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Improving Speech Intelligibility in Noise Using
a Binary Mask That Is Based on
Magnitude Spectrum Constraints

Gibak Kim and Philipos C. Loizou, Senior Member, IEEE

Abstract—A new binary mask is introduced for improving
speech intelligibility based on magnitude spectrum constraints.
The proposed binary mask is designed to retain time-frequency
(T-F) units of the mixture signal satisfying a magnitude constraint
while discarding T-F units violating the constraint. Motivated by
prior intelligibility studies of speech synthesized using the ideal
binary mask, an algorithm is proposed that decomposes the input
signal into T-F units and makes binary decisions, based on a
Bayesian classifier, as to whether each T-F unit satisfies the mag-
nitude constraint or not. Speech corrupted at low signal-to-noise
(SNR) levels (—5 and 0 dB) using different types of maskers is
synthesized by this algorithm and presented to normal-hearing
listeners for identification. Results indicated substantial improve-
ments in intelligibility over that attained by human listeners with
unprocessed stimuli.

Index Terms—Binary mask, speech enhancement, speech intel-
ligibility.

1. INTRODUCTION

ECENT studies with normal-hearing listeners have re-
R ported large gains in speech intelligibility using the SNR-
based ideal binary mask technique [1], [2]. The binary mask was
designed to retain time-frequency (T-F) regions where the target
speech dominates the masker (noise) (e.g., local SNR > 0 dB)
and remove T-F units where the masker dominates (e.g., local
SNR <0 dB) [3]. In our previous work [4], we demonstrated
the potential of the binary mask technique to improve speech
intelligibility when the SNR-based mask was estimated using a
binary Bayesian classifier.

A different mask, that does not rely on the SNR criterion, can
alternatively be constructed by imposing constraints on the two
types of gain-induced distortion: amplification distortion occur-
ring when the estimated (by a noise-suppression algorithm) mag-
nitudeis larger than the true magnitude, and attenuation distortion
occurring when the estimated magnitude is smaller than the true
magnitude [5]. The intelligibility listening studies in [5] showed
that the processed speech was found to be substantially more in-
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telligible than the noisy speech when appropriate constraints were
imposed on the magnitude spectrum, particularly when the ampli-
fication distortions were either limited or eliminated. In that study,
the ideal (oracle) magnitude-based mask was investigated. In this
letter, we propose anoise-suppression algorithm, which estimates
the binary mask, based on magnitude constraints, from the noisy
observations. Listening tests are conducted with normal-hearing
listeners to evaluate the proposed noise-suppression algorithm in
terms of speech intelligibility benefits.

II. PROPOSED NOISE-SUPPRESSION ALGORITHM

Our previous study [5] demonstrated that large gains in intel-
ligibility could be achieved when appropriate constraints are im-
posed on the gain-induced speech magnitude distortions. Based
on the encouraging findings of our prior study, we propose a
method to estimate this binary mask, which depends on mag-
nitude-spectrum constraints. Fig. 1 shows the block diagram of
the proposed algorithm, consisting of a training stage (bottom
panel) and an intelligibility enhancement stage (top panel), both
of which are described next.

A. A Binary Mask Based on Magnitude-Spectrum Constraints

In this section, we describe a binary mask that is based on
magnitude spectrum constraints rather than the local SNR crite-
rion [5]. Let Y (k, t) denote the noisy spectrum at time frame ¢
and frequency bin k. The estimate of the signal spectrum magni-
tude, | X (k, t)|, is obtained by multiplying the magnitude of the
noisy spectrum, |Y (k,t)| with a gain function G(k,t) as fol-
lows:

(X (k)] = Gk, t) - |V (K, 0)]. M

The (square-root) Wiener gain function [6], given by the fol-
lowing equation, was used:

. _ SNRprio(k‘/ t)
G(k t) - \/1 =+ SNRpriO(k'/ f) (2)

where SNR,,;i, is the a priori SNR estimated using the fol-
lowing equation:

X (hyt = DP?

SNRyprio (k. ) = a - =
Ap(k,t—1)

+ (1l — @) - max

w - 1,0] A3)
Ap(k,t)

where o = 0.98 is a smoothing constant and Ap(k,t) is the
estimate of the background noise variance obtained by a noise
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Fig. 1. Block diagram of the procedure used for constructing the proposed binary mask based on magnitude constraints.

estimation algorithm (the algorithm proposed in [7] was used in
this letter). The estimate of speech spectrum magnitude was ini-
tialized as | X (k,0)| = 0 and the estimate of the noise variance
was initialized as Xp (k,0) = Xp(k, 1) = |Y (k, 1)].

The binary mask is constructed by imposing constraints on
the distortions introduced by the gain function. More precisely,
the estimated magnitude spectrum | X (k, £)| is compared against
the true speech magnitude |X (k,¢)| for each T-F unit (k,t),
and T-F units satisfying the constraint are retained, while T-F
units violating the constraints are removed. The new magnitude
spectrum | X 57 (k, t)| is computed as follows:

X X o | X (Kt
|X1\'1(k7t)|: {|X(k't)| lf% ST
0 else

“

where T denotes the threshold value. The above constraint was
chosen since our previous listening study [5] indicated that the
gain-induced amplification distortion (occurring when |X | >
|X|) had the most detrimental effect on speech intelligibility.
The threshold, 7', was set to 2 for the first 15 frequency bands
(spanning 68-2186 Hz) and to 6 for the higher frequency bands.
The higher threshold value for the higher frequency bands was
found to better preserve low-energy consonants, since the use of
higher thresholds tends to retain more T-F units. This was also
done to be consistent with the SNR-based binary mask proposed
in [4].

The above mask (4) was found to be quite effective in im-
proving speech intelligibility [5]. It is, however, the ideal mag-
nitude-constraints binary mask (IMBM)), as it requires access to
the clean magnitude spectrum, which we do not have. A method
for estimating the above mask from noisy observations is pre-
sented next.

B. Estimating the Magnitude-Constraints Based Binary Mask

We used a Bayesian classifier similar to that used in [4] to
identify T-F units as either satisfying or violating the constraint
specified in (4). The noise-corrupted signal is first segmented

into 20-ms frames, with 50% overlap between adjacent frames.
Each speech frame is bandpass filtered into 25 channels ac-
cording to mel-frequency spacing and followed by Hann win-
dowing. In the training stage (Fig. 1), features are extracted,
typically from a large speech corpus, and then used to train
two Gaussian mixture models (GMMs) representing two feature
classes: satisfying the constraint and violating the constraint.
Amplitude modulation spectrograms (AMSs) are used as fea-
tures, as they are neurophysiologically and psychoacoustically
motivated [8]. A two-class Bayesian classifier was used to es-
timate the binary mask for each T-F unit. The distribution of
the feature vectors of each class was represented with a GMM
(256 mixtures) and the two classes were denoted as Ay for mask
“0” and \; for mask “1”. The class A\; was trained with fea-
ture vectors composed of T-F units satisfying the given speech
magnitude constraint (4). On the contrary, when a T-F unit vi-
olates the constraint, the corresponding feature vector was used
for training \g. In the enhancement stage, the AMS features
are first computed and the binary mask values of each T-F unit
are estimated using a Bayesian classifier with models Ay and
A1. The target speech envelopes of the 25 bands are estimated
using the Wiener gain function [see (1)—(3)]. T-F units are re-
tained or removed according to the estimated binary mask value
for each T-F unit. Finally, the enhanced speech waveform is re-
constructed by applying 50%-overlapped cosine windows to the
Wiener-processed subband signals!. Detailed procedures of fea-
ture extraction, training, and enhancement can be found in [4].

III. INTELLIGIBILITY LISTENING TESTS

We conducted listening tests to assess the intelligibility
of speech synthesized using the estimated binary mask

Note that the proposed binary mask was applied to the Wiener-processed
subband signals of the 25 channel (mel-spaced) filterbank (see Fig. 1). This is
equivalent to applying the binary mask to the estimate of the speech magnitude
spectrum in (4). In contrast, the SNR-based binary mask was applied to the noisy
subband signals [4].
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Fig. 2. Mean intelligibility scores for female-speaker sentences as a function of
SNR level and masker type. The bars labeled as “UN” show the scores obtained
with noise-corrupted (unprocessed) stimuli, while the bars labeled as “IMBM”
show the scores obtained with sentences processed using the ideal magnitude
binary mask (4). “eMBM” shows the scores for sentences synthesized with the
magnitude binary mask estimated using the male-speaker trained GMM:s. Error
bars indicate standard errors of the mean.

(Section II-B). Sentences taken from the IEEE database [9]
were used as test material2. The sentences in the IEEE database
are phonetically balanced with relatively low word-context
predictability. The sentences were produced by one male and
one female speaker in a sound-proof booth using Tucker Davis
Technologies (TDT) recording equipment. The sentences were
originally recorded at a sampling rate of 25 kHz and down-
sampled to 12 kHz. Three types of noise (20-talker babble,
airport-babble, speech-shaped noise) were used as maskers.
The (steady) speech-shaped noise was stationary having the
same long-term spectrum as the sentences in the IEEE corpus.
The airport-babble was recorded at an airport [11], and the
20-talker babble (20 talkers with equal number of female and
male talkers) was taken from the Auditec CD (St. Louis, MO).

A total of 390 IEEE sentences (produced by a male talker)
were used to train the GMM models. These sentences were cor-
rupted by three types of noise at —5, 0 and 5 dB SNR. The
maskers were randomly cut from the noise recordings and mixed
with the target sentences at the prescribed SNRs. Each corrupted
sentence had thus a different segment of the masker, and this
was done to evaluate the robustness of the Bayesian classifier in
terms of generalizing to different segments of the masker having
possibly different temporal/spectral characteristics. The male-
speaker data were used in the training and the female-speaker
data were used in the listening tests. This was done to show the
robustness of the binary classifier in terms of handling speakers
not included in the training. The average fundamental frequen-
cies (FO) for the male-speaker and female-speaker data were 122
and 241 Hz respectively. There was no overlap between the sen-
tence lists used in the training and test data sets.

Ten normal-hearing listeners were recruited for the listening
experiments. They were all native speakers of American

2The sentence recognition test was chosen over a diagnostic rhyme test (DRT)
[10], for the following reasons: sentence tests 1) better reflect real-world com-
municative situations, 2) are open-set tests, and as such scores may vary from a
low of 0% correct to 100% correct. In contrast, the DRT test is a closed-set test,
has a chance score of 50% and needs to be corrected for chance.
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TABLE I
HIT AND FALSE ALARM RATES (FA) OBTAINED
IN THE VARIOUS MASKER CONDITIONS

20-talker babble Airport babble Speech-shaped noise

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB
HIT 75.65%  1825%  73.46%  1591%  72.34% 80.49%
FA 9.56% 1296% 10.11% 11.69%  8.87% 11.23%
HIT-FA  66.09%  6529%  63.45% 64.22% 63.47% 69.26%

English, and were paid for their participation. The listeners
participated in a total of 18 conditions (= 2 SNR levels
(=5, 0 dB) x 3 processing conditions x 3 types of maskers).
The three processing conditions included the noise-corrupted
(unprocessed) stimuli, speech processed using the ideal mag-
nitude mask (4), denoted as IMBM, and the estimated binary
mask (Section II-B), denoted as eMBM. The duration of each
sentence was approximately 2.5 s. The experiments were per-
formed in a sound-proof room and stimuli were played to the
listeners monaurally through Sennheiser HD 485 circumaural
headphones at a comfortable listening level. The listening level
was controlled by each individual but was fixed throughout the
test for each subject. Prior to the sentence test, each subject
listened to a set of noise-corrupted sentences to get familiar
with the testing procedure. Two lists (20 sentences) were used
per condition, and none of the sentences were repeated across
conditions. The order of the conditions was randomized across
subjects. Listeners were asked to write down the words they
heard, and intelligibility performance was assessed by counting
the number of words identified correctly. The whole listening
test lasted for about 2 hrs. Five-minute breaks were given to the
subjects for every 30 minutes of listening.

IV. RESULTS AND DISCUSSION

Fig. 2 shows the results of the listening tests expressed in
terms of the mean percentage of words identified correctly. A
substantial improvement in intelligibility was obtained with the
proposed algorithm (eMBM), compared to that attained with
unprocessed (noise-corrupted) speech. The improvement (over
40% points in babble at —5 dB SNR) was more evident at —5
dB SNR levels for all three maskers tested. Performance at 0 dB
SNR was limited in most cases by ceiling (plateau) effects. Per-
formance with the eMBM approached in most cases the upper
bound, i.e., performance with the oracle mask IMBM).

To quantify the accuracy of the binary Bayesian classifier,
we report the average hit (HIT) and false alarm (FA) rates for
three test sets in Table I. HIT and FA rates were computed
by comparing the estimated binary mask against the (oracle)
IMBM. High hit rates (lowest with speech-shaped noise at —5
dB; 72.34%) and low false-alarm rates (highest with 20-talker
babble at 0 dB; 12.96%) were obtained. Fig. 3(c) shows ex-
ample spectrograms of signals synthesized using the proposed
algorithm. The clean signal [Fig. 3(a)] was corrupted by airport
babble at —5 dB SNR [Fig. 3(b)]. As can be seen from Fig. 3(c),
the voiced/unvoiced boundaries are made clearer following the
processing, and the residual noise is substantially reduced.

Both the SNR-based mask [4] and the proposed magnitude bi-
nary mask improved speech intelligibility. This raises the ques-
tion as to whether one mask offers any advantages over the
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Fig. 3. (a) Narrowband spectrograms of the clean signal, (b) corrupted signal
(airport babble, SNR = —5 dB), and (c) synthesized signal obtained by the
proposed algorithm.

TABLE II
SPEECH QUALITY EVALUATION, BASED ON PESQ SCORES, AND COMPARISON
BETWEEN THE SNR-BASED MASK (SNR BM) AND MAGNITUDE-SPECTRUM
BASED MASK (EMBM) IN THE VARIOUS MASKER CONDITIONS

20-talker babble Airport babble Speech-shaped noise

-5 dB 0 dB -5dB 0dB  -5dB 0 dB

UN 0.97 1.35 0.95 1.22 0.78 1.17
SNR BM 1.03 1.36 0.89 1.27 0.92 1.32
eMBM 1.10 1.49 1.13 1.54 1.35 1.80

other, perhaps in terms of speech quality. Given that the pro-
posed magnitude binary mask is applied to the Wiener pro-
cessed spectra rather than the corrupted spectra, we hypothe-
sized that the proposed magnitude binary mask yields better
speech quality. To test this hypothesis, we used the Percep-
tual Evaluation of Speech Quality (PESQ) measure to assess
the quality of the processed speech [12]. Table I compares the
speech quality of speech synthesized using the SNR-based [4]
and magnitude-based masks (eMBM). The PESQ scores for the
proposed algorithm were found to be higher in all conditions,
compared to the unprocessed noise-corrupted speech. Further-
more, the PESQ scores of speech synthesized using the esti-
mated magnitude binary mask were found to be consistently
higher than those computed using the SNR-based mask. The
largest gain (0.48) in PESQ scores was obtained for speech-
shaped noise at 0 dB SNR while the lowest gain (0.07) was ob-
tained for the 20-talker babble at —5 dB SNR. We believe that
the higher PESQ scores obtained with the proposed algorithm
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can be attributed to the fact that better noise suppression was
achieved since the Wiener gain was applied to the noisy signal
before binary masking.

V. SUMMARY

A new noise-suppression algorithm was designed to improve
speech intelligibility using a binary mask that was based on
magnitude spectrum constraints rather than on the local SNR
criterion [1]. The binary mask for each T-F unit was estimated
using a Bayesian classifier with the use of neurophysiologi-
cally motivated features (AMS). Each T-F unit was retained
or removed according to the estimated binary mask. The
proposed algorithm was evaluated using listening tests with
normal-hearing listeners and results indicated large gains in
intelligibility (Fig. 2). Objective evaluation (based on PESQ
scores) of speech synthesized using the magnitude-based mask
revealed better speech quality than that obtained with speech
synthesized using the SNR-based mask.
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