Linear II circumaural
headphones at a comfortable listening level. Prior to the sen-
tence test, each subject listened to a set of noise-corrupted
sentences to be familiarized with the testing procedure. During
the test, subjects were asked to write down the words they
heard. Two lists of sentences (i.e., 20 sentences) were selected
from the IEEE database [17] and used for each condition, with
none of the lists repeated across conditions. The order of the
conditions was randomized across subjects. The testing session
lasted for about 2 h. Five-minute breaks were given to the
subjects every 30 minutes.

Sentences taken from the IEEE database [17] were used for
test material.2 The sentences in the IEEE database are phonet-
ically balanced with relatively low word-context predictability.
The sentences were originally recorded at a sampling rate of
25 kHz and downsampled to 8 kHz (the recordings are avail-
able from a CD accompanying the book in [1]). Noisy speech
was generated by adding babble noise at 0 dB and 5 dB SNR.
The babble noise was produced by 20 talkers with equal number

2A sentence recognition test was chosen over a diagnostic rhyme test [18] for
assessment of intelligibility for several reasons. Sentence tests: 1) better reflect
real-world communicative situations, 2) are open-set tests, and as such scores
may vary from a low of 0% correct to 100% correct (in contrast, the DRT test is a
closed-set test, has a chance score of 50% and needs to be corrected for chance).
The sentence materials (IEEE corpus) chosen contain contextual information,
however, that information is controlled by design. The IEEE corpus contains
phonetically balanced sentences and is organized into lists of ten sentences each.
All sentence lists were designed to be equally intelligible, thereby allowing us
to assess speech intelligibility in different conditions without being concerned
that a particular list is more intelligible than another.
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Fig. 3. Wide-band spectrograms of the clean signal [panel (a)], noisy signal in �5 dB SNR babble [panel (b)], signal processed by the Wiener algorithm [panel
(c)], and signal processed by the Wiener algorithm after imposing the constraints in Region I [panel (d)].

of female and male talkers. To simulate the receiving frequency
characteristics of telephone handsets, the speech and noise sig-
nals were filtered by the modified intermediate reference system
(IRS) filters used in ITU-T P.862 [19]. Telephone speech was
used as it is considered particularly challenging (in terms of
intelligibility) owing to its limited bandwidth (300–3200 Hz).
Consequently, we did not expect the performance to be limited
by ceiling effects.

B. Results

Fig. 4 shows the results of the listening tests expressed
in terms of the percentage of words identified correctly by
normal-hearing listeners. The bars indicated as “UN” show the
scores obtained with noise-corrupted (unprocessed) stimuli,
while the bars indicated as “SE” show the baseline scores
obtained with the three enhancement algorithms (no constraints
imposed). As shown in Fig. 4, performance improved dramati-
cally when the Region I constraints were imposed. Consistent
improvement in intelligibility was obtained with the Region I
constraints for all three speech-enhancement algorithms exam-
ined. Performance at 5 dB SNR with the Wiener algorithm,
for instance, improved from 10% correct when no constraints
were imposed, to 90% correct when Region I constraints were
imposed. Substantial improvements in intelligibility were also
noted for the two spectral-subtractive algorithms examined.
Performance with Region II constraints seemed to be depen-
dent on the speech-enhancement algorithm used, with good
performance obtained with the Wiener algorithm, and poor
performance obtained with the two spectral-subtractive algo-
rithms. Large improvements in intelligibility were obtained
with Region I II constraints for all three algorithms tested
and for both SNR levels. Finally, performance degraded to near
zero when Region III constraints were imposed for all three
algorithms tested and for both SNR levels.

Statistical tests, based on Fisher’s LSD test, were run to as-
sess significant differences between the scores obtained in the

Fig. 4. Results, expressed in percentage of words identified correctly, from the
intelligibility studies with human listeners. The bars indicated as “UN” show
the scores obtained with noise-corrupted (unprocessed) stimuli, while the bars
indicated as “SE” show the baseline scores obtained with the three enhance-
ment algorithms (no constraints imposed). The intelligibility scores obtained
with speech processed by the three enhancement algorithms after imposing four
different constraints are labeled accordingly.

various constraint conditions. Performance of the Wiener al-
gorithm with Region I constraints did not differ statistically

from performance obtained with the Region I II
constraints. Similarly, performance of the RDC pow algorithm
with Region I constraints did not differ statistically
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from performance obtained with the Region I II constraints.
This was found to be true for both SNR levels and for both
Wiener and RDC pow algorithms. In contrast, performance ob-
tained with the RDC mag algorithm with Region I constraints
was significantly higher than performance obtained
with Region I II constraints. Performance obtained with the
Wiener algorithm (with no constraints) did not differ signifi-
cantly from performance obtained with unprocessed
(noise corrupted) sentences for both SNR levels tested. Perfor-
mance obtained at 5 dB SNR with the two spectral-subtractive
algorithms did not differ significantly from perfor-
mance obtained with unprocessed (noise corrupted) sentences,
but was found to be significantly lower than perfor-
mance with unprocessed sentences at 0 dB SNR. The latter out-
come is consistent with the findings reported by Hu and Loizou
[4].

In summary, the above analysis indicates that the Region I and
Region I II constraints are the most robust in terms of yielding
consistently large benefits in intelligibility independent of the
speech-enhancement algorithm used. Substantial improvements
in intelligibility (85 percentage points at 5 dB SNR and nearly
70 percentage points at 0 dB SNR) were obtained even with the
RDC mag algorithm, which was found in our previous study
[4], as well as in the present study, to degrade speech intelligi-
bility in some noisy conditions. Of the three enhancement algo-
rithms examined, the Wiener algorithm is recommended when
imposing Region I or Region I II constraints, as this algorithm
yielded the largest gains in intelligibility for both SNR levels
tested. Based on data from Table I, there does not seem to be a
correlation between the numbers of frequency bins falling in the
three regions with speech intelligibility gains. The RDC pow al-
gorithm, for instance, yielded roughly the same number of fre-
quency bins in Region I as the Wiener filtering algorithm, yet
the latter algorithm obtained larger improvements in intelligi-
bility. We attribute the difference in performance to the shape
of the suppression function.

A difference in outcomes in Region II was observed between
the Wiener and spectral subtractive algorithms. Compared to
the performance obtained by the subtractive algorithms in Re-
gion II, the performance of the Wiener algorithm was substan-
tially higher. To analyze this, we examined the frequency de-
pendence of the distortions in Region II. More precisely, we ex-
amined whether distortions in region II (as introduced by the
three different algorithms) occurred more frequently within a
specific frequency region. We first divided the signal bandwidth
into three frequency regions: low-frequency (0–1 kHz), mid-fre-
quency (1–2 kHz) and high-frequency regions (2–4 kHz). We
then computed the percentage of bins falling in each of the three
frequency regions for speech processed by the three algorithms
(only accounting for distortions in Region II). The results, aver-
aged over 20 sentences, are shown in Fig. 5. As can be seen from
this Figure, a slightly higher percentage of bins were observed in
the lower frequency region (0–1 kHz) for the Wiener algorithm
compared to the spectral subtractive algorithms. The higher per-
centage in the lower frequency region (0–1 kHz), where the first

Fig. 5. Percentage of bins falling in three different frequency regions (Region
II constraints).

formant frequency resides, might partially explain the better in-
telligibility scores, but this difference was rather small and not
enough to account for the difference in intelligibility in Region
II between the Wiener algorithm and the spectral subtractive al-
gorithms.

We continued the analysis of Region II, and considered com-
puting the histograms of the following estimation error:

, where the subscript indicates that the magnitudes are ex-
pressed in dB. Note that this error is always positive and is upper
bounded by 6.02 dB in Region II. The resulting histograms are
shown in Fig. 6. As can be seen from this figure, magnitude
errors smaller than 1 dB were made more frequently by the
Wiener filtering algorithm for both SNR conditions, compared
to the uniformly-distributed errors (at least at 5 dB SNR) made
by the spectral-subtractive algorithms. This suggests that the
Wiener filtering algorithm correctly estimates the true magni-
tude spectra more often compared to the subtractive algorithms,
at least in Region II. We believe that this could be the reason
that the Wiener algorithm performed better than the subtractive
algorithms in Region II.

Performance in Region III (Fig. 4) was extremely low (near
0% correct) for all three algorithms tested. We believe that this
was due to the excess masking of the target signal in this region.
Amplification distortions in excess of 6.02 dB were introduced.
In Region III, the masker overpowered the target signal, ren-
dering it unintelligible.
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Fig. 6. Normalized histograms (probability mass functions) of the difference
between the estimated and clean speech magnitudes in Region II.

IV. RELATIONSHIP BETWEEN PROPOSED RESIDUAL

CONSTRAINTS AND THE IDEAL BINARY MASK

As shown in (9), the modified spectrum (with the proposed
constraints incorporated) can be obtained by applying a binary
mask to the enhanced spectrum. In computational auditory
scene analysis (CASA) applications, a binary mask is often
applied to the noisy speech spectrum to recover the target
signal [20]–[23]. In this section, we show that there exists a
relationship between the proposed residual constraints (and
associated binary mask) and the ideal binary mask used in
CASA and robust speech recognition applications (e.g., [21]).
The goal of CASA techniques is to segregate the target signal
from the sound mixtures, and several techniques have been
proposed in the literature to achieve that [23]. These techniques
can be model-based [24], [25] or based on auditory scene
analysis principles [26]. Some of the latter techniques use
the ideal time–frequency (T-F) binary mask [20], [21], [27].
The ideal binary “mask” (IdBM) takes values of zero or one,
and is constructed by comparing the local SNR in each T-F
unit (or frequency bin) against a threshold (e.g., 0 dB). It is
commonly applied to the T-F representation of a mixture signal
and eliminates portions of a signal (those assigned to a “zero”
value) while allowing others (those assigned to a “one” value)
to pass through intact. The ideal binary mask provides the only
known criterion (SNR dB, for a preset threshold ) for
improving speech intelligibility, and this was confirmed by
several intelligibility studies with normal-hearing [28], [29] and
hearing-impaired listeners [30], [31]. IdBM techniques often
introduce musical noise, caused by errors in the estimation
of the time–frequency masks and manifested in isolated T-F
units. A number of techniques have been proposed to suppress
musical noise distortions introduced by IdBM techniques [32],
[33]. While musical noise might be distracting to the listeners,
it has not been found to be detrimental in terms of speech
intelligibility. This was confirmed in two listening studies
with IdBM-processed speech [28], [29] and in one study with

estimated time–frequency masks [34]. Despite the presence of
musical noise, normal-hearing listeners were able to recognize
estimated [34] and ideal binary-masked [28], [29] speech with
nearly 100% accuracy.

The reasons for the improvement in intelligibility with IdBM
are not very clear. Li and Wang [35] argued that the IdBM max-
imizes the SNR as it minimizes the sum of missing target en-
ergy that is discarded and the masker energy that is retained.
More specifically, it was proven that the IdBM criterion max-
imizes the SNR metric given in (1) [35]. The IdBM was
also shown to maximize the time-domain based segmental and
overall SNR measures, which are often used for assessment of
speech quality. Neither of these measures, however, correlates
with speech intelligibility [9]. We provide proof in the Appendix
that the IdBM criterion maximizes the geometric average of
the spectral SNRs, and subsequently maximizes the articulation
index (AI), a metric known to correlate highly with speech in-
telligibility [36].

As it turns out, the ideal binary mask is not only related to the
proposed residual constraints, but is also a special case of the
proposed residual constraint for regions I and II. Put differently,
the proposed binary mask [see example in (9)] is a generalized
form of the ideal binary mask used in CASA applications. As
mentioned earlier, if the estimated magnitude spectrum is re-
stricted to fall within regions I and II, then the SNR metric
will always be greater than 0 dB. Hence, imposing constraints in
region I II ensures that SNR is always positive and greater
than 1 (i.e., dB). As demonstrated in Fig. 4, the stimuli con-
strained in region I II consistently improved speech intelligi-
bility for all three enhancement algorithms tested. As mentioned
earlier, the composite constraint required for the estimated mag-
nitude spectra to fall in region I II is given by

(10)

which after squaring both sides becomes

(11)

If we now assume that , i.e., that the noisy
signal is not processed by an enhancement algorithm, then

, and (11) reduces to

SNR (12)

In dB, the above equation suggests that the SNR needs to be
larger than a threshold of 4.77 dB. Equation (12) is nothing
but the criterion used in the construction of the ideal binary
mask. The only difference is that the threshold used is 4.77 dB,
rather than 0 or 3 dB, which are most often used in appli-
cations of the IdBM [27]. In terms of obtaining intelligibility
improvement, however, either threshold is acceptable. The pre-
vious intelligibility studies confirmed that there exists a plateau
in performance when intelligibility was measured as a function
of the SNR threshold [28], [29], [37]. In the study conducted
by Li and Loizou [37], for instance, the plateau in performance
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(nearly 100% correct) ranged from an SNR threshold of 20 dB
to 0 dB.

As shown in Fig. 4, the constraint stated in (10) guarantees
substantial improvement in intelligibility for all three algorithms
tested. The ideal binary mask is a special case of this constraint
when no enhancement algorithm is used, i.e., when no pro-
cessing is applied to the noisy speech signal. Unlike the criterion
used in the binary mask [(12)], the proposed constraints [(10)]
do not involve the noise spectrum, at least explicitly. In contrast,
the ideal binary mask criterion requires access to the true noise
spectrum, which is extremely challenging to obtain at very low
SNR levels (e.g., SNR dB). Attempts to estimate the bi-
nary mask using existing speech enhancement algorithms met
with limited success (e.g., [38] and [39]), and performance, in
terms of detection rates was found to be relatively poor. It re-
mains to be seen whether it is easier to estimate the proposed
binary mask [e.g., (9)], given that it does not require access to
the true noise spectrum.

V. DISCUSSION AND CONCLUSION

Current speech enhancement algorithms can improve speech
quality but not speech intelligibility [4]. Quality and intelligi-
bility are two of the many attributes (or dimensions) of speech
and the two are not necessarily equivalent. Hu and Loizou [2],
[4] showed that algorithms that improve speech quality do not
improve speech intelligibility. The subspace algorithm, for
instance, was found to perform the worst in terms of overall
quality [2], but performed well in terms of preserving speech
intelligibility [4]. In fact, in babble noise (0 dB SNR), the
subspace algorithm performed significantly better than the
logMMSE algorithm [40], which was found to be among the
algorithms yielding the highest overall speech quality [2].

The findings of the present study suggest two interrelated
reasons for the absence of intelligibility improvement with ex-
isting speech enhancement (SE) algorithms. First, and foremost,
SE algorithms do not pay attention to the two types of dis-
tortions introduced when applying the suppression function to
noisy speech spectra. Both distortions are treated equally in
most SE algorithms, since the MSE metric is used in the deriva-
tion of most suppression functions (e.g., [7]). As demonstrated
in Fig. 4, however, the perceptual effects of the two distortions
on speech intelligibility are not equal. Of the two types of dis-
tortion, the amplification distortion (in excess of 6.02 dB) was
found to bear the most detrimental effect on speech intelligi-
bility (see Fig. 4). Performance dropped near zero when stimuli
were constrained in region III. Theoretically, we believe that
this is so because this type of distortion (region III) leads to
negative values of SNR (see Fig. 1). In contrast, the atten-
uation distortion (region I) was found to yield the least effect
on intelligibility. In fact, when the region I constraint was im-
posed, large gains in intelligibility were realized. Performance at

5 dB SNR, improved from 5% correct with stimuli enhanced
with the Wiener algorithm to 90% correct when region I con-
straint was imposed. Theoretically, we believe that the improve-
ment in intelligibility is due to the fact that region I always en-
sures that SNR dB. Maximizing SNR ought to maxi-
mize intelligibility, given the high correlation of a weighted-ver-
sion of SNR (termed fwSNRseg [9], [11]) with speech intel-
ligibility. Hence, by imposing the appropriate constraints [see

(10)], we can ensure that SNR dB, and subsequently
obtain large gains in intelligibility.

Second, none of the existing SE algorithms was designed
to maximize a metric that correlates highly with intelligibility.
The only known metric, which is widely used in CASA, is
the ideal binary mask criterion. We provided a proof in the
Appendix that this metric maximizes the articulation index, an
index that is known to correlate highly with speech intelligi-
bility [36]. Hence, it is not surprising that speech synthesized
based on the IdBM criterion improves intelligibility [28], [29],
[37]. In fact, it restores speech intelligibility to the level attained
in quiet (near 100% correct) even for sentences corrupted by
background noise at SNR levels as low as 10 dB SNR [29].
As shown in previous section, the IdBM criterion is a special
case of the proposed constraint in region I II, when no
suppression function is applied to the noisy spectra, i.e., when

.
In summary, in order for SE algorithms to improve speech in-

telligibility they need to treat the two types of distortions differ-
ently. More specifically, SE algorithms need to be designed so
as to minimize the amplification distortions. As the data in Fig. 4
demonstrated, even spectral-subtractive algorithms can improve
speech intelligibility if the amplification distortions are properly
controlled. In practice, the proposed constraints can be imposed
and incorporated in the derivation of the noise suppression func-
tion. That is, rather than focusing on minimizing a squared-error
criterion (as done in the derivation of MMSE algorithms), we
can focus instead on minimizing a given criterion subject to the
proposed constraints. The speech enhancement problem is thus
converted to a constrained minimization problem. Alternatively,
and perhaps, equivalently, SE algorithms need to be designed
so as to maximize a metric (e.g., SNR , AI) that is known
to correlate highly with speech intelligibility (for a review of
such metrics, see [9]). For instance, SE algorithms need to be
designed to maximize SNR rather than minimize an uncon-
strained (mean) squared-error cost function, as done by most
statistical-model based algorithms (e.g., [7]). Algorithms that
maximize the SNR metric are likely to provide substantial
gains in intelligibility.

APPENDIX

In this Appendix, we provide analytical proof that the IdBM
criterion is optimal in that it maximizes the geometric average of
the spectral SNRs. We also show that maximizing the geometric
average of SNRs is equivalent to maximizing a simplified form
of the articulation index (AI),3 an objective measure used for
predicting speech intelligibility [36], [44].

3The AI index has been shown to predict reliably speech intelligibility by
normal-hearing [36] and hearing-impaired listeners [41] (the refined AI index
is known as the speech intelligibility index and is documented in [42]). The AI
measure, however, has a few limitations. First, the AI measure has been vali-
dated for the most part only for stationary masking noise since it is based on the
long-term average spectra, computed over 125 ms intervals, of the speech and
masker signals [42]. As such, it cannot be applied to situations in which speech is
embedded in fluctuating maskers e.g., competing talkers. Several attempts have
been made, however, to extend the AI measure to assess speech intelligibility in
fluctuating maskers (e.g., see [9], [43]). Second, the AI measure cannot predict
synergistic effects as evident in the perception of disjoint frequency bands. This
is so due to the assumption that individual frequency bands contribute indepen-
dently to AI.
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Consider the following weighted (geometric) average of
SNRs computed across frequency bins

(A.1)

where SNR is the SNR in bin
(or channel) and are the weights applied to
each frequency bin. We consider the following question: how
should the weights be chosen such that the overall SNR (i.e.,

) given in (A.1) is maximized? The rationale for wanting to
maximize stems from the fact that is similar to the artic-
ulation index (more on this below). The optimal weights that
maximize in (1) are given by

if SNR
if SNR

(A.2)

which is no other than the IdBM criterion. To see why the
weights given in (A.2) are optimal, we can consider two ex-
treme cases in which either SNR or SNR in all
frequency bins. If SNR in all bins, then we have the
following upper bound on the value of

SNR (A.3)

Similarly, if SNR in all bins, then we have the following
upper bound:

SNR SNR (A.4)

Both upper bounds [maxima in (A.3) and (A.4)] are attained
with the optimal weights given in (A.2). That is, the maximum
in (A.3) is attained with (for all ), while the maximum
in (A.4) is attained with (for all ).

It is important to note that the function given in (A.1), is
very similar to the articulation index defined by [42], [45], and
[46]

SNR (A.5)

where are the band-importance functions ,
SNR are the SNR values limited to the range of dB,

is the number of critical-bands, and , are constants
used to ensure that the SNR is mapped within

the range of . Maximization of AI in (A.5) will yield a
similar optimal solution for the weights as shown in (A.2),
with the only difference being the SNR threshold (i.e., it will no
longer be 0 dB). The AI assumes a value of 0 when the speech
is completely masked and a value between 0 and 1 for SNRs
ranging from 15 to 15 dB. In the original AI calculation [44],
the band-importance functions are fixed and their values de-
pend on the type of speech material used. In our case, the impor-
tance functions are not fixed, but are chosen dynamically ac-
cording to (A.2) so as to maximize the geometric average of all
SNRs across the spectrum. Hence, the main motivation behind
maximizing in (A.1) is to maximize the articulation index

(A.5), and consequently maximize the amount of retained infor-
mation contributing to speech intelligibility. Hence, the weights

in (A.2) used in the construction of the ideal binary mask can
be viewed as the optimal band-importance function needed
to maximize the simplified form of articulation index in (A.1).
It is for this reason that we believe that the use of the IdBM cri-
terion (A.2) always improves speech intelligibility [29].
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