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Abstract

A noise-estimation algorithm is proposed for highly non-stationary noise environments. The noise estimate is updated
by averaging the noisy speech power spectrum using time and frequency dependent smoothing factors, which are adjusted
based on signal-presence probability in individual frequency bins. Signal presence is determined by computing the ratio of
the noisy speech power spectrum to its local minimum, which is updated continuously by averaging past values of the noisy
speech power spectra with a look-ahead factor. The local minimum estimation algorithm adapts very quickly to highly
non-stationary noise environments. This was confirmed with formal listening tests which indicated that the proposed
noise-estimation algorithm when integrated in speech enhancement was preferred over other noise-estimation algorithms.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In most speech-enhancement algorithms, it is
assumed that an estimate of the noise spectrum is
available. Such an estimate is critical for the perfor-
mance of speech-enhancement algorithms as it is
needed, for instance, to evaluate the Wiener filter
in the Wiener algorithms (Lim and Oppenheim,
1978) or to estimate the a priori SNR in the MMSE
algorithms (Ephraim and Malah, 1984) or to esti-
mate the noise covariance matrix in the subspace
algorithms (Ephraim and Van Trees, 1993). The
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noise estimate can have a major impact on the qual-
ity of the enhanced signal. If the noise estimate is
too low, annoying residual noise will be audible,
while if the noise estimate is too high, speech will
be distorted resulting possibly in intelligibility loss.
The simplest approach is to estimate and update
the noise spectrum during the silent (e.g., during
pauses) segments of the signal using a voice-activity
detection (VAD) algorithm (e.g., Sohn and Kim,
1999). Although such an approach might work sat-
isfactorily in stationary noise (e.g., white noise), it
will not work well in more realistic environments
(e.g., in a restaurant) where the spectral characteris-
tics of the noise might be changing constantly.
Hence there is a need to update the noise spectrum
continuously over time and this can be done using
noise-estimation algorithms.
.
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Several noise-estimation algorithms have been
proposed for speech enhancement applications
(Malah et al., 1999; Martin, 2001; Cohen, 2002;
Cohen, 2003; Doblinger, 1995; Hirsch and Ehrlicher,
1995; Lin et al., 2003; Stahl et al., 2000; Rangachari
et al., 2004; Ris and Dupont, 2001). Martin (2001)
proposed a method for estimating the noise spec-
trum based on tracking the minimum of the noisy
speech over a finite window. As the minimum is
typically smaller than the mean, unbiased estimates
of noise spectrum were computed by introducing a
bias factor based on the statistics of the minimum
estimates. The main drawback of this method is that
it takes slightly more than the duration of the min-
imum-search window to update the noise spectrum
when the noise floor increases abruptly.

Cohen (2002) proposed a minima controlled
recursive algorithm (MCRA) which updates the
noise estimate by tracking the noise-only regions
of the noisy speech spectrum. These regions are
found by comparing the ratio of the noisy speech
to the local minimum against a threshold. The noise
estimate, however, lags by at most twice that win-
dow length when the noise spectrum increases
abruptly. In the improved MCRA approach
(Cohen, 2003), a different method was used to track
the noise-only regions of the spectrum based on
the estimated speech-presence probability. This
probability, however, is also controlled by the min-
ima, and therefore the algorithm incurs roughly the
same delay as the MCRA algorithm for increasing
noise levels.

Doblinger (1995) updated the noise estimate by
continuously tracking the minimum of the noisy
speech in each frequency bin. As such, it is com-
putationally more efficient than the method in
(Martin, 2001). However, it fails to differentiate be-
tween an increase in noise floor and an increase in
speech power.

Hirsch and Ehrlicher (1995) updated the noise
estimate by comparing the noisy speech power spec-
trum to the past noise estimate. Their method is also
simple to implement, however it fails to update
the noise estimate when the noise floor increases
abruptly and stays at that level.

Ris and Dupont (2001) combined the above tech-
niques with narrow-band spectral analysis which
allowed estimation of the noise levels in the valleys
between harmonics of voiced speech segments.
Longer time windows were required to achieve the
required spectral resolution. Although their ap-
proach refines the spectral resolution of the noise
level, it does not adapt faster to increasing noise lev-
els. Lastly, in (Stahl et al., 2000) a quantile-based
noise-estimation algorithm was proposed which esti-
mates the noise spectrum based on the qth quantile
of the noisy speech power spectrum. This method
might fail to estimate the noise floor correctly if
the noisy speech contains highly-varying noise.

Several other noise-estimation algorithms were
proposed for speech recognition applications (Deng
et al., 2003; Deng et al., 2003; Afify and Sioham,
2001; Kim, 1998; Yao and Nakamura, 2002).
Unlike the above algorithms, these noise-estimation
algorithms were based on statistical principles and
operated at the feature level (e.g., MFCC coeffi-
cients) in the log-spectral domain. Very briefly, the
noisy speech feature vectors were modeled using a
mixture of Gaussians, and the noise feature vectors
were obtained by maximizing a conditional likeli-
hood function based on a recursive EM algorithm.
Stochastic approximations were made to sequen-
tially update the noise feature vectors. Some of
those noise updates resembled the time-recursive
updates of the noise spectrum used in the above
noise-estimation algorithms. In fact, some (Afify
and Sioham, 2001) proposed the use of optimum
smoothing factors for the noise updates similar to
(Martin, 2001). Improvements to the EM-based
methods were reported in (Yao and Nakamura,
2002) using sequential Monte–Carlo techniques.

In brief, most of the aforementioned noise-
estimation algorithms developed for speech-en-
hancement algorithms do not adapt quickly to
increasing noise levels. Recently we introduced a
noise-estimation algorithm (Rangachari et al.,
2004) which updates the noise estimate faster than
the above methods and also avoids overestimation
of the noise level. The noise estimate was updated
in each frame based on voice-activity detection. If
speech was absent in a specific frame, the noise esti-
mate was updated with a constant smoothing
factor. The speech-presence decision made in each
speech frame was based on the ratio of noisy speech
spectrum to its local minimum. Results indicated
that the noise-estimation algorithm (Rangachari
et al., 2004) took only 0.5 s to adapt to sudden in-
creases in noise levels compared to 1–1.5 s required
by other algorithms.

In this paper, we further improve our noise-
estimation algorithm in the following aspects: (1)
update of the noise estimate without explicit voice-
activity decision, (2) estimate of speech-presence
probability exploiting the correlation of power
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spectral components in neighboring frames. The pro-
posed algorithm updates the noise estimate in each
frame using a time–frequency dependent smoothing
factor computed based on the speech-presence
probability.

This paper is organized as follows. Section 2
describes the proposed noise-estimation algorithm.
Section 3 compares the proposed method with some
of the existing algorithms. Section 4 presents the
subjective and objective evaluation of the proposed
algorithm and Section 5 gives our conclusions.

2. Proposed noise-estimation algorithm

Let the noisy speech signal in the time domain be
denoted as

yðnÞ ¼ xðnÞ þ dðnÞ ð1Þ
where x(n) is the clean speech and d(n) is the addi-
tive noise. The smoothed power spectrum of noisy
speech is computed using the following first-order
recursive equation:

Pðk; kÞ ¼ gP ðk� 1; kÞ þ ð1� gÞjY ðk; kÞj2 ð2Þ
Compute  smooth speech power 
spectrum P(λ, k).

Compute  ratio Sr(λ,k) of smoothed 
speech power spectrum to its local 
minimum. 

Compute time-frequency dependent 
smoothing factors αs(λ,k).

Update noise estimate D(λ,k) using 
time-frequency dependent smoothing 
factors αs(λ,k). 

Calculate speech presence probability 
p(λ,k) using first-order recursion. 

Find the local minimum of noisy 
speech Pmin(λ,k).

Fig. 1. Flow diagram of proposed noise-estimation algorithm.
where P(k,k) is the smoothed power spectrum, k is
the frame index, k is the frequency index, jY(k,k)j2
is the short-time power spectrum of noisy speech
and g is a smoothing constant. The proposed algo-
rithm is summarized in the flow chart diagram
shown in Fig. 1. Next, we describe each of the indi-
vidual blocks of the algorithm.

2.1. Tracking the minimum of noisy speech

Various methods (Martin, 2001; Martin, 1994)
were proposed for tracking the minimum of the
noisy speech power spectrum over a fixed search
window length. These methods were sensitive to out-
liers and also the noise update was dependent on the
length of the minimum-search window. A different
non-linear rule is used in our method for tracking
the minimum of the noisy speech by continuously
averaging past spectral values (Doblinger, 1995)

If Pminðk� 1; kÞ < P ðk; kÞ then
Pminðk; kÞ ¼ cPminðk� 1; kÞ

þ 1� c
1� b

ðPðk; kÞ � bP ðk� 1; kÞÞ

else

Pminðk; kÞ ¼ P ðk; kÞ
end

ð3Þ

where Pmin(k,k) is the local minimum of the noisy
speech power spectrum and b and c are constants
which are determined experimentally. The look-
ahead factor b controls the adaptation time of the
local minimum. Fig. 2 shows the power spectrum
of noisy speech and the local minimum tracked with
the above mentioned rule for a sentence degraded
by babble noise at 5 dB SNR. The adaptation
time for the algorithm is �0.5 s for non-stationary
noise.

2.2. Speech-presence probability

The approach taken to determine speech pres-
ence in each frequency bin is similar to the method
used in (Cohen, 2002). Let the ratio of noisy speech
power spectrum and its local minimum be defined as

Srðk; kÞ ¼ Pðk; kÞ=Pminðk; kÞ ð4Þ

This ratio is compared with a frequency dependent
threshold, and if the ratio is found to be greater
than the threshold, it is taken as a speech-present
frequency bin else it is taken as a speech-absent
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Fig. 2. Plot of noisy speech power spectrum and local minimum using (3) for a speech degraded by babble noise at 5 dB SNR at frequency
bin k = 5.
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frequency bin. This is based on the principle that the
power spectrum of noisy speech will be nearly equal
to its local minimum when speech is absent. Hence
the smaller the ratio is in (4), the higher the proba-
bility that it will be a noise-only region and vice
versa. The speech-presence decision can be summa-
rized as follows:
if Srðk; kÞ > dðkÞ
Iðk; kÞ ¼ 1 speech present

else

Iðk; kÞ ¼ 0 speech absent

end

ð5Þ
where d(k) is the frequency-dependent threshold
determined experimentally. Note that in (Cohen,
2002), a fixed threshold was used in place of d(k)
for all frequencies. From the above rule, the
speech-presence probability, p(k,k), is updated
using the following first-order recursion:
s d d
pðk; kÞ ¼ appðk� 1; kÞ þ ð1� apÞIðk; kÞ ð6Þ

where ap is a smoothing constant. Note that the
above recursion implicitly exploits the correlation
for speech presence in adjacent frames. Fig. 3 illus-
trates the speech presence or absence decision made
using the above rule. In this figure, we show the
speech present/absent detection for a sentence de-
graded by babble noise at 5 dB SNR.

The dark regions (top panel in Fig. 3) indicate
speech-present regions and the white regions indi-
cate speech-absent regions as identified by Eq. (5).
As can be seen, our detection process had detected
nearly almost all of the speech-present regions cor-
rectly. Also, note that by choosing a smaller thresh-
old value, we can detect speech presence with higher
confidence thus avoiding potential speech distor-
tion. This can also be observed from Fig. 3 where
we can see that some of the noise-only regions were
detected as speech. Only few of the low-energy
speech regions were detected as noise-only regions.
This may result in slight overestimate of the noise
spectrum but will not likely have much effect on
the enhanced speech.
2.3. Computing frequency-dependent smoothing

constants

Using the above speech-presence probability esti-
mate, we compute the time–frequency dependent
smoothing factor as follows (Cohen, 2002):
a ðk; kÞ¼D ¼ a þ ð1� a Þpðk; kÞ ð7Þ



Fig. 3. Top panel: Plot of estimated speech-presence probability based on the ratio Sr(k,k). Bottom panel: spectrogram of the clean signal.
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where ad is a constant. Note that as(k,k) takes val-
ues in the range of ad 6 as(k,k) 6 1.

2.4. Update of noise spectrum estimate

Finally, after computing the frequency-depen-
dent smoothing factor as(k,k) using Eq. (7), the
noise spectrum estimate is updated as

Dðk; kÞ ¼ asðk; kÞDðk� 1; kÞ þ ð1� asðk; kÞÞjY ðk; kÞj2

ð8Þ

where D(k,k) is the estimate of the noise power
spectrum. Hence, the overall algorithm can be sum-
marized as follows. After classifying the frequency
bins into speech present/absent using Eq. (5), we
update the speech-presence probability using Eq. (6)
and then use this probability to update the time–
frequency dependent smoothing factor in Eq. (7).
Finally the noise spectrum estimate is updated
according to Eq. (8) using the time–frequency
dependent smoothing factor.

Fig. 4 shows as an example the true noise spec-
trum and the estimated noise spectrum calculated
with our proposed method for a sentence degraded
by babble noise at 5 dB SNR.

3. Comparison of proposed method with existing
algorithms

In this section, we provide qualitative compari-
sons between our proposed algorithm and other
existing noise-estimation algorithms.

3.1. Comparison with MS (Martin, 2001)

The minimum statistics (MS) algorithm (Martin,
2001) updates the noise estimate based on tracking
the minimum of the noisy speech spectrum. Hence
the adaptation time of the noise estimate depends
on the adaptation time of the local minimum. For
non-stationary noise conditions where the noise
power varies slowly over time, our method and
the minimum statistics method have the same adap-
tation time. But for increasing noise levels, the
adaptation time might be slightly more than 1.5 s
for the MS method whereas for our method it is
only 0.5 s. Fig. 5 shows a comparison between the
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Fig. 4. Plot of true noise spectrum and the estimated noise spectrum using our proposed method for a speech degraded by babble noise at
5 dB SNR and single frequency f = 250 Hz.
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Fig. 5. Comparison between the noise spectrum (for f = 1 kHz) estimated using the proposed algorithm (thick line) and Martin�s (Martin,
2001) (dashed line) algorithm for a sentence corrupted by car noise (t < 1.8 s) followed by a sentence corrupted by multi-talker babble
(t > 1.8 s).
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MS method and our proposed method in a situation
where there is a sudden increase in noise power
level. From the figure we can see that MS takes
more than 1.5 s to update the noise spectrum,
whereas our proposed method takes only 0.5 s to
update to the higher noise floor.
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3.2. Comparison with continuous minima tracking

(Doblinger, 1995)

In the method proposed in (Doblinger, 1995),
the noise estimate increases whenever the noisy
speech power increases. This problem is avoided
in our proposed method by using the ratio of the
noisy speech to the local minimum. Whenever the
noisy speech power increases, the ratio between
the noisy speech and local minimum exceeds the
threshold, and the noise estimate is not updated.
This can be seen from Fig. 6 which compares
the noise estimate obtained using the method in
(Doblinger, 1995) and our method.

3.3. Comparison with weighted average technique

(Hirsch and Ehrlicher, 1995)

Two methods were presented in (Hirsch and
Ehrlicher, 1995) for noise estimation, one based
on weighted averaging and one based on histograms
of past speech segments. In the weighted averaging
method, the noise estimate was updated whenever
the noisy speech was less than a threshold, which
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Fig. 6. Top panel: Plot of true noise spectrum and estimated noise spe
SNR) at f = 250 Hz. Bottom panel: Plot of true noise spectrum and es
regions where noise is overestimated.
was proportional to the previous noise estimate.
Although this approach works satisfactorily in most
cases, it fails in the following scenario. Consider an
example where there is a sudden increase in noise
level. This will result in a situation where the noisy
speech spectrum will never be smaller than the
threshold, since the threshold is based on the past
noise estimates already very low. Thus, the noise
estimate will not be updated if the noise power
remains at that high level. Fig. 7 shows the compari-
son of the noise estimate using our proposed
method with Hirsch and Ehrlicher (1995) for a
sentence corrupted by babble noise initially at a high
SNR (20 dB) level followed by a low SNR (5 dB)
level. Our proposed method tracked the higher
noise power within �0.5 s.

3.4. Comparison with MCRA (Cohen, 2002) and

IMCRA (Cohen, 2003) methods

The local minimum in (Cohen, 2002) was found
by tracking the minimum of noisy speech over a
search window spanning L frames. This has some
drawbacks. First, the minimum is sensitive to outliers.
5 6 7 8 9
(sec)

True noise
Estimated noise using Proposed method

5 6 7 8 9
(sec)

True noise
Estimated noise using [9] 

ctrum using the proposed method for a noisy speech signal (5 dB
timated noise spectrum using (Doblinger, 1995). Arrows indicate
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Fig. 7. Comparison of estimated noise spectrum (f = 500 Hz) of proposed method (dashed line) with that of Hirsch and Ehrlicher (1995)
(solid line) for a noisy speech of SNR 20 dB (t < 1.8 s) followed by a noisy speech of SNR 5 dB (t > 1.8 s).
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Second, the update of minimum can take at most 2L
frames for increasing noise levels. Improvements
to the method in (Cohen, 2002) were reported in
(Cohen, 2003) with the IMCRA method. In the
IMCRA algorithm a different formula was used to
estimate the speech-presence probability p(k,k),
now a function of the a priori speech-absence prob-
ability q(k,k). The computation of q(k,k), however,
was controlled by the minima values of a smoothed
power spectrum of the noisy signal. Hence, the com-
putation of p(k,k) was influenced by the minima
tracking. Consequently, the update of the noise
estimate is influenced in both MCRA and IMCRA
methods by the minima tracking, which may lag
by as many as 2L frames.

Unlike the methods in (Cohen, 2002; Cohen,
2003), the estimate of the noise spectrum in the
proposed method is not influenced by the mini-
mum-search window. Also, the threshold used in
our method for identifying speech presence/absence
regions is frequency dependent while that of Cohen
(2002) is fixed for all frequencies.

4. Experimental results

The proposed noise-estimation algorithm was
combined with a Wiener-type speech-enhancement
algorithm (Hu and Loizou, 2004) with the following
spectral gain function:
Gðk; kÞ ¼ Cðk; kÞ
Cðk; kÞ þ lkDðk; kÞ

ð9Þ

where C(k,k) is the estimated clean speech spectrum
computed from the noisy speech and noise estimates
as follows:

Cðk; kÞ ¼ maxfjY ðk; kÞj2 � Dðk; kÞ; mDðk; kÞg ð10Þ

where m = 0.001 is a small positive number. The
max(Æ) operation is used to ensure positive values
for the estimated clean speech spectra. The over
subtraction factor lk in Eq. (9) is determined from
the a posteriori segmental SNR as per Hu and
Loizou (2004).

The performance of the proposed method was
evaluated using both subjective and objective
measures. The following values were used in the
implementation (assuming a sampling frequency of
20.1 kHz): ad = 0.85, ap = 0.2, b = 0.8, c = 0.998,
g = 0.7 and

dðkÞ ¼

2 1 6 k 6 LF

2 LF < k 6 MF

5 MF < k 6 Fs=2

8>><
>>:

where LF and MF are the bins corresponding to 1
and 3 kHz respectively, and Fs is the sampling
frequency.



Table 1
Percent preference for the proposed method compared to other
methods for single and mixed type noise

Method Single noise Mixed noise
Preference (%) Preference (%)

Cohen (2003) 48.8 81.7
Doblinger (1995) 53.8 81.3
Hirsch and Ehrlicher (1995) 50.0 78.8
Martin (2001) 50.8 63.8
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4.1. Subjective evaluation

The performance of the proposed method was
compared with that of the methods in (Martin,
2001; Cohen, 2003; Doblinger, 1995; Hirsch and
Ehrlicher, 1995) using formal listening tests. The
listening test included two different noise types,
namely single noise and triplet noise. In the single
noise case, sentences were degraded by either multi-
talker babble noise (two male and two female speak-
ers) or factory noise. In the triplet noise case, three
different noise signals were concatenated to evaluate
the adaptation of the algorithm for different noise
types. The three different noise types included mul-
ti-talker babble, factory noise and white noise. Thus
a noisy (triplet) set of stimuli consisted of a sentence
degraded by babble noise followed by a sentence
degraded by factory noise and a sentence degraded
by white noise without any pauses in the middle.
The overall SNR of the noisy speech was 5 dB for
both cases. The sentences were taken from the
HINT (Nilsson et al., 1994) database.

The quality of speech enhanced by the proposed
noise-estimation algorithm was compared against
the quality of speech produced by four other noise-
estimation algorithms. The same speech-enhance-
ment algorithm (Hu andLoizou, 2004) was used with
all noise-estimation algorithms. For the single noise
case, 40 sentences were used (20 sentences corrupted
by babble noise and 20 sentences corrupted by fac-
tory noise) and for the triplet noise case, 20 sets of
triplet sentences were used and degraded by the trip-
let noise for each comparison. The listeners were
presented with pairs of sentences, one processed with
our proposed method and the one processed with
one of the other methods (Martin, 2001; Cohen,
2003; Doblinger, 1995; Hirsch and Ehrlicher, 1995).
The order of the sentences was randomized. The lis-
teners were asked to select from the pair of stimuli
presented the sentence which was more natural,
easier to listen and free of artifacts. The overall
preference was assessed for speech enhanced by the
proposed method compared to the other methods.
The preference score (relative number of times—
out of 20 pairs of sentences presented—that listeners
preferred the proposed method over the other meth-
ods) was averaged over six normal-hearing listeners.
A preference score of 100%, for instance, would indi-
cate that listeners preferred the proposed method
over the other methods all the time.

Table 1 shows the preference results. From the
results, it can be seen that our proposed method
had equal preference compared with the other meth-
ods in (Martin, 2001; Cohen, 2003; Doblinger, 1995;
Hirsch and Ehrlicher, 1995) for the single noise case.
But, for the triplet noise case, the proposed method
had higher preference scores compared to all the
other methods. We suspect that this was due to
the fact that our noise-estimation algorithm adapts
quickly to the highly non-stationary environments.

4.2. Objective evaluation

We computed the relative mean squared error be-
tween the true noise spectrum and the estimated
noise spectrum as follows:

MSE ¼ 1

M

XM�1

k¼0

P
k½Dðk; kÞ � r2

Dðk; kÞ�
2P

kr
2
Dðk; kÞ

ð11Þ

where D(k,k) is the estimated noise power spectrum
(as per Eq. (8)), r2

Dðk; kÞ is the true noise power spec-
trum, and M is the total number of frames in the
noisy speech.

Two additional objective measures were used to
evaluate and compare the performance of the
proposed noise-estimation algorithm: the segmental
SNR and the log-likelihood ratio (LLR) measure
(Quackenbush et al., 1988). The LLR measure for
each 20-ms speech frame was computed as follows:

dLLR ¼ log10
ayRxaTy
axRxaTx

� �
ð12Þ

where ax and Rx are the linear prediction coefficient
vector and autocorrelation matrix of the original
(clean) speech frame respectively, and ay is the linear
prediction coefficient vector of the enhanced speech
frame. The LLR is a spectral distance measure
which mainly models the mismatch between the
formants of the original and enhanced signals
(Quackenbush et al., 1988). The mean LLR value
was obtained by averaging the individual frame
LLR values across the sentence.



Table 3
Objective evaluation and comparison of the proposed noise-
estimation algorithm in terms of segmental SNR values (dB) and
LLR values

Method Single noise Mixed noise

SNRseg LLR SNRseg LLR

Cohen (2003) 7.17 2.90 7.05 5.13
Doblinger (1995) 6.98 1.89 7.48 2.57
Hirsch and Ehrlicher
(1995)

7.04 2.10 7.37 3.35
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The MSE results are tabulated in Table 2 and the
segmental SNR and LLR results are tabulated in
Table 3. Overall, the MSE results are not consistent
with the preference outcomes, in that lower MSE
values did not suggest better preference. This indi-
cates that the MSE measure might not be a reliable
measure for assessing performance of noise-estima-
tion algorithms. For one, this measure is sensitive
to outlier values. Secondly, it treats noise overesti-
Table 2
The normalized mean squared error (MSE) between the esti-
mated and true noise spectra for various methods

Methods MSE MSE
Single noise Mixed noise

Cohen (2003) 0.40 0.86
Doblinger (1995) 0.52 1.08
Hirsch and Ehrlicher
(1995)

0.52 0.87

Martin (2001) 0.53 0.94
Quantile (q = 0.25)
(Stahl et al., 2000)

0.50 4.95

Proposed method 0.43 0.87

Fig. 8. Spectrograms of speech enhanced using Martin�s (2001) noise-es
d) and the proposed noise-estimation method (panel e). Spectrograms o
respectively. Arrows in panels (c) and (d) at t > 3.8 s show the presence
algorithms to track the sudden appearance of high-frequency noise in th
residual noise is greatly reduced with the proposed noise-estimation alg

Martin (2001) 8.59 1.94 8.12 2.25
Quantile
(Stahl et al., 2000)

7.84 1.96 8.06 2.49

Proposed method 7.43 1.97 8.13 2.15
mation and noise underestimation errors the same.
Unlike the MSE values, the segmental SNR values
and the LLR values shown in Table 3 were found
to be more consistent with the subjective evaluation
results. Relatively larger segmental SNR values
were obtained with Martin�s (2001) method and
our proposed method compared to the other meth-
ods. Smaller spectral distance values (LLR) were
also obtained by our proposed method and that of
timation method (panel c), Cohen�s method (Cohen (2003)) (panel
f the clean and noisy speech signals are given in panels (a) and (b)
of residual noise due partly to the inability of the noise-estimation
e last sentence (sentence 3). In contrast, as shown in panel (e), the
orithm.
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Martin (2001) compared to the other methods.
Large MSE values were obtained with the quantile
method (q = 0.251) for the triplet sentences. This is
attributed to the fact that three types of noise with
different characteristics, and possibly three different
quantile values of the noisy speech power spectrum,
were used in the triplet sentences Subsequent simu-
lations confirmed that if the q-th quantile of the
noisy speech spectrum was estimated separately
for each type of noise and each sentence, the MSE
value reduces significantly. The objective measures
shown in Table 3 suggest that Martin�s noise-
estimation method (Martin, 2001) performed better
than Cohen�s method (Cohen, 2003). This outcome
is consistent with our listening tests (see Table 1)
and is also confirmed by visual inspection of
spectrograms of speech enhanced by the various
methods (see Fig. 8). A different outcome was ob-
served in (Cohen, 2003), and this could be attributed
to several reasons: (a) difference in speech materials
and type of noise used and (b) difference in the way
non-stationary noise was modeled. In (Cohen,
2003), non-stationary noise was modeled by increas-
ing the level of WGN by 2 dB/s. The change in noise
level in our triplet sentences was more abrupt than
2 dB/s (see Fig. 8(b)). Furthermore, only objective
measures were reported in (Cohen, 2003) and no
subjective listening tests were performed.

5. Summary and conclusions

In this paper we have addressed the issue of noise
estimation for enhancement of noisy speech. The
noise estimate was updated continuously in every
frame using time–frequency smoothing factors
calculated based on speech-presence probability in
each frequency bin of the noisy speech spectrum.
The speech-presence probability was estimated
using the ratio of noisy speech power spectrum to
its local minimum. Unlike other methods, the
update of local minimum was continuous over time
and did not depend on some fixed window length.
Hence the update of noise estimate was faster for
very rapidly varying non-stationary noise environ-
ments. This was confirmed by formal listening tests
that indicated significantly higher preference for our
1 Better performance, in terms of smaller MSE value, was
obtained using q = 0.25 than with q = 0.5 for the triplet
sentences. The qth quantile value was estimated over the whole
duration of the sentences as per Stahl et al. (2000).
proposed algorithm compared to the other existing
noise-estimation algorithms.
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