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Most noise-reduction algorithms used in hearing aids apply a gain to the noisy envelopes to reduce

noise interference. The present study assesses the impact of two types of speech distortion intro-

duced by noise-suppressive gain functions: amplification distortion occurring when the amplitude

of the target signal is over-estimated, and attenuation distortion occurring when the target ampli-

tude is under-estimated. Sentences corrupted by steady noise and competing talker were processed

through a noise-reduction algorithm and synthesized to contain either amplification distortion,

attenuation distortion or both. The attenuation distortion was found to have a minimal effect on

speech intelligibility. In fact, substantial improvements (> 80 percentage points) in intelligibility,

relative to noise-corrupted speech, were obtained when the processed sentences contained only

attenuation distortion. When the amplification distortion was limited to be smaller than 6 dB, per-

formance was nearly unaffected in the steady-noise conditions, but was severely degraded in the

competing-talker conditions. Overall, the present data suggest that one reason that existing algo-

rithms do not improve speech intelligibility is because they allow amplification distortions in excess

of 6 dB. These distortions are shown in this study to be always associated with masker-dominated

envelopes and should thus be eliminated.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3619790]

PACS number(s): 43.72.Ar, 43.72.Dv, 43.71.Es [RYL] Pages: 1581–1596

I. INTRODUCTION

Much progress has been made in the development of sin-

gle-microphone noise reduction algorithms for hearing aid

applications (Edward, 2004; Bentler and Chiou, 2006) and

speech communication systems (Loizou, 2007). The majority

of these algorithms have been found to improve listening

comfort and speech quality (Baer et al., 1993; Hu and Loizou,

2007b; Bentler et al., 2008). In stark contrast, little progress

has been made in designing single-microphone noise-reduc-

tion algorithms that can improve speech intelligibility. Past

intelligibility studies conducted in the late 1970s (Lim, 1978)

found no intelligibility improvement with the spectral subtrac-

tion algorithm. In the intelligibility study by Hu and Loizou

(2007a), conducted nearly 30 years later, none of the eight

single-microphone noise-reduction algorithms were found to

improve speech intelligibility relative to un-processed (cor-

rupted) speech. Noise-reduction algorithms implemented in

wearable hearing aids revealed no significant intelligibility

benefit (Levitt, 1997; Bentler et al., 2008), although they have

been found to improve speech quality and ease of listening in

hearing-impaired listeners (e.g., Bentler et al., 2008; Luts

et al., 2010). Some of the noise-reduction algorithms proposed

for hearing aids rely on modulation spectrum filtering (Alcan-

tara et al., 2003; Bentler and Chiou, 2006), others rely on

reducing the upward spread of masking (Neuman and

Schwander, 1987; van Tasell and Crain, 1992) while others

rely on improving the spectral contrast (e.g., Baer et al.,
1993). However, none of these algorithms improved consis-

tently and substantially speech intelligibility (Tyler and Kuk,

1989; Dillon and Lovegrove, 1993; Alcantara et al., 2003;

Edward, 2004; Bentler et al., 2008). In brief, the ultimate goal

of developing (and implementing) an algorithm that would

improve substantially speech intelligibility for normal-hearing

and/or hearing-impaired listeners has been elusive for nearly

three decades. Algorithms that have been optimized to operate

in specific noisy environments have proved recently to be

very promising as they have been shown to improve speech

intelligibility in studies with normal-hearing listeners (Kim

et al., 2009; Kim and Loizou, 2010).

Our knowledge surrounding the factors contributing to

the lack of intelligibility benefit with existing single-micro-

phone noise-reduction algorithms is limited (Ephraim, 1992;

Weiss and Neuman, 1993; Levitt, 1997; Kuk et al., 2002;

Chen et al., 2006; Dubbelboer and Houtgast, 2007). In most

cases we do not know how, and to what extent, a specific pa-

rameter of a noise-reduction algorithm needs to be modified

so as to improve speech intelligibility. Clearly, one factor is

related to the fact that we often are not able to estimate accu-

rately the background noise spectrum, which is needed for

the implementation of most single-microphone algorithms.

While noise tracking or voice activity detection algorithms

have been found to perform well in steady background noise

(e.g., car) environments [see review in Loizou (2007,

Chap. 9)], they generally do not perform well in non-station-

ary types of noise (e.g., multi-talker babble). The second fac-

tor is that the majority of algorithms introduce distortions,
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which in some cases, might be more damaging than the

background noise itself (Hu and Loizou, 2007a). For that rea-

son, several algorithms have been proposed to minimize

speech distortion while constraining the amount of noise dis-

tortion introduced to fall below a preset value (Ephraim and

Trees, 1995; Chen et al., 2006) or below the auditory masking

threshold (Hu and Loizou, 2004). Aside from the distortions

introduced by noise-suppression algorithms from inaccuracies

in estimating the gain function, hearing aids may also intro-

duce other non-linear distortions such as hard, soft and asym-

metrical clipping distortions (Arehart et al., 2007; Tan and

Moore, 2008). The perceptual effect of such distortions on

intelligibility are not examined in this paper. Third, non-

relevant stochastic modulations arising from the non-linear

noise-speech interaction can contribute to reduction in speech

intelligibility, and in some cases more so than deterministic

modulation reduction (Noordhoek and Drullman, 1997). In a

study assessing the effects of noise on speech intelligibility,

Dubbelboer and Houtgast (2007) have shown that the system-

atic envelope lift (equal to the mean noise intensity) imple-

mented in spectral subtractive algorithms had the most

detrimental effects on speech intelligibility. The corruption of

the fine-structure and introduction of stochastic envelope fluc-

tuations associated with the inaccurate estimates of the noise

intensity and non-linear processing of the mixture envelopes

further diminished speech intelligibility. It was argued that it

was these stochastic effects that prevented spectral subtractive

algorithms from improving speech perception in noise

(Dubbelboer and Houtgast, 2007).

Most noise-reduction algorithms used in commercial

hearing aids involve two sequential stages of processing

(Chung, 2004; Bentler and Chiou, 2006), as shown in Fig. 1.

In the first stage, the algorithm performs signal detection and

analysis with the intent of identifying the presence (or ab-

sence) of speech and noise in each band. Detectors are

employed to estimate the modulation rate, modulation depth,

or/and SNR in each frequency band (Schum, 2003; Latzel et
al., 2003; Chung, 2004; Bentler and Chiou, 2006). The Sie-

mens (Triano) hearing aid, for instance, decides whether

speech is present in a particular band based on the modula-

tion rate (Chung, 2004), while the Widex (Senso Diva) hear-

ing aid detects speech presence based on the estimated SNR

(Kuk et al., 2002). In the second stage, the mixture envelope

is subjected to gain reduction based on the estimated modu-

lation rate or SNR of each band determined in the first stage.

Gain reductions can range from 0 to 12 dB in some commer-

cial hearing aids (Alcantara et al., 2003), with some hearing

aids equipped with several gain settings ranging from mild

to severe (Chung, 2004). The amount of gain reduction is

typically inversely proportional to the SNR estimated in

each channel (Kuk et al., 2002; Chung, 2004). In the Siemens

(Triano) hearing aid for instance, the amount of gain reduction

depends on the modulation rate/SNR and the exact amount is

described by the Wiener gain function (Chung, 2004; Palmer

et al., 2006). The Wiener filtering algorithm (Wiener, 1949),

much like many algorithms used in hearing aids (Graupe

et al., 1987; Kuk et al., 2002; Alcantara et al., 2003), applies

a gain to the spectral envelopes in proportion to the estimated

SNR in each frequency bin. More precisely, spectral bins with

high SNR receive a high gain (close to 1), while spectral bins

with low SNR, and presumably masked by noise, receive a

low gain (close to 0). The Wiener gain function has also been

used successfully (although under somewhat ideal conditions)

for hearing impaired listeners by Levitt et al. (1993).

Clearly, the choice of the frequency-specific gain func-

tion is critical to the success of the noise-reduction algorithm

(Kuk et al., 2002; Bentler and Chiou, 2006). The frequency-

specific gain function applied to the spectral mixture enve-

lopes is far from perfect as it depends on the estimated SNR

or estimated modulation rate (Kuk et al., 2002; Chung, 2004).

Although the intention (and hope) is to apply a small gain

(near 0) only when the masker is present and a high gain (near

1) only when the target is present, that is not feasible since the

target and masker signals spectrally overlap. Consequently,

the target signal may in some instances be over-attenuated (to

the point of being eliminated) while in other instances, it may

be over-amplified. Despite the fact that the gain function is

typically bounded between 0 and 1, the target signal may be

over-amplified because the gain function is applied to the

mixture envelopes. In brief, there are two types of envelope

distortions that can be introduced by the gain functions used

in most noise-reduction algorithms: amplification distortion

occurring when the target signal is over-estimated (e.g., if the

true value of the target envelope is say A, and the estimated

envelope is AþDA, for some positive increment DA), and

attenuation distortion occurring when the target signal is

under-estimated (e.g., the estimated envelope is A–DA). These

distortions may be introduced by any gain function independ-

ent of whether the gain is determined by the modulation rate,

modulation depth, or SNR. The perceptual effect of these two

distortions on speech intelligibility cannot be assumed to be

equivalent, and in practice, there has to exist the right balance

between these two distortions.

In the present study, we assess the impact of the two types

of envelope distortions introduced by the gain function on the

intelligibility of noise-suppressed speech. While these distor-

tions will invariably affect the subjective speech quality, we

focus in the present study only on the effects on intelligibility.

The impact of these distortions on intelligibility was assessed

in our prior study (Loizou and Kim, 2011), but using only one

type of masker (babble) and for (limited bandwidth) telephone

speech. Given the potential influence of signal bandwidth

(e.g., Stelmachowicz et al., 2007) and nature of the masker

(modulated vs non-modulated) on speech intelligibility, the

present article extends our prior study and assesses the effects

of the two distortions using wideband speech corrupted by ei-

ther steady noise or competing talker. Wideband speech is

processed through a conventional noise-reduction algorithm

(square-root Wiener filtering) while controlling the two types

of distortions introduced. We subsequently synthesize signals
FIG. 1. Signal-processing stages involved in noise-reduction algorithms for

hearing-aid applications.
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containing either only amplification distortion or only attenua-

tion distortion. It should be noted that the processed signal

from most noise-reduction algorithms used in commercially

available hearing aids contain both distortions, but the individ-

ual contribution of each of the two distortions on speech intel-

ligibility is largely unknown. It is hypothesized that only when

the two types of distortions are properly controlled (limited) or

eliminated, we can expect to observe a substantial benefit in

intelligibility with existing noise-reduction algorithms.

II. GAIN-INDUCED DISTORTIONS AND SPEECH
INTELLIGIBILITY: THEORETICAL ANALYSIS

As mentioned above, most (if not all) noise-suppression

algorithms employed for hearing aids or for other applications

involve a gain reduction stage (see Fig. 1), in which the mix-

ture envelope or spectrum is multiplied by a gain function

(taking values from 0 to 1) with the intent of suppressing back-

ground noise, if present. The amount of gain reduction

depends, among others, on the detected modulation rate or

estimated SNR, and typically no gain is applied if the esti-

mated SNR is found to be too high (e.g.,> 12 dB in some

hearing aids) (Chung, 2004). The shape and choice of the gain

function varies across manufacturers, but independent of its

shape, when the gain function is applied to the mixture enve-

lopes (or spectra) it introduces either amplification or attenua-

tion distortion to the envelopes. The gain-induced

amplification distortion, for instance, is introduced when the

envelope amplitude of the noise-suppressed signal (denoted as

X̂
�� �� in Fig. 1) is larger than the corresponding target envelope

prior to noise corruption (indicated as Xj j in Fig. 1). This over-

amplification is caused by the presence of additive noise.

To analyze the impact of gain-induced distortions intro-

duced by noise-reduction algorithms, on speech intelligibility,

one needs to establish a relationship between distortion and

intelligibility or alternatively develop an appropriate intelligi-

bility measure. Such a measure could provide valuable insights

as to whether we ought to design algorithms that would mini-

mize the attenuation distortion, the amplification distortion or

both, and to what degree. In the present study, we chose an

intelligibility measure which has been found by Ma et al.
(2009) to correlate highly (r¼ 0.81) with the intelligibility of

noise-suppressed speech. The intelligibility measure, denoted

as the frequency-weighted segmental SNR (fwSNRseg) mea-

sure, was computed using the following equation:

fwSNRseg ¼ 10

T

XT�1

t¼0

1XK

k¼1

W k; tð Þ

�
XK

k¼1

W k; tð Þ log10 SNRESI k; tð Þ; (1)

where W(k,t) is the weight placed on the kth frequency band

and time frame t, K is the number of frequency bands, T is

the total number of time frames in the signal and SNRESI(k,t)
denotes the SigNal-to-RESldual spectrum ratio:

SNRESI k; tð Þ ¼ X k; tð Þj j2

X k; tð Þj j � X̂ k; tð Þ
�� ��� �2

(2)

where X k; tð Þj j denotes the clean magnitude spectrum and

X̂ k; tð Þ
�� �� denotes the signal magnitude spectrum estimated by

the noise-reduction algorithm (see Fig. 1). The spectrum

X̂ k; tð Þ
�� �� can be computed, for instance, by applying a gain

function to the noisy speech spectrum, and it represents here

the output of the noise-suppression algorithm (Fig. 1). We

regard SNRESI(k,t) as a local metric assessing the normalized

“distance” between the true spectrum envelope and the

processed (or estimated) spectrum. Clearly, the closer the

noise-suppressed magnitude spectrum X̂ k; tð Þ
�� �� is to the true

magnitude spectrum X k; tð Þj j, the higher the value of the

SNRESI(k,t) metric, and consequently the higher value of

the fwSNRseg measure [Eq. (1)]. It can be easily shown that

the SNRESI(k, t) metric can alternatively be expressed as a

function of the ratio of the estimated (processed) to true

magnitude spectra, i.e.,

SNRESI k; tð Þ ¼ 1

1� X̂ k;tð Þj j
X k;tð Þj j

� �2
: (3)

Figure 2 plots SNRESI(k,t) as a function of the ratio of the

estimated to clean magnitude spectra, i.e., X̂ k; tð Þ
�� ��= X k; tð Þj j.

As can be seen, the values of SNRESI(k,t) can be divided into

different regions depending on whether the ratio X̂ k; tð Þ
�� ��=

X k; tð Þj j is smaller or larger than 1 or smaller or larger than

2. This figure provides important insights about the contribu-

tions of the two distortions on the value of the SNRESI, and

for convenience, we divide the figure into three regions

according to the distortions introduced.

Region I. In this region, X̂ k; tð Þ
�� �� � X k; tð Þj j, suggesting

only attenuation distortion.

Region II. In this region, X k; tð Þj j< X̂ k; tð Þ
�� �� � 2�

X k; tð Þj j, suggesting amplification distortion ranging from 0

to 6.02 dB.

Region III. In this region, X̂ k; tð Þ
�� �� > 2 � X k; tð Þj j, sug-

gesting amplification distortion in excess of 6.02 dB.

FIG. 2. Plot showing the relationship between SNRESI and the ratio of

enhanced ( X̂
�� ��) to clean ( Xj j) spectra.
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The above three regions are clearly labeled in Fig. 2.

From the above, we can deduce that for the union of Regions

I and II, which we denote as Region Iþ II, we have the fol-

lowing constraint:

X̂ k; tð Þ
�� �� � 2 � X k; tð Þj j: (4)

Figure 2 shows the relationship between the two envelope

distortions, and their potential impact on speech intelligibil-

ity. According to this figure, in order to obtain large values

for the SNRESI metric [and subsequently large values of the

fwSNRseg intelligibility measure via its relationship in Eq.

(1)], the envelope distortions need to be contained within

Regions I and II. This is because the SNRESI metric assumes

large values (and in dB, it is always positive, or 0) in

Regions I and II. The assumption made here is that when the

SNRESI metric attains large values across all bands, it will

lead to a large overall fwSNRseg value [see Eq. (1)], and

subsequently higher intelligibility. Amplification distortions

in excess of 6 dB (i.e., Region III), on the other hand, can be

damaging to speech intelligibility (since the SNRESI metric

assumes small values in Region III, and in dB, it is negative)

and consequently should be minimized. These two observa-

tions taken together imply that in order for noise-reduction

algorithms to improve speech intelligibility, the amplifica-

tion distortions need to be controlled in a way such that they

are limited to be less than 6 dB, i.e., confined within Regions

I and II. Thus, in the following experiment, we test the hy-

pothesis that when the envelope distortions introduced by

the gain function (as used by most noise-reduction algo-

rithms) are constrained to fall within Regions I and II, sub-

stantial improvements in intelligibility are to be expected.

III. EXPERIMENT 1: EFFECT OF GAIN-INDUCED
DISTORTIONS ON SPEECH INTELLIGIBILITY

In this experiment, we first process noise-corrupted sen-

tences via a conventional noise-reduction algorithm (square-

root Wiener filtering algorithm), monitor the two types of

envelope distortions introduced by the gain function, and syn-

thesize the signal accordingly by either allowing attenuation

distortion alone, amplification distortion alone or both. More

precisely, we constrain the distortions introduced by the gain

function to fall within one of the three regions (or combina-

tions thereof) shown in Fig. 2. The synthesized signals are

presented to normal-hearing listeners for identification.

A. Methods

1. Subjects and material

Seven normal-hearing listeners were recruited for this

listening experiment. They were all native speakers of Amer-

ican English, and were paid for their participation. Institute

of Electrical and Electronics Engineers (IEEE) sentences1

[IEEE (1969)] were used for test material, as they are pho-

netically balanced and have relatively low word-context pre-

dictability. The sentences were recorded at a sampling rate

of 25 kHz in a sound-proof booth using Tucker Davis Tech-

nologies (TDT) recording equipment. The IEEE recordings

are available from Loizou (2007). The sentences were cor-

rupted by speech-shaped noise (SSN) and a single-talker

(male) masker at � 10, � 5, and 0 dB SNRs. The speech-

shaped noise was stationary having the same long-term spec-

trum as the sentences in the IEEE corpus. Speech produced

by the same talker was used as the masker. The longest (in

duration) sentence from the IEEE corpus was used for the

single-talker masker. This sentence was self-duplicated and

concatenated to produce a 7 sec long masker sentence. A

segment of the masker was randomly cut from the masker

waveforms (SSN or concatenated single-talker sentence) and

mixed with the target sentences at the prescribed SNR levels.

Hence, each sentence contained a different segment of the

masker waveforms.

2. Signal processing

In one of the control conditions, the noise-corrupted sen-

tences were processed by a conventional noise-suppression

algorithm, namely, the Wiener algorithm (Wiener, 1949).

The square-root Wiener algorithm, as implemented by

Scalart and Filho (1996), was chosen as it is easy to imple-

ment, requires little computation and has been shown by

Hu and Loizou (2007a, 2007b) to be equally effective, in

terms of speech quality and intelligibility, as other more

sophisticated noise-reduction algorithms.2 Furthermore, the

shape of the square-root Wiener gain function is similar to

that used by some commercially available hearing aids

(Chung, 2004), and provides a moderate amount of gain

reduction [see Fig. 9 in Chung (2004)].

The corrupted sentences were first segmented into 20

ms frames, with 50% overlap between adjacent frames. Each

speech frame was Hann windowed and a 500-point discrete

Fourier transform (DFT) was computed. Let Y(k,t) denote

the noisy spectrum at time frame t and frequency band k.

Then, the estimate of the signal magnitude spectrum,

X̂ k; tð Þ
�� ��, is obtained by multiplying Y k; tð Þj j with the square-

root Wiener gain function G(k,t) as follows:

X̂ k; tð Þ
�� �� ¼ Gðk; tÞ � Y k; tð Þj j: (5)

The square-root Wiener gain function is calculated based on

the following equation:

Gðk; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SNRprio k; tð Þ
1þ SNRprio k; tð Þ

s
; (6)

where SNRprio is the a priori SNR estimated using the fol-

lowing recursive equation:

SNRprio k; tð Þ ¼ a �
X̂ k; t� 1ð Þ
�� ��2
k̂D k; t� 1ð Þ

þ 1� að Þ

�max
Y k; tð Þj j2

k̂D k; tð Þ
� 1; 0

" #
; (7)

where k̂D k; tð Þ is the estimate of the background noise power

spectrum and a is a smoothing constant (typically set to
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a¼ 0.98). The noise-estimation algorithm proposed by Ran-

gachari and Loizou (2006) was used for estimating the back-

ground noise power spectrum in Eq. (7). Following Eq. (6),

an inverse DFT was applied to the processed magnitude

spectrum X̂ k; tð Þ
�� ��, using the phase of the noisy speech spec-

trum. The overlap-and-add technique was finally used to

synthesize the noise-suppressed signal.

The square-root Wiener gain function is plotted in

Fig. 3. Two things are worth noting about this gain function.

First, the slope of the gain function is approximately 1 (at

least for the region where SNR<� 5 dB), in that the gain is

reduced by 1 dB for every 1 dB decrease in the SNR. This

corresponds to a moderate gain setting in some noise-sup-

pression algorithms implemented in commercially available

hearing aids (Chung, 2004). Second, no gain reduction is

applied when the estimated SNR exceeds 15 dB, similar to

the gain functions [see Fig. 9 in Chung (2004)] used in some

commercially available hearing aids. In summary, the

square-root Wiener gain function described in Eq. (6) is sim-

ilar in many respects to those used in some hearing aids

(e.g., Palmer et al., 2006). It should also be noted that unlike

the Wiener filter used in the study by Levitt et al. (1993)

under ideal conditions, the square-root Wiener filter used in

the present study was estimated from the mixture envelopes.

No constraints were imposed in Eq. (6) on the two types

of distortions that can be incurred when applying the square-

root Wiener gain function to the corrupted speech spectrum.

As such, the square-root Wiener-processed sentences served

as one of the two control conditions. For the remaining condi-

tions, we assumed knowledge of the clean speech spectrum.

This was necessary in order to implement the aforementioned

constraints and assess the impact of the two distortions on

speech intelligibility. Thus, in order to enforce the constraints,

the estimated [as per Eq. (5) and Eq. (6)] magnitude spectrum

X̂ k; tð Þ
�� �� was compared against the true speech spectrum

X k; tð Þj j for each time-frequency (T-F) unit (k,t), and T-F

units satisfying the constraint were retained, while T-F units

violating the constrains were zeroed out. For instance, for the

implementation of the Region I constraint, the modified mag-

nitude spectrum, X̂M k; tð Þ
�� ��, was computed as follows:

X̂M k; tð Þ
�� �� ¼ X̂ k; tð Þ

�� ��; if X̂ k; tð Þ
�� �� � X k; tð Þj j

0; otherwise:

�
(8)

Following the above selection of T-F units belonging in

Region I, an inverse DFT was applied to the modified spec-

trum X̂M k; tð Þ
�� �� using the phase of the noisy speech spectrum,

and the overlap-and-add technique was finally used to

FIG. 3. (Color online) The square-root Wiener gain function used in the

present study.

FIG. 4. Wideband spectrograms of the (a) clean signal, (b) corrupted signal (SSN masker, SNR¼� 5 dB), (c) square-root Wiener-processed signal with

Region I constraints, and (d) square-root Wiener-processed signal with Region II constraints.
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synthesize the noise-suppressed signal containing the pre-

scribed envelope distortion (MATLAB implementation of

the above algorithm is available from the second author).

Figure 4 shows example spectrograms of a corrupted (by

SSN masker at � 5 dB SNR) IEEE sentence, processed and

synthesized to contain only attenuation distortion (Region I)

or limited amplification distortion (Region II). As can be

seen, the processed signals contained adequate formant fre-

quency information for accurate word identification. A rela-

tively smaller number of T-F units were retained in Region

II [Fig. 4(d)] compared to that in Region I [Fig. 4(c)].

Figure 5 shows example temporal envelopes for a spe-

cific band (centered at f¼ 700 Hz) containing prescribed en-

velope distortions. For illustrative purposes, and similar to

Dubbelboer and Houtgast (2007), we show the envelopes

processed via a spectral subtraction algorithm which oper-

ates by subtracting the noise floor intensity from the noisy

envelope [Figs. 5(b) and 5(c)]. The resulting envelope con-

taining only amplification distortion (in excess of 6 dB) is

shown in Fig. 5(d), and the envelope containing primarily

attenuation distortion and limited amplification distortion

(< 6 dB) is shown in Fig. 5(e). It is clear that the envelopes

constrained to lie within Region Iþ II [Fig. 5(e)] contain pri-

marily speech-relevant modulations, while the envelopes

constrained to fall in Region III [Fig. 5(d)] contain non-rele-

vant stochastic modulations. These stochastic envelope fluc-

tuations have been found in the study by Dubbelboer and

Houtgast (2007) to severely impair speech intelligibility.

Hence, from Fig. 5 we can conclude that the constraints

imposed on the enhanced envelopes decouple to some extent

the speech-relevant modulations from the stochastic enve-

lope fluctuations.

3. Procedure

The experiments were performed in a sound-proof room

(Acoustic Systems, Inc) using a PC connected to a Tucker-

Davis system 3. Stimuli were played to the listeners monaur-

ally through Sennheiser HD 485 circumaural headphones at

a comfortable listening level. The listening level was con-

trolled by each individual but was fixed throughout all the

conditions in the test for a particular subject. Prior to the sen-

tence test, each subject listened to a set of noise-corrupted

sentences to get familiarized with the testing procedure. In

the single-talker masker conditions, the listeners were

informed of the masker sentence, since the masker was the

same talker that was used to produce the target sentences [a

similar approach was taken in the study by Hawley et al.
(2004)]. Subjects were asked to pay attention to the non-

masking sentence and write down all the words they heard.

Twenty sentences were used per condition, and none of the

lists were repeated across conditions. The order of the condi-

tions was randomized across subjects. The whole listening

test lasted for about 3–4 h. The testing session was split into

two sessions each lasting 1.5–2 h. Five-minute breaks were

given to the subjects every 30 min.

The listeners participated in a total of 36 conditions (¼ 3

SNR levels� 2 types of maskers� 6 processing conditions).

The six processing conditions included speech processed

using the square-root Wiener algorithm with (1) no con-

straints imposed, (2) Region I constraints, (3) Region II con-

straints, (4) Region Iþ II constraints, and (5) Region III

constraints imposed. The sixth condition included the control

condition, in which the noise-corrupted sentences were left

unprocessed (UN).

B. Results and discussion

The mean performance, computed in terms of percentage

of words identified correctly (all words were scored), by the

normal-hearing listeners are plotted in Fig. 6 for the single-

talker masker [Fig. 6 (top)] and the speech-shaped noise [Fig. 6

(bottom)] conditions. The intelligibility scores obtained in the

two masker conditions were separately examined and analyzed

for significant effects of SNR level and type of distortion intro-

duced. For the scores obtained in the single-talker conditions,

analysis of variance (with repeated measures) indicated a signif-

icant effect of type of distortion (F5,30¼ 364.0, p< 0.0005), sig-

nificant effect of SNR level (F2,12¼ 90.9, p< 0.0005) and

significant interaction (F10,60¼ 18.2, p< 0.0005) between the

type of distortion and SNR level. For the scores obtained in the

SSN conditions, analysis of variance (with repeated measures)

indicated a significant effect of type of distortion (F5,30¼ 686.9,

p< 0.0005), significant effect of SNR level (F2,12¼ 172.2, p

FIG. 5. (Color online) Example temporal envelopes of a band (centered at

f¼ 700 Hz) processed so as to contain only amplification or attenuation

distortions. (a) The clean envelope. (b) The noisy envelope corrupted at 0

dB SSN. (c) Envelope processed by a spectral subtractive algorithm. (d) The

envelope containing only amplification distortions in excess of 6 dB. (e) The

envelope containing only attenuation distortion and limited (< 6 dB) ampli-

fication distortion.
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<0.0005) and significant interaction (F10,60¼ 142.5,

p< 0.0005) between the type of distortion and SNR level.

As shown in Fig. 6, substantial improvements in intelli-

gibility were obtained in nearly all conditions when the dis-

tortions were constrained to fall within Region I or Region

Iþ II. The improvement, relative to UN and square-root

Wiener-processed stimuli, was more evident in the SSN con-

ditions. At �10 dB SNR (SSN masker), for instance, per-

formance obtained with UN or square-root Wiener-

processed sentences improved from 3% and 11% correct to

nearly 100% correct when Region I constraints were

imposed. Performance in Region III, in which amplification

distortion in excess of 6 dB was introduced, was the lowest

(near 0% correct) in all conditions and with both maskers.

Performance in Region II, in which amplification distortion

was limited to be lower than 6 dB, was poor (23%–37%) in

the single-talker masker conditions but high (> 90%) in the

SSN conditions.

Post hoc analysis, according to Fisher’s LSD tests, was

subsequently conducted to examine significant differences

between conditions. For the single-talker conditions, per-

formance with square-root Wiener-processed sentences was

significantly lower (p< 0.005) than performance with unpro-

cessed sentences (UN) at all three SNR levels. This was not

surprising, as the computation of the square-root Wiener

gain function [Eq. (6)] requires estimate of the competing

talker spectrum [Eq. (7)], which is a challenging task. Per-

formance in both Region I and Region Iþ II was found to be

significantly higher than performance in UN conditions at

the � 10 and � 5 dB SNR levels, but not (p> 0.05) at 0 dB

SNR. Performance in Region II was significantly (p< 0.005)

lower than performance in UN and square-root Wiener

conditions at all SNR levels. A different pattern in results

emerged in the SSN conditions. A small, but statistically

significant (p< 0.05), improvement in intelligibility was

noted at � 10 and � 5 dB SNR levels with the square-root

Wiener-processed sentences relative to the scores obtained

with unprocessed (UN) sentences. Large improvements

(p< 0.0005) in performance, particularly at � 10 and � 5 dB

SNR levels, were observed in the Region I, Region II, and

Region Iþ II conditions relative to the UN and square-root

Wiener conditions.

Of the two distortions introduced and examined, the

attenuation distortion had the smallest effect on intelligibil-

ity. In fact, the data from the present study clearly demon-

strate that substantial gains in intelligibility can be attained

(see Fig. 6) when controlling and/or limiting the distortion

introduced by noise suppression algorithms to be only of

attenuation type. This was found to be true for both types of

maskers tested. On the other hand, the impact of the amplifi-

cation distortion on speech intelligibility varied across the

two types of maskers tested. When the amplification distor-

tion was limited to be smaller than 6 dB (Region II), per-

formance was nearly unaffected in the SSN conditions, and

in fact performance improved (relative to UN) and remained

as high (> 90%) as that obtained in Region I. In contrast,

performance dropped substantially (relative to UN) when the

amplification distortion was limited to be smaller than 6 dB

(Region II) in the single-talker conditions. When the amplifi-

cation distortion was allowed to increase in excess of 6 dB,

performance dropped to nearly 0% in all conditions and for

both maskers. The reasons for that were not clear at first;

hence, we analyzed the Region III condition further.

More precisely, we plotted the spectral SNRs for all fre-

quency bins falling in Region III. Figure 7 shows the result-

ing SNR histograms computed using 20 IEEE sentences. For

comparative purposes, we also plot the corresponding SNR

histograms for all frequency bins falling in Region Iþ II.

The large number of negative SNRs X k; tð Þj j < D k; tð Þj jð Þ in

Region III suggests that the target was always masked. In

fact, it can be proven analytically that Region III contains

only masker-dominated T-F units. That is, the T-F units in

Region III have always a negative SNR (see proof in the Ap-

pendix). This explains why performance in Region III was

always near 0%. In contrast, the spectral SNR in Region

Iþ II varied across a wide dynamic range, with nearly half

of the distribution containing frequency bins with positive

SNRs and the other half containing frequency bins with neg-

ative SNRs. The SNR histograms shown in Fig. 7 explain

why performance in Region Iþ II was always higher than

performance in Region III. Furthermore, we know that the

SNRESI metric takes small values and is always smaller than

0 dB in Region III, while it assumes positive (� 0 dB) values

in Region Iþ II. Consequently, by ensuring that the distor-

tions remain in Region Iþ II we ensure that the SNRESI

FIG. 6. Mean intelligibility scores as a function of SNR level, type of dis-

tortion and masker type. The bars labeled as “UN” show the scores obtained

with noise-corrupted (unprocessed) stimuli, while the bars labeled as

“Wiener” show the baseline scores obtained with the square-root Wiener

algorithm (no constraints imposed). The intelligibility scores obtained with

four different constraints imposed (following the square-root Wiener proc-

essing) are labeled accordingly. Error bars indicate standard errors of the

mean.
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metric assumes values greater than 1, and as the present data

demonstrated (Fig. 6), in doing so we can potentially maxi-

mize the intelligibility benefit.

In Region Iþ II, the amplification and attenuation distor-

tions co-exist, as is often the case with distortions introduced

by most (if not all) noise-reduction algorithms. However, the

amplification distortion in Region Iþ II was limited to be

lower than 6 dB (no limit was imposed on the attenuation dis-

tortion), yet large gains in intelligibility were obtained in all

conditions. This suggests that one of the reasons that existing

noise-reduction algorithms do not improve speech intelligibil-

ity is because they allow amplification distortions in excess

FIG. 7. Histogram of SNRs for T-F

units falling in Regions (top) Iþ II

and (bottom) III for two input SNR

levels (dashed lines show input

SNR¼ 0 dB and solid lines show

input SNR¼� 5 dB).

FIG. 8. (Color online) Histogram of

SNRs (left) for T-F units in UN sen-

tences and (right) for T-F units con-

fined in Region Iþ II. The data were

fitted with a Gaussian distribution

(shown with solid lines).

1588 J. Acoust. Soc. Am., Vol. 130, No. 3, September 2011 G. Kim and P. C. Loizou: Speech distortions and intelligibility

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



of 6 dB. As shown in Fig. 7, amplification distortions in

excess of 6 dB are associated with dominantly negative SNRs

and subsequently with T-F units that are completely masked

by background noise. Hence, by eliminating these distortions,

we eliminate a large number of T-F units associated with

extremely low SNRs. Consequently, we would expect that

we could improve the overall SNR simply by eliminating

amplification distortions in excess of 6 dB. To demonstrate

this, we computed the histogram of the SNRs (computed

prior to masking) of all T-F units falling in Region Iþ II and

compared that against the corresponding SNR histogram of

all T-F units of UN sentences. Figure 8 shows such a compar-

ison for a sentence corrupted by SSN at � 5 dB SNR. The

histograms were fitted to a Gaussian distribution (based on

the maximum likelihood method), from which we extracted

the mean of the distribution. As can be seen, the mean of the

SNR distribution moved to the right (i.e., improved) from

� 24 dB when all T-F units in UN sentences were included to

� 14 dB when only T-F units falling in Region Iþ II were

included. For this example, the effective SNR of Region

Iþ II stimuli improved, on the average, by 10 dB. Hence, by

simply eliminating amplification distortions in excess of 6

dB, we can improve the effective SNR of the noise-sup-

pressed stimuli by as much as 10 dB, at least in steady back-

ground conditions.

According to Fig. 7, the signals in Region Iþ II contain

T-F units with both positive and negative SNRs. Yet, the

negative SNR T-F units did not seem to impair speech intel-

ligibility (Fig. 6). The constraints imposed for Regions I and

II provide no way of differentiating between positive and

negative SNR T-F units, in terms of designing algorithms

that would possibly eliminate the T-F units with negative

SNRs. The constraints in Region III, however, guarantee that

all T-F units falling in Region III will have negative SNR

(see proof in the Appendix). Therefore, the constraints of

Region III provide a mechanism which can be used by

noise-reduction algorithms to eliminate low SNR T-F units

and subsequently improve speech recognition. Introducing

amplification distortions in excess of 6 dB is equivalent to

introducing negative SNR T-F units in the processed signal,

and should therefore be avoided or eliminated.

Performance in Region II was significantly higher when

the masker was steady noise rather than a single-talker.

There are several possible explanations for that. One possi-

bility is that the estimation of the noise statistics needed in

the square-root Wiener gain function was not done as accu-

rately in single-talker conditions as in steady noise condi-

tions. Estimating the noise statistics in competing-talker

masking conditions is considerably more challenging than in

steady-noise conditions, and this possibly influenced the

number and frequency location of the T-F units falling in

Region II.

Second, we considered the possibility that the number

of T-F units falling in each of the three regions might explain

the low performance in Region II. We thus calculated the

percentage of bins falling in each Region and tabulated the

percentages in Table I (these percentages represent mean

values computed using 20 IEEE sentences). The percentage

of T-F units falling in Region II for the single-talker (7%–8%)

masker was smaller than that for the SSN masker (10%–14%).

Although the difference does not seem to be large enough to

fully explain the large difference in scores in Region II, the

lower amount of T-F units in Region II caused a drop in

intelligibility. However, for Region I and Region III which

cover a much wider range of X̂
�� ��= Xj j (see Fig. 2) compared

to Region II, no meaningful correlation or relationship was

found between the percentage of T-F units falling in each region

and intelligibility. A significantly larger percentage of T-F

units fell in Region I in single-talker masker (64%–75%)

conditions compared to SSN (21%–36%) conditions, yet the

intelligibility scores obtained in both conditions were

equally high. As proved above, T-F units in Region III have

always negative SNR, and it is therefore not surprising that

the number of Region-III units in single-talker masker condi-

tions was significantly lower than those in SSN conditions.

Overall, attenuation distortions had a minimal effect on

speech intelligibility and this was found to be clear and con-

sistent for both maskers tested. In contrast, the effects of

amplification distortions were more complex to interpret and

seemed to be dependent on (a) the type of masker, (b) the

amount of distortion present (for Region II it was < 6 dB

and for Region III it was > 6 dB), and (c) whether these dis-

tortions co-existed with attenuation distortions (Region

Iþ II). Despite the complexity in assessing the effects of

these distortions in the various scenarios, it was clear from

the present experiment that in the latter (c) scenario, when

the amplification distortions were limited to be lower than 6

dB, while allowing for attenuation distortions (i.e., Region

Iþ II), large gains in intelligibility can be obtained consis-

tently for both maskers tested and all SNR levels.

IV. EXPERIMENT 2: EFFECT OF AMPLIFICATION
DISTORTION ALONE ON SPEECH INTELLIGIBILITY

Given the detrimental effects of amplification distortion

on speech corrupted by a competing talker, we wanted to an-

alyze it further by varying systematically the amount of dis-

tortion introduced by the gain functions. The previous

experiment only examined two extreme cases in which the

amplification distortion was either limited to be less than 6 dB

(Region II or Region Iþ II) or greater than 6 dB (Region III).

In the present experiment, amplification distortion is system-

atically varied here from a low of 2 dB to a high of 20 dB.

Furthermore, unlike some of the stimuli used in the previous

experiment, none of the stimuli used in the present experiment

contain any attenuation distortions and this was done to assess

the individual contribution of amplification distortion.

TABLE I. Percentage of bins falling in the three regions.

SNR Region I Region II Region III

Single-talker masker � 10 dB 64.32% 7.09% 28.59%

� 5 dB 69.11% 8.15% 22.44%

0 dB 74.64% 7.91% 17.45%

Speech-shaped noise � 10 dB 20.57% 9.71% 69.72%

� 5 dB 27.50% 11.99% 60.51%

0 dB 36.05% 14.31% 49.64%
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A. Methods

1. Subjects and material

Seven new normal-hearing listeners were recruited for

this experiment. All subjects were native speakers of Ameri-

can English and were paid for their participation. The same

sentence material (IEEE, 1969) was used as in Experiment 1.

2. Signal processing

To assess the impact of amplification distortion on

speech intelligibility, we varied systematically the amount of

distortion introduced. The corrupted signal was processed as

described before (see Sec III A 2) by the square-root Wiener

algorithm producing at time frame t and frequency band k
the magnitude spectrum X̂ k; tð Þ

�� ��. T-F units in cell (k, t) that

satisfied the following constraint were retained, while the

remaining were set to 0:

0 < 20 � log10

X̂ k; tð Þ
�� ��
X k; tð Þj j < A dBð Þ; (9)

where the positive constant A (expressed in dB) denotes the

maximum amplification distortion allowed. Clearly, the

smaller the value of A is, the smaller the number of T-F units

retained. Note that when 0<A� 6.02 dB, the constrained

region coincides with Region II, and when A> 6.02 dB, the

constrained region includes Region II and part of Region III

(see Fig. 2). Following the selection of T-F units according

to Eq. (8), the signal was synthesized as in Experiment 1

(Sec. III A 2).

3. Procedure

Subjects participated in a total of 36 conditions (¼ 3

SNR levels� 2 types of maskers� 6 processing conditions).

The two maskers were the same as in Experiment 1. Six

processing conditions were tested corresponding to six dif-

ferent values of A: 2, 4, 6, 10, 15, and 20 dB. Two lists of

sentences (i.e., 20 sentences) were used per condition, and

none of the lists were repeated across conditions. The order

of the test conditions was randomized across subjects.

B. Results and discussion

The mean performance, computed in terms of percentage

of words identified correctly (all words were scored), by the

normal-hearing listeners are plotted in Fig. 9 for the single-

talker masker [Fig. 9 (top)] and speech-shaped noise [Fig. 9

(bottom)] conditions. The intelligibility scores obtained in

the two masker conditions were separately examined and an-

alyzed for significant effects of SNR level and amount

of amplification distortion introduced. For the scores

obtained in the single-talker conditions, analysis of variance

(with repeated measures) indicated a significant effect of

amount of amplification distortion (F5,30¼ 112.2,

p< 0.0005), significant effect of SNR level (F2,12¼ 30.8,

p< 0.0005) and significant interaction (F10,60¼ 19.6,

p< 0.0005) between amount of distortion and SNR level.

For the scores obtained in the SSN conditions, analysis of

variance (with repeated measures) indicated a significant

effect of amount of amplification distortion (F5,30¼ 64.1,

p< 0.0005), significant effect of SNR level (F2,12¼ 14.8,

p< 0.0005) and significant interaction (F10,60¼ 12.2,

p< 0.0005) between amount of distortion and SNR level.

It is clear from Fig. 9, that the amount of amplification

distortion introduced affected the intelligibility of speech

corrupted by the two types of maskers differently. The effect

was small for speech corrupted by the SSN masker, but was

quite large and significant for speech corrupted by the sin-

gle-talker masker. When the constrained region coincides

with Region II (0<A< 6.02 dB), the lowest performance

was obtained with A¼ 2 dB with the exception of one condi-

tion (0 dB single-talker). This is to be expected, since the

smaller the value of A is, the smaller the number of T-F units

retained and the sparser the signal is in the T-F domain.

Intelligibility improved when A¼ 4 dB in nearly all condi-

tions. Post hoc tests (Fisher’s LSD) confirmed that the

improvement, relative to A¼ 2 dB was statistically signifi-

cant (p< 0.05). When A� 6 dB, intelligibility scores

dropped significantly in the single-talker conditions, but

remained high (> 80%) in the SSN conditions. It is interest-

ing to note that in the SSN conditions, intelligibility scores

remained modestly high (> 70%) at all SNR levels, even

when A¼ 20 dB. It should be noted that the condition corre-

sponding to A¼ 20 dB is not the same as the Region III con-

dition in Experiment 1, wherein performance dropped to 0.

FIG. 9. Mean intelligibility scores as a function of SNR level, amount of

amplification distortion and masker type. The maximum amplification dis-

tortion allowed ranged from 2 to 20 dB and is indicated accordingly. Error

bars indicate standard errors of the mean.
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As shown in Fig. 2 [and Eq. (9)], the condition with A¼ 20

dB includes Region II along with part of Region III.

In summary, performance in single-talker conditions

was quite susceptible to amplification distortion. Even a

small amount of distortion (< 6 dB), was found to decrease

performance by as much as 60 percentage points relative to

the performance obtained with un-processed sentences (see

Figs. 6 and 9). In contrast, no significant effect on intelligi-

bility was observed in the SSN conditions. We attribute the

differential effect of amplification distortion on two possibly

interrelated reasons, as discussed previously in Sec. III B.

One possibility is that the estimation of the noise statistics

needed in the square-root Wiener gain function was not done

as accurately in single-talker conditions as in steady noise

conditions. Second, the number of T-F units falling in

Region II for the single-talker conditions was smaller than

the corresponding number in SSN conditions (see Table I).

Subsequently, the synthesized signals in the single-talker

conditions were “sparser” than the corresponding signals in

SSN conditions.

At first glance, the findings from this experiment contra-

dict those from Experiment 1. In Experiment 1, amplification

distortions in excess of 6 dB (Region III) were found to be

quite detrimental, while in the present experiment high intel-

ligibility was maintained in the SSN conditions even when

the amplification distortions were as large as 20 dB. The dis-

crepancy is due to the fact that the regions examined in the

two experiments are different. Experiment 1 examined

Region III while Experiment 2 examined Region II plus part

of Region III. Although Region II is a subset of the overall

region examined, the effects of amplification distortion are

complex to interpret for several reasons. First, the SNR dis-

tributions of T-F units falling in these two regions differ.

Second, the number of T-F units falling in these two regions

differs, and accordingly that affects the “sparsity” of the sig-

nal. Third, the accuracy in estimating the gain function in

these regions also differs. We thus believe that all these fac-

tors contributed to the difference in outcomes between the

two maskers.

V. EXPERIMENT 3: EFFECT OF GAIN-INDUCED
DISTORTIONS ON VOWELS AND CONSONANTS

The weak consonants (e.g., stops) are masked by noise

more easily and more heavily, than the high-energy vocalic

segments (Parikh and Loizou, 2005; Phatak and Allen,

2007). Given that noise masks differently and to a different

extent vowels and consonants, we examine in the present

experiment, the impact of attenuation distortion introduced

either in vowel-like segments or weak-consonant segments

of the utterance. In a practical implementation of the con-

straints presented in Sec. II it is reasonable to expect that it

would be easier to impose the constraints in voiced (e.g.,

vowels) rather than unvoiced (e.g., weak consonants such as

stops and fricatives) segments as the former segments are

easier to detect. This raises the question then as to whether

we would expect to observe substantial improvements in

intelligibility when the attenuation distortion is confined

within the voiced segments (e.g., vowels) alone or unvoiced

(e.g., stop consonants) segments alone. The present experi-

ment is designed to answer this question.

A. Method

1. Subjects and material

Seven new normal-hearing listeners were recruited for

this experiment. All subjects were native speakers of Ameri-

can English and were paid for their participation. The same

speech material (IEEE, 1969) were used as in Experiment 1.

2. Signal processing

The IEEE sentences were phonetically transcribed into

voiced or unvoiced segments using the method described in

Li and Loizou (2008). Very briefly, a highly accurate F0 de-

tector (Kawahara et al., 1999) was first used to provide the

initial classification of short- duration segments into voiced

and unvoiced segments. The F0 detection algorithm was

applied every 1 ms to the stimuli using a high-resolution fast

Fourier transform (FFT) to provide for accurate temporal re-

solution of voiced/unvoiced boundaries. Segments with non-

zero F0 values were initially classified as voiced and

segments with zero F0 value were classified as unvoiced. Af-

ter automatic classification, the voiced and unvoiced deci-

sions were inspected for errors and the detected errors were

manually corrected. The voiced/unvoiced segmentation of

all IEEE sentences was saved in text files and is available

from a CD ROM in Loizou (2007). Voiced segments

included all sonorant sounds, i.e., the vowels, semivowels

and nasals, while the unvoiced segments included all obstru-

ent sounds, i.e., the stops, fricatives, and affricates.

The noise-corrupted sentences were first processed as in

Experiment 1 via the square-root Wiener algorithm. The

voiced/unvoiced segmentation of each sentence was

retrieved from the corresponding saved text file and the

square-root Wiener-processed speech spectrum was modified

as per Eq. (8) to implement the Region I constraints. In one

condition, the Region I constraints (allowing only attenua-

tion distortion) were applied only to the voiced segments

leaving the unvoiced segments unconstrained (but square-

root Wiener processed). In another condition, the Region I

constraints were applied only to the unvoiced segments leav-

ing the voiced segments unconstrained. Following the modi-

fication of the square-root Wiener-processed spectrum as per

Eq. (8), the voiced (or unvoiced) segments were synthesized

using the same synthesis method described in Experiment 1.

3. Procedure

Subjects participated in a total of 24 conditions (¼ 3

SNR levels� 2 types of maskers� 4 processing conditions).

The same two maskers were used as in Experiment 1. The

four processing conditions included (1) noise-corrupted

speech, (2) square-root Wiener-processed speech followed

by Region I constraints applied to the whole utterance, (3)

square-root Wiener-processed speech followed by Region I

constraints applied only to the voiced segments (no con-

straints were applied to the unvoiced segments), and (4)

square-root Wiener-processed speech followed by Region I
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constraints applied only to the unvoiced segments (no con-

straints were applied to the voiced segments). Two lists of

sentences (i.e., 20 sentences) were used per condition, and

none of the lists were repeated across conditions. The order

of the test conditions was randomized across subjects.

B. Results and discussion

The mean performance, computed in terms of percentage

of words identified correctly (all words were scored), by the

normal-hearing listeners are plotted in Fig. 10 for the single-

talker masker [Fig. 10 (top)] and the speech-shaped noise

[Fig. 10 (bottom)] conditions. The intelligibility scores

obtained in the two masker conditions were separately exam-

ined and analyzed for significant effects of SNR level and

sound class (voiced vs unvoiced) distortion on speech intelli-

gibility. For the scores obtained in the single-talker conditions,

analysis of variance (with repeated measures) indicated a

significant effect of sound-class distortion (F3,18¼ 34.5, p
< 0.0005), significant effect of SNR level (F2,12¼ 56.3, p
< 0.0005) and significant interaction (F6,36¼ 101.2,

p< 0.0005) between sound-class distortion and SNR level.

For the scores obtained in the SSN conditions, analysis of var-

iance (with repeated measures) indicated a significant effect of

sound-class distortion (F3,18¼ 374.0, p< 0.0005), significant

effect of SNR level (F2,12¼ 152.6, p< 0.0005) and significant

interaction (F6,36¼ 7.9, p< 0.0005).

No dramatic decrease in performance (relative to the UN

conditions) was noted in the single-talker conditions when the

attenuation distortion was introduced in either the voiced or

unvoiced segments of the utterances. Performance at � 5 and

0 dB SNR, however, was limited by ceiling effects. At 0 dB

SNR, performance in the unvoiced-segment conditions was

significantly (p< 0.005) lower than performance in the con-

trol Region I condition, but nonetheless performance in the

unvoiced-segment condition remained high at 88% correct.

The impact of attenuation distortion on voiced and

unvoiced segments was more evident in the SSN conditions,

particularly at � 10 and � 5 dB SNRs. Relative to the con-

trol UN condition, performance at � 10 dB SNR improved

from 10% (with UN) to over 70% when the attenuation dis-

tortion was introduced to the voiced segments alone. Simi-

larly, performance improved from 10% to 60% when the

attenuation distortion was introduced to the unvoiced seg-

ments alone. The same pattern was observed at � 5 dB and 0

dB SNR. At 0 dB SNR, the improvement was small, but stat-

istically significant (p< 0.005), according to Fisher’s LSD

tests conducted post hoc.

The most interesting outcome from the present experi-

ment is that there was substantial benefit in intelligibility

(relative to UN) in steady-noise conditions even when the

attenuation distortion was limited to either voiced or

unvoiced segments alone, with a larger benefit observed in

the voiced-segment conditions. The large benefit observed in

the unvoiced-segment conditions can be attributed to the lis-

teners having better access to lexical segmentation cues (Ste-

vens, 2002; Li and Loizou, 2008). These cues are critically

important as they enable the listeners to better identify the

FIG. 10. Mean intelligibility scores as a function of

SNR level, masker type and sound-class distortion.

Attenuation distortion was limited to only voiced

segments, unvoiced segments or both (Region I).

Error bars indicate standard errors of the mean.
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word/syllable boundaries, which are typically blurred in

steady-noise backgrounds. The large benefit observed in the

unvoiced-segment conditions is consistent with that

observed in our prior study (Li and Loizou, 2008) wherein

listeners were presented with clean unvoiced segments in

otherwise corrupted sentences (no square-root Wiener proc-

essing was applied to the noise-corrupted sentences in that

study).

The major contributions of the present experiment are

the practical implications of applying the Region I con-

straints only to voiced segments. That is, signal processing

algorithms can be devised that apply the proposed con-

straints only during voiced segments while leaving the

unvoiced segments unaltered. The voiced segments are com-

paratively masked by noise to a lower degree than the weak

consonants (e.g.,/f/). The idea is to first identify a particular

speech segment as voiced or unvoiced and then apply the

spectral constraints investigated in the present study only to

voiced segments.

VI. DISCUSSION

Large benefits in intelligibility were obtained in Experi-

ments 1–3 when the proposed constraints were imposed.

Implementation of those constraints, however, required

access to the clean envelopes (spectra), which we do not

have. This raises the question: How can the proposed con-

straints be implemented in practice? There are two possibil-

ities that can be explored.

First, given that the classification and retention of T-F

units is binary, one can train a binary classifier to classify the

mixture envelopes into two classes, those with SNRESI� 0

dB (belonging to Region Iþ II) and those with SNRESI< 0

dB (belonging to Region III). True knowledge of the target

signal is only required during the training stage of the binary

classifier, which can be done off-line using a large inventory

of noise sources. In the testing stage, the binary classifier will

have access only to the observed noisy signals and will make

decisions based on features extracted from noisy observa-

tions. Based on the results from Fig. 6, T-F units with

SNRESI� 0 dB should be retained and T-F units with

SNRESI< 0 dB should be eliminated, as those are associated

with SNR< 0 dB. These decisions will be made using the

trained binary classifier. Such an approach was taken in Kim

and Loizou (2010), wherein it was demonstrated (with

normal-hearing listeners) that large gains in intelligibility can

be obtained. The data from the latter study thus showed that

the implementation of the proposed constraints is indeed

feasible.

A second possibility is to limit or control the amount of

amplification/attenuation distortions introduced by the gain

functions by estimating the SNRESI metric directly from the

mixture envelopes. Equation (2) cannot be used for this pur-

pose, as it depends on the clean envelopes, which we do not

have. The SNRESI metric at frequency band k and time frame

t, however, can alternatively be expressed as:

SNRESI k; tð Þ ¼ SNR k; tð Þ
1� G k; tð Þ½ �2�SNR k; tð Þ þ G k; tð Þ½ �2

; (10)

where G(k,t) is the gain function applied to frequency band k
and time frame t and SNR(k, t) is the true a priori SNR3 at

frequency band k and time frame t [see derivation in Lu and

Loizou (2010)]. The advantage of using the above expres-

sion for SNRESI(k, t) is that it is applicable to all gain func-

tions, regardless of whether the gain function is determined

by the modulation rate, modulation depth, and/or SNR. The

SNR term in the above equation is not known in practice,

but can nonetheless be estimated from the mixture enve-

lopes. Several techniques exist for estimating the band SNR

[see review in Loizou (2007, Chap. 7)] and one common

approach is to use the “decision-directed” method (Ephraim

and Malah, 1984). Hence, the SNRESI(k,t) definition given

above can be used to monitor and control the distortions

introduced by the noise-suppressive gain functions used by

most hearing aids (Chung, 2004). Clearly the success of this

approach will depend on the accuracy in estimating the

SNRESI(k,t) values. The outcome of Experiment 3 (Fig. 10),

however, suggests that the SNRESI(k,t) value only needs to

be computed accurately for the voiced segments (e.g., vow-

els) of speech, at least in steady noise conditions. These seg-

ments are known to be masked by steady additive noise to a

lesser extent than the weak consonants (e.g., stops) (Parikh

and Loizou, 2005).

One interesting observation about the above expression

[Eq. (10)] of the SNRESI(k,t) metric, is that when G(k,t)¼ 1 for

all bands, then SNRESI(k, t)¼ SNR(k, t). That is, when no

processing is applied to the mixture envelopes [i.e.,

G(k,t)¼ 1], the SNRESI(k,t) metric returns the band SNR value.

Subsequently, if SNRESI(k,t)¼ SNR(k,t), the fwSNRseg intel-

ligibility measure [Eq. (1)] resembles to a simplified form of

the articulation index.

As mentioned earlier, a number of noise-reduction algo-

rithms have been designed to minimize speech distortion

while limiting noise distortion (Ephraim and Trees, 1995; Hu

and Loizou, 2004; Chen et al., 2006). Those algorithms, how-

ever, made no distinction between attenuation vs amplifica-

tion distortions, as these two distortions were lumped into

one. As demonstrated in Experiment 1 (see Fig. 6), the two

distortions should not be treated equally. Instead, Eq. (10)

could be used to monitor and possibly eliminate excess ampli-

fication distortions, known to severely degrade intelligibility.

VII. CONCLUSIONS

Most noise-reduction algorithms used in hearing aids

operate by first identifying the presence or absence of speech

in the noisy signal (via modulation detection and/or SNR

detection algorithms), and then applying a gain to reduce

noise interference (Chung, 2004). In most cases, the gain is

proportional to the SNR or modulation rate detected in each

band. Since the gain applied is imperfect as it depends on the

estimated SNR and/or modulation rate, the resulting output

envelope will be either amplified or attenuated relative to the

clean input envelope. The present study focused on assessing

the impact of these gain-induced (amplification or attenua-

tion) distortions on speech intelligibility in competing talker

and steady noise conditions. It does not assess the impact of

other unwanted nonlinear distortions introduced in hearing
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aid instruments by compression or signal clipping (Arehart

et al., 2007). Noise-corrupted speech was processed via a

conventional noise-reduction algorithm (square-root Wiener

filtering) and the gain-induced distortions were confined into

one of three regions: Region I containing only attenuation

distortion, Region II containing only amplification distortion

smaller than 6 dB, and Region III containing amplification

distortion in excess of 6 dB. The following conclusions can

be drawn from the present study.

(1) Of the two envelope distortions examined, the attenuation

distortion (Region I) was found to have a minimal effect

on speech intelligibility in both competing-talker and

steady noise conditions. In fact, substantial improvements

in intelligibility, relative to unprocessed (and noise-cor-

rupted) speech, were obtained when the noise-suppressed

speech contained only attenuation distortion. At � 10 dB

SNR (SSN masker), for instance, performance improved

from 5%–10% correct with unprocessed (UN) or square-

root Wiener-processed sentences to nearly 100% correct

when Region I constraints (attenuation distortion) were

imposed.

(2) In the absence of attenuation distortions, the impact of

amplification distortions alone was complex and was

found to be largely dependent on the masker and the

region examined (Experiment 2).

(3) In situations wherein the attenuation and amplification

distortions coexist (as is often the case with most noise-

reduction algorithms), substantial gains in intelligibility

can be obtained provided the amplification distortion is

smaller than 6 dB (see data for Region Iþ II in Fig. 6).

This was found to be true for both types of maskers and

for all SNR conditions.

(4) Existing noise-reduction algorithms introduce both

attenuation and amplification distortions, and the data

from Experiment 1 suggest that one of the reasons that

such algorithms do not improve speech intelligibility is

because they allow amplification distortions in excess

of 6 dB. It was proven empirically (see Fig. 7) and

analytically (see the Appendix) that these distortions

are always associated with masker-dominated (i.e.,

SNR< 0 dB) T-F units. Therefore, the constraints of

Region III provide a mechanism which can be used by

noise-reduction algorithms to eliminate low SNR T-F

units and subsequently improve speech recognition.

Furthermore, analysis of the data in Region Iþ II (see

Fig. 8) revealed that the effective SNR could increase

by as much as 10 dB, at least in SSN conditions, when

amplification distortions in excess of 6 dB are elimi-

nated. Introducing amplification distortions in excess of

6 dB is equivalent to introducing negative SNR T-F

units in the processed signal and should therefore be

avoided or eliminated.

(5) The data from Experiment 3 indicated a substantial ben-

efit in intelligibility (relative to UN) in steady-noise con-

ditions even when the attenuation distortion was limited

to either voiced (e.g., vowels) or unvoiced segments

(e.g., stops) alone, with a larger benefit observed in the

voiced-segment conditions. The large benefit observed

in the unvoiced-segment conditions can be attributed to

the listeners having better access to lexical segmentation

cues (Stevens, 2002; Li and Loizou, 2008). The impor-

tance of Experiment 3 lies in its practical implications:

signal processing algorithms can be developed that apply

the proposed constraints only during the voiced seg-

ments, which are masked less by noise relative to the

unvoiced segments.

Based on the above, we can conclude that in order for

noise-suppression algorithms to improve speech intelligibil-

ity, it is critically important that certain distortions intro-

duced by the gain functions are eliminated or at least

properly controlled. Substantial gains in intelligibility can be

obtained only if the gain-induced distortions are confined to

be of attenuation type and amplification distortions in excess

of 6 dB are eliminated, as these are associated with masker-

dominated (SNR< 0 dB) T-F units.
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APPENDIX

In this appendix, we prove analytically that T-F units fall-

ing in Region III have always a negative SNR, that is, they are

always dominated by the masker. This suggests that amplifica-

tion distortion in excess of 6 dB is equivalent to a negative

SNR. Recall that the Region III was defined as follows:

SNRESI k; tð Þ < 1

, X̂ k; tð Þ
�� �� > 2 X k; tð Þj j: (A1)

Given that the estimate of the target magnitude spectrum,

X̂ k; tð Þ
�� ��, is obtained by the square-root Wiener gain function

G(k,t) as per Eq. (5) and the gain function is always bounded

between 0 and 1, we get the following inequalities:

G k; tð Þ X k; tð Þ þ D k; tð Þj j > 2 X k; tð Þj j; (A2)

X k; tð Þ þ D k; tð Þj j > 2 X k; tð Þj j; (A3)

X k; tð Þ þ D k; tð Þj j2> 4 X k; tð Þj j2; (A4)

X k; tð Þj j2þ2Re X k; tð ÞD� k; tð Þf g þ D k; tð Þj j2> 4 X k; tð Þj j2;
(A5)

where Re {�} denotes the real part of a complex number and

* denotes the complex conjugate. Since Re X k; tð ÞD� k; tð Þf g
� X k; tð Þj j D k; tð Þj j, we get the following inequality:

3 X k; tð Þj j þ D k; tð Þj jð Þ X k; tð Þj j � D k; tð Þj jð Þ < 0; (A6)
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which is satisfied when

X k; tð Þj j
D k; tð Þj j < 1: (A7)

Based on the above equation, we conclude that T-F units in

Region III always have a negative SNR. This was also veri-

fied empirically in Fig. 7.

1The number of words in a sentence varies from 5 to 10. The IEEE corpus

contains phonetically balanced sentences and is organized into lists of 10 sen-

tences each. All sentence lists were designed to be equally intelligible,

thereby allowing us to assess speech intelligibility in different conditions

without being concerned that a particular list is more intelligible than another.
2Other gain functions were investigated in Loizou and Kim (2011), but the

choice of the gain function played a minor role when the distortions were

properly controlled.
3The a priori SNR is defined mathematically as SNR ¼ Eð Xj j2Þ=Eð Dj j2Þ,
where E(�) denotes the expectation operator.
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