Homework \# 5
 Analysis of Discrete-time Signals

Due: March 9, 2000

A. RESPONSE OF DISCRETE-TIME SYSTEMS

1. Write a MATLAB program to determine the response of the following system:

$$
y(n)=4.5 x(n)+a y(n-1)
$$

where $\mathrm{a}=0.5$, and the input signal $\mathrm{x}(\mathrm{n})$ is the sinewave, $x(n)=3 \sin (2 \pi 0.2 n)$. Assume zero initial conditions, $\mathrm{y}(-1)=0$. Plot $\mathrm{y}(\mathrm{n})$, for $\mathrm{n}=1,2, \ldots, 200$.
2. Repeat (1) for $a=0.9, a=1.2, a=-0.5$. What happens when $a=1.2$? Why?
3. Write a MATLAB program to determine the response of the following system:

$$
y(n)=4.5 x(n)+2.3 x(n-2)+4 x(n-4)
$$

where the input signal $\mathrm{x}(\mathrm{n})$ is the sinewave, $x(n)=3 \sin (2 \pi 0.2 n)$.
4. Square root algorithm

Most computers and calculators compute the square root of a positive number A using the following recursive algorithm:

$$
y(n)=\frac{1}{2}\left[y(n-1)+\frac{x(n)}{y(n-1)}\right]
$$

If we use as the input $x(n)$ to this system (algorithm) a step function of amplitude A, then $y(n)$ will converge after several iterations to the square root of A.

Write a MATLAB program that implements the above algorithm to compute the square root of: $16,4,5$ and 3 . How many iterations does it take to converge to the true value assuming $y(-1)=0.5$? Is the algorithm sensitive to the initial conditions $y(-1)$?

B. IMPULSE RESPONSE

1. Write a MATLAB program to compute the impulse response of the following systems:
(a) $y(n)=4.5 x(n)+0.8 y(n-1) \quad \mathrm{n}=0,1, \ldots, 100$

Plot the impulse response $h(n)$ using stem (.) . Theoretically, what is the expression for $\mathrm{h}(\mathrm{n})$?
(b) $y(n)=x(n)+0.5 y(n-1)-0.5 y(n-4)+x(n-3)$
(c) $y(n)=4.5 x(n)+2.3 x(n-2)+4 x(n-4)$

Plot the impulse response $h(n)$, for $n=0,1, \ldots, 100$.
2. Of the impulse responses computed in (1), which impulse responses are infinite in duration and which are finite? Which systems are FIR and which systems are IIR?

C. CONVOLUTION

1. Write a MATLAB program that implements the convolution sum:

$$
y(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k)
$$

for arbitrary input signal $x(n)$ and impulse response $h(n)$. Implement the convolution as a function of the form: $y=$ convol (x, h). The function should take as input arguments the signal vector $\mathrm{x}(\mathrm{n})$, and impulse response $\mathrm{h}(\mathrm{n})$, and should return the output in the vector y . Assume that the signals $\mathrm{x}(\mathrm{n})$, and $\mathrm{h}(\mathrm{n})$ are zero for $\mathrm{n}<0$.
2. Using the convolution program developed in (1), convolve the following sequences:
(a)
(b)

$$
\begin{aligned}
x_{1}(n)= & \{1,1,1,1,1\} \\
x_{2}(n)= & \{1,1,1,1,1,1,1\} \\
& \uparrow
\end{aligned}
$$

$$
\begin{array}{ll}
x_{1}(n)=0.5^{n} & 0 \leq \mathrm{n} \leq 100 \\
x_{2}(n)=0.9^{n} & 0 \leq \mathrm{n} \leq 100
\end{array}
$$

3. Compute the response of the system given in question $\mathrm{A}(3)$ using the convolution.
