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Abstract—A novel dual-microphone speech enhancement tech-
nique is proposed in the present paper. The technique utilizes the
coherence between the target and noise signals as a criterion for
noise reduction and can be generally applied to arrays with closely
spaced microphones, where noise captured by the sensors is highly
correlated. The proposed algorithm is simple to implement and
requires no estimation of noise statistics. In addition, it offers the
capability of coping with multiple interfering sources that might
be located at different azimuths. The proposed algorithm was
evaluated with normal hearing listeners using intelligibility lis-
tening tests and compared against a well-established beamforming
algorithm. Results indicated large gains in speech intelligibility
relative to the baseline (front microphone) algorithm in both single
and multiple-noise source scenarios. The proposed algorithm was
found to yield substantially higher intelligibility than that obtained
by the beamforming algorithm, particularly when multiple noise
sources or competing talker(s) were present. Objective quality
evaluation of the proposed algorithm also indicated significant
quality improvement over that obtained by the beamforming al-
gorithm. The intelligibility and quality benefits observed with the
proposed coherence-based algorithm make it a viable candidate
for hearing aid and cochlear implant devices.

Index Terms—Coherence function, coherent noise, microphone
array, noise reduction.

I. INTRODUCTION

O NE of the most common complaints made by hearing
impaired listeners is reduced speech intelligibility in

noisy environments. In realistic listening situations, speech
is often contaminated by various types of background noise.
Noise reduction algorithms for digital hearing aids have re-
ceived growing interest in recent years. Although a lot of
research has been performed in this area, a limited number
of techniques have been used in commercial devices [1], [2].
One main reason for this limitation is that while many noise
reduction techniques are performing well in the laboratory, they
lose their effectiveness in everyday life listening conditions.

Generally, three types of noise fields are investigated in multi-
microphones speech enhancement studies: 1) incoherent noise
caused by the microphone circuitry; 2) coherent noise generated
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by a single well-defined directional noise source and character-
ized by high correlation between noise signals; and 3) diffuse
noise, which is characterized by uncorrelated noise signals of
equal power propagating in all directions simultaneously [3].
Performance of speech enhancement methods is strongly depen-
dent on the characteristics of the environmental noise they are
tested in. Hence, the performance of methods such as [4], [5]
that work well in the diffuse field, starts to degrade when tested
in coherent noise fields.

Traditionally, only one microphone is used in speech en-
hancement systems [6]. Recently, microphone array-based
speech enhancement techniques have been widely accepted
as a promising solution for noise suppression. Generally, by
increasing the number of microphones in a speech enhancement
system, placed in a noisy environment, further noise reduction
is expected, but the design of a microphone array for hearing
aids faces serious difficulties in terms of size, weight and power
consumption. Therefore, dual microphone speech enhancement
systems can be considered as a tradeoff. In the following,
we present a brief overview of some of the dual-microphone
speech enhancement techniques proposed in the literature.

Beamforming is one of the most well-known algorithms in
this area. Fixed beamformers are designed to concentrate the
array to the target sound source by combining the delayed and
weighted versions of the input signal in each microphone. Two
most common fixed beamformers presented in the literature are
the delay-and-sum and superdirective beamformers [7]. Fixed
beamformers utilize only information about the direction of
the desired signal; however, adaptive beamformers also use the
properties of captured signals by the array to further reject un-
wanted signals from other directions. An attractive realization
of adaptive beamformers is the generalized sidelobe canceller
(GSC) structure [8]. In [9]–[12], several variations of GSC have
been investigated. The extension of GSC, suggested in [10] was
called a two-stage adaptive beamformer. In studies carried out
in [13] and [14], an average speech reception threshold (SRT)
(the signal-to-noise ratio at which 50% of the target speech is
intelligible) improvement of 7–8 dB was achieved using this
technique, with a single noise source at 90 , for both normal
hearing listeners and cochlear implant (CI) patients. Although
this extension of GSC outperforms the use of fixed directional
microphones in scenarios with one simple jammer, in more
complex scenarios its performance degrades significantly [2],
[12]. Adaptive beamformers are very effective in suppressing
coherent noise. The authors in [15] have shown that the noise
reduction performance of GSC theoretically reaches infinity
for coherent noises. In [16], an extension of beamforming
with post-filtering, which gives beamformers the ability of
suppressing noises that are uncorrelated has been investigated.

1558-7916/$31.00 © 2011 IEEE



600 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2012

Due to the small microphone spacing in hearing aids, noise
signals captured by the microphones are highly correlated,
and therefore GSC-based algorithms are preferred in these
applications.

Over the past two decades, a few microphone array-based
noise reduction algorithms have been applied to commercial
CIs and hearing aids. In 1997, the Audallion BEAMformer™
was marketed by Cochlear Ltd. for the Nucleus 22-channel CI
system. This beamformer uses two directional microphones,
one at each ear, and based on the differences in amplitude and
phase of the received signals, decides whether input signals
come from front (desired range) or back (undesired range)
hemisphere. This bilateral noise reduction system was tested
in a mildly reverberant environment and showed an average
SRT improvement of 2.5 dB over a fixed beamformer, but no
improvement was reported in highly reverberant conditions
[17]. In 2005, the beamformer suggested in [18] was imple-
mented in the behind the ear (BTE) speech processor used
in Cochlear’s Nucleus Freedom CI system. This monaural
adaptive beamformer is referred as BEAM™, and has been ex-
tensively evaluated in [2]. It has been shown in [2] that BEAM
can yield substantial improvements in speech intelligibility
for cochlear implant users, when a single interfering source
is present. However, the presence of multiple noise sources
reduces the overall performance of the BEAM considerably.

Another distinguished class of microphone array speech
enhancement techniques are the coherence-based algorithms.
The idea of using coherence function for speech enhancement
was first proposed in [19]. The premise behind coherence-based
techniques is that the speech signals in the two channels are cor-
related, while the noise signals are uncorrelated. Indeed, if the
magnitude of the coherence function between the noisy signals
at the two channels is one (or close to one), the speech signal
is predominant and thus should be passed without attenuation,
and if the magnitude is close to zero speech is absent, and thus
the input signals should be suppressed. The main drawback
of coherence-based methods is their weakness in suppressing
coherent noise. In this case, noise signals at the two channels
become highly correlated and will pass (with no attenuation)
through the filter. In [20], the authors have suggested modifica-
tions to the coherence filter to address this issue. When dealing
with correlated noise, this method estimates the cross-power
spectral density (CSD) of noise signals in the two microphones
and includes this parameter in the coherence filter. The fluctua-
tions in the filter estimates introduce a high variance in the filter
value, which in turn introduces musical noise in the output [21].

In this paper, we introduce a new coherence-based tech-
nique capable of dealing with coherent noise and applicable
for hearing aids and cochlear implant devices. Similar to
other studies in this area, we assume that the noise and target
speech signals are spatially separated. The target speech signal
originates from the front (0 ), while noise source(s) can be
placed at either the right or left hemispheres. In [22], we
proposed a dual-microphone speech enhancement technique,
which is based on the magnitude of coherence between input
signals. The technique has the ability of suppressing coherent
noise, emanating from a single interfering source. We tested
the method with a single noise source at 90 , and obtained

promising results in terms of speech intelligibility. This work
generalizes that technique and is tested in more complex noise
scenarios.

II. PROPOSED COHERENCE-BASED ALGORITHM

In this section, we start with a theoretical description of the
coherence function and show how this function can be used as
a criterion for noise reduction. Following that, the proposed co-
herence-based method is described in detail.

A. Definition of Coherence Function

The coherence takes values between zero and one and is an
indicator of how well two signals correlate to each other at a
particular frequency. Let us assume two microphones placed in
a noisy environment in which the noise and target speech signals
are spatially separated. In this case, the noisy speech signals,
after delay compensation, can be defined as

(1)

where denotes the microphone index, is the sample-index
and and represent the (clean) speech and noise
components in each microphone, respectively. After applying
a short-time discrete Fourier transform (DFT) on both sides of
(1), it can be expressed in the frequency domain as

(2)

where is the frame index, and
, where is the frame length in samples. In the following equa-

tions we omit the subscript for better clarity and call the
angular frequency. In this paper, we consider the angular fre-
quency in the range of rather than . The complex
coherence function between the two input signals is defined as

(3)

where denotes the cross-power spectral density
(CSD) defined as , and

denotes power spectral density (PSD) defined as
. The magnitude of the coherence

function has been used in several studies as an objective metric
to determine whether the target speech signal is present or ab-
sent at a specific frequency bin [19]–[21], [23]. The idea is that
when the magnitude is close to one, the speech signal is present
and dominant and when it is close to zero, the interfering signal
is dominant. It should be noted that this assumption is typically
valid for near-field sound sources in a diffuse noise field, where
noise signals are not strongly correlated at the two channels.
In general, decreasing the distance between two microphones
increases the correlation of noise signals received by the micro-
phones. In this case, even in a diffuse noise filed, noise signals
become highly correlated especially at lower frequencies [24].
In a diffuse noise field, the coherence function is real-valued
and can be analytically modeled by

(4)
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Fig. 1. Placement of the two omnidirectional microphones and sound sources.

where is the sampling frequency,
m/s the speed of sound, and the microphone spacing.

Clearly, by decreasing inter-microphone distance, the correla-
tion increases, i.e., .

Before we start describing the proposed coherence-based
method, we should point out that a coherent noise field is
generated from a single well-defined directional sound source
and in our case the omnidirectional microphones outputs are
perfectly coherent except for a time delay. Fig. 1 depicts the
configuration of two omnidirectional microphones with 20-mm
inter-microphone distance on a dummy head. The target speech
source is at 0 azimuth and a single noise source is placed at .
Both sources are at a distance of 1.2 m from the microphones.
In this case, the coherence function of the two input signals is
obtained by [24]

(5)

where is the angle of incidence. It should be pointed out that
for our hearing aid application at hand, where the distance be-
tween the two microphones is fairly small ( mm), the afore-
mentioned class of coherence-based algorithms [19]–[21], [23]
are not suitable for suppressing coherent noise.

B. Proposed Method Based on Coherence Function

We first show that the coherence function between noisy sig-
nals in the two microphones can be computed from those of
clean speech and noise signals. Assuming that the noise and
speech components are uncorrelated, the CSD of the input sig-
nals, can be written as

(6)

After dividing both sides of the last equation by
and omitting the and indices for sake of clarity, we obtain

(7)

Using the fact that the PSD of input signal in each channel is
equal to sum of the PSDs of speech and noise signals on that
channel, we can rewrite the last equation as follows:

(8)

Now let be the true local signal-to-noise ratio at the th
channel, i.e.,

(9)

Substituting the above expression in (8), the following equation
is obtained:

(10)

Assuming the small microphone spacing in our application, we
can suppose that the local signal-to-noise ratio (SNR) values at
the two channels are nearly identical, such that .
Therefore, the last equation can be modified as follows:

(11)

where is a an approximation to both and .
Clearly, at higher SNR values the coherence of the noisy sig-
nals is affected primarily by the coherence of the speech signals,
while at lower SNR values it is affected by the coherence of the
noise signals. Based on the configuration shown in Fig. 1 and
after applying (5) the last equation can be rewritten as follows:

(12)

where . To verify the validity of the above equation,
Fig. 2 shows a comparison between the coherence function of
the noisy signals computed by (3) (true coherence), and the pre-
diction (approximation) obtained using (12). For this compar-
ison, we assume that we know the true SNR at the front micro-
phone. Coherence values are shown in Fig. 2 for a sentence (pro-
duced by a male speaker) corrupted by speech-weighted noise.
As it is evident from the figure, the predicted coherence values
(magnitude and phase) follow the true coherence values quite
well. To quantify the errors in the approximation of the magni-
tude of the coherence function, we used the reconstruction SNR
measure [25], commonly employed in waveform coder appli-
cations to assess how close is the reconstructed waveform (fol-
lowing quantization) from the true input waveform. The recon-
struction SNR measure, denoted as , assesses the normal-



602 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2012

Fig. 2. Comparison between the true coherence of the noisy signals and its predicted values, based on (12), of the magnitude (left) and phase (right) at 1000 Hz.
The noise source is located at 75 azimuth and ��� � � dB (speech-weighted noise).

TABLE I
QUANTIFICATION OF THE PREDICTIONS OF THE MAGNITUDE AND PHASE

COHERENCE FUNCTION BASED ON THE MEASURES DEFINED IN (13) AND (14).
RESULTS ARE AVERAGED FOR TEN SENTENCES AND MEAN AND STANDARD

DEVIATIONS OF THE MEASURES ARE GIVEN [MEAN (SD)]

ized distance between the true and predicted magnitudes of the
coherence and is defined as follows:

(13)

Higher values of the measure indicate higher accuracy
of the approximation (prediction). To quantify the errors in the
prediction of the phase of true coherence, we used a phase dis-
tortion measure [26], defined, at frequency , as follows:

(14)

where is the phase operator and the expected value is taken
over all frames. Small values of DM indicate better approxi-
mation. Table I shows results of the above measures averaged
over ten sentences. For this evaluation, speech-weighted noise
was used at 75 . As can be seen, (12) provides a good estimate
(prediction) of the true coherence values, at least for the low fre-
quencies ( kHz).

Next, we introduce the proposed suppression filter (gain func-
tion). We start by describing scenarios in which the noise source
is located in the listener’s right hemisphere (i.e., ). The
overall filter consists of two different filters, each designed to
operate within a defined range of values. One filter is used for

suppressing the interfering signals coming from the vicinity of
90 , and the other for dealing with situations, where

. It should be noted here that we do not make any assump-
tions about the position of the noise source being in the right
hemisphere and we tackle the problem in its general form.

1) : Using (5), the coherence of the noise signals
in this case is real-valued and equal to 1, since .
Therefore, based on (12), the coherence function of the noisy
signals has an imaginary part only when the speech signal is
present. This fact suggests the use of a suppression function,
which at low SNR levels [where the coherence of the noisy
signals is affected primarily by the coherence of the noise;
see (11)] attenuates frequency components whose real part of
the coherence function is close to 1, while allowing for the
remaining frequency components (dominated presumably by
the target speech) to pass. It should be pointed that in low
frequencies, even when speech is present, the imaginary part of
the coherence function is very close to zero, since is
very small. Based on this discussion, we propose the following
filter for suppressing the noise signals emanating from around
90

(15)

where is the real part operator and is defined in two
frequency bands as

if
if (16)

where and are two positive integer constants such
that . Assuming a sampling rate of 16 kHz,
the threshold in the last equation corresponds to 1 kHz,
below which much of the energy in the speech spectrum is con-
centrated (see [27]). Within this range of frequencies, attains
a value close to zero and therefore is close to one. As-
suming high SNR in (12), we have . In this
scenario, there exists the risk of speech attenuation in the lower
frequencies since , but by raising to the
power of in (15), the risk can be reduced. In fact, with the
above setting of , the filter attenuates the lower frequency
components, only when the real part of the coherence function
is extremely close to one.
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2) : The following equation can easily be
derived from (12):

(17)

where is the imaginary part operator. It is clear from the
above equation that when dB),

. When the noise source is located between 90
and 180 is always negative. This conclusion is
based on the assumptions that the angular frequency lies in the
positive frequency range is about or less than 20 mm,

is at least 16 kHz, and therefore is a constant (less than 1).
Hence, at frequency components where the noise is dominant,
the likelihood that the imaginary part of the coherence function
is less than zero increases. For example, let us assume .
Letting in the last equation leads to
(0 dB), suggesting that the noise dominates the target signal.
This example reveals that when the noise source is at 180 and
the SNR is lower than 1, the imaginary part of the coherence
function between the input signals is negative. When ,
in order to satisfy the condition , we require that

, which is not possible since both PSDs of speech and
noise signals are always positive.

By designing a filter, which attenuates the frequency com-
ponents having the imaginary part less than zero, we can sup-
press a significant amount of noise. However, zero is a strict
threshold and we may obtain a very aggressive filter. Instead,
nonzero thresholds are used in two frequency bands as follows:

if
if (18)

where and are two negative constants such that
. Consequently, the filter is defined as

if
Otherwise

(19)

where is a small positive spectral flooring constant close to
zero. By decreasing the value of we can increase the level of
noise reduction at the expense of imposing extra speech distor-
tion to the output. By setting , we may introduce spurious
peaks in the spectrum of the enhanced signals and subsequently
musical noise in the output. For that reason, a small positive
constant was chosen for . In (18), the threshold for lower fre-
quencies is set closer to zero in comparison to the threshold for
higher frequencies, since has a very small value
at the lower frequencies. In this way, we prevent from be-
coming aggressive in the lower frequencies.

3) Final Filter: Following the above discussion, the final
filter proposed in this work is defined as follows:

(20)

From the definition of in (19) and the discussion given earlier
about the thresholds for when , it can be

concluded that takes value 1, when the noise is located at
about 90 . Furthermore, when the noise source is not at 90 , the
real part of the coherence function can not be very close to 1,
since the coherence function of noise signals has an imaginary
part. Therefore, in this condition . We can thus say that
the two filters and operate to some extent independent
of one another, yet cover all possible angles. For instance, when
the filter is active (i.e., ), and therefore
does not influence the overall (composite) suppression imparted
by in (20). Similarly, when the filter is active (i.e.,

), and therefore does not influence the
overall suppression.

One major advantage of our algorithm is that, in contrast to
many other methods proposed in the area of speech enhance-
ment, it does not require estimation of the noise statistics to
compute the gain function. In general, noise estimation is a
challenging task particularly in adverse environments with low
SNR and highly nonstationary noise sources. Inaccurate noise
estimation can have a significant effect on the performance of
speech enhancement algorithms. Noise underestimation leads to
unnatural residual noise in the output, while noise overestima-
tion can produce speech distortions [28]. As we will see in the
next section, our proposed method performs well at low SNR
with highly nonstationary background noise (e.g., multi-talker
babble), since the filter does not rely on noise statistics or esti-
mates.

In the above discussion, we assumed that the noise source is
always on the right side of the listener. We can easily expand the
theory to situations in which the source is on the left side. In this
case, the filter is used to suppress the noise signals coming
from around 270 , since similar to signals coming from 90 the
coherence of noise signals has no imaginary part (i.e., purely
real). Furthermore, using the symmetric properties of , the
explanation given for can be applied to

as well. Hence, is also capable of suppressing
interfering signals originating from this range of azimuth angles.
So far, we have considered (and assumed) that only one noise
source is present in the environment. However, we can easily
generalize the above discussion to scenarios where more noise
sources are present in different azimuths. In the next section, we
show that the proposed method performs well in those situations
as well.

C. Implementation

In this subsection, we provide the implementation details of
the proposed coherence-based method. The signals picked up by
the two microphones are first processed in 20-ms frames with a
Hanning window and a 75% overlap between successive frames.
After computing the short-time Fourier transform of the two
signals, the PSDs and CSD are computed based on the following
two first-order recursive equations:

(21)

(22)
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Fig. 3. Block diagram of the proposed two-microphone speech enhancement
technique.

TABLE II
PARAMETER VALUES USED IN THE IMPLEMENTATION

OF THE COHERENCE ALGORITHM

where denotes the complex conjugate operator and is a
forgetting factor, set between 0 and 1. A more thorough discus-
sion on optimal settings of this parameter can be found in [21].
These estimates of power spectral densities are used in (3), to
compute the coherence function. We should mention that there
exist other methods for computing the coherence function such
as [29], [30]. The suppression function defined in (20) is ap-
plied to , corresponding to the Fourier transform of the
input signal captured by the front microphone. To reconstruct
the enhanced signal in the time-domain, we apply an inverse
fast Fourier transform (FFT) and synthesize the signal using the
overlap-add (OLA) method. Fig. 3 summarizes this procedure
in a block diagram. The complete list of parameters used in this
work is given in Table II. Although we have optimized the pa-
rameter values for our testing, we found that it is not necessary
to change these values when changing the system configuration.

III. EXPERIMENTAL RESULTS

This section is devoted to the evaluation of the proposed tech-
nique. To assess the performance of the method, results of both
listening tests and objective quality measurements are provided.

A. Test Materials and Subjects

Sentences taken from the IEEE database corpus [31] (de-
signed for assessment of intelligibility) were used. These sen-
tences (approximately 7–12 words) are phonetically balanced
with relatively low word-context predictability. The root-mean-
square amplitude of sentences in the database was equalized
to the same root-mean-square value, which was approximately
65 dBA. The sentences were originally recorded at a sampling
rate of 25 kHz and downsampled to 16 kHz. These recordings
are available from [6]. Three types of noise (speech-weighted,

multi-talker babble, and factory) were used as maskers. The
speech-weighted noise used, was adjusted to match the average
long-term spectrum of the speech materials. The babble and fac-
tory noises were taken from the NOISEX database [32].

Ten normal hearing listeners, all native speakers of Amer-
ican English, participated in the listening tests. Their age ranged
from 18 to 31 years (mean of 23 years). The listening tests were
conducted in a double-walled sound-proof booth via Sennheiser
HD 485 headphones at a comfortable level. All subjects were
paid for their participation.

B. Methods and Noise Scenarios

The noisy stimuli captured at the two microphones were
generated by convolving the target and noise sources with
a set of HRTFs measured inside a mildly reverberant
room ( ms) with dimensions 4.3 3.8 2.3 m
(length width height). The HRTFs were measured using
identical microphones to those used in modern hearing aids.
The noisy sentence stimuli were processed using the following
conditions: 1) the front omnidirectional microphone; 2) an
adaptive beamformer algorithm; and 3) the proposed coher-
ence-based algorithm. The performance obtained with the use
of the omnidirectional microphone alone will be used as a
baseline to assess relative improvements in performance when
no processing is taking place. In the following paragraph, we
describe the adaptive beamformer algorithm used in this work.

The two-stage adaptive beamformer is an extension of the
GSC technique introduced in [10]. In that paper, a 5-dB im-
provement in SRT was reported between a hardware directional
microphone and this beamformer. This technique includes two
stages (spatial preprocessor and adaptive noise canceler), where
each stage consists of an adaptive filter. The first filter was
adapted only during speech-and-noise periods and was used to
track the direction of the target signal. The second filter, similar
to the adaptive filter used in conventional GSC, was updated
with the normalized least-mean-square algorithm [33] to mini-
mize the power of the output error. The authors in [11] modified
the algorithm by replacing the first adaptive filter with a fixed
finite impulse response (FIR) filter. In fact, this FIR filter offers
a trade-off solution between the first adaptive filter in [9] and
the fixed beamformer of the GSC [34]. The filter coefficients
are determined and optimized for each hearing aid, assuming
the target signal comes from 0 in an anechoic environment,
in a way that the energy of the noise reference signal is mini-
mized. Clearly, this is not a straightforward procedure, so we
replaced the filter with a two-tap FIR filter, whose coefficients
were optimized based on our experimental observations. Fig. 4
shows the block diagram of this technique. As it is apparent
from the figure, before feeding the input signals into the first
stage, a software directional microphone is created by using
a fixed beamformer technique. The software microphone pa-
rameter is , and in this work we set and
so as to give the microphone a cardioid directional pattern in
anechoic conditions (null at 180 ). Based on the configuration
of the microphones, this can be done by providing one sample
delay to the input signal of the rear microphone. A thorough
discussion on creating a software directional microphone by
two omnidirectional microphones can be found in [35]. In our
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Fig. 4. Block diagram of the two-microphone adaptive beamformer used for
comparative purposes.

implementation the adaptive filter has 64 taps, and are
additional delays set to half of the size of the filters.

The test was carried out in seven different noise scenarios. In
four of them, a single noise source generating speech-weighted
noise was placed at either 75 , 90 , 120 , or 180 . In the two
noise scenarios, we consider two noise sources, one at 90 /180
and one at 75 /120 . The noise source at the lower azimuth
angle generated speech-weighted noise and the other source
generated multi-talker babble. The last scenario consists of three
noise sources at 60 /90 /120 , with speech-weighted, babble
and factory noises at the three sources, respectively. The use
of multi-talker babble as a point noise source is admittedly not
realistic, but it has been used extensively in the speech enhance-
ment literature focused on hearing-aid applications [2], [12].
Multi-talker babble is used in our study to assess the algorithm’s
performance in highly nonstationary environments.

C. Intelligibility Evaluation

For the listening test, two IEEE lists (20 sentences) were used
for each condition. In the single-noise source scenarios, algo-
rithms were tested at two SNR levels ( 5 dB and 0 dB). We did
not test the methods at SNRs above 0 dB as we were constrained
by ceiling effects (e.g., performance near 100% correct). How-
ever, informal listening tests showed that our method does not
distort the speech signals at high SNR levels. Testing involved
a total of 24 different listening conditions (3 algorithms 2
SNR levels 4 noise scenarios). The mean intelligibility scores
of single-noise scenarios, obtained as the percentage of total
number of words identified correctly, are shown in Fig. 5. A sub-
stantial improvement in intelligibility was obtained with the pro-
posed coherence-based algorithm relative to the baseline (front
microphone) in all conditions. The beamformer implemented in
this work has a null at 180 , and therefore shows expected per-
formance improvement as the noise source gets closer to this
azimuth angle. However, in other conditions the scores of co-
herence-based method are always higher than those of the beam-
former.

In the multiple-noise sources scenarios, algorithms were
tested only at 0 dB. In total, nine different listening conditions
(three algorithms 1 SNR level 3 noise scenarios) were
tested. The mean intelligibility scores of these scenarios are

Fig. 5. Mean percent word recognition scores for ten normal-hearing listeners
tested on IEEE sentences in single-noise source scenarios. Error bars indicate
standard deviations.

Fig. 6. Mean percent word recognition scores for ten normal-hearing listeners
tested on IEEE sentences in multiple-noise sources scenarios (��� � � dB).
Error bars indicate standard deviations.

shown in Fig. 6. As it is clear from the figure, the coher-
ence-based technique performed favorably in these scenarios.
In contrast, the results of the beamformer were inferior. This
low performance is due to the fact that we have replaced the
optimum fixed FIR filter proposed in [11] by a two-tap fixed
filter that was manually optimized. However, the decrease
in the scores of this beamformer technique in multiple-noise
sources scenarios relative to those of single-noise scenarios
is not surprising and has been reported in [2], [12], [36], [37]
as well. In [37], a 2.5-dB and 5-dB decrease in speech-intelli-
gibility weighted SNR (as defined in [38]) was reported after
processing with an adaptive beamformer when multiple noise
sources were present, and was equal to 210 ms and 610 ms,
respectively.
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In this study, we tested our method inside a mildly reverberant
environment ( ms). Generally, in more reverberant
conditions, the noise signals captured by the sensors will be less
correlated. In such scenarios, the environmental noise can be
modeled by a diffuse noise field rather than a coherent noise
field. Considering a small microphone spacing, we can still as-
sume that the noise signals captured by the two microphones
are highly correlated for a wide range of frequencies. The im-
pact of microphone spacing on the coherence function of noisy
signals in a diffuse noise filed was reported in [24]. In rever-
berant conditions, our method will lose its ability to suppress the
noise components that are not highly correlated. This problem
can be resolved, however, by passing the output of our algorithm
through a post-filter, such as a Wiener filter, and this warrants
further investigation. Post-filtering techniques have been inves-
tigated in [16] for dealing with uncorrelated noise components
that cannot be easily suppressed by beamformers. A thorough
review of post-filtering techniques that can be used with beam-
formers can be found in [39].

Another limitation of the proposed method, along with other
methods, is that for the performance, in terms of noise
suppression and intelligibility, starts to degrade as the masker
gets closer to the target source. This is to be expected, since the
proposed filer has no effect on the noise signals coming from
an angle close to zero. In our experiments, we found that the
method offers no benefit over the baseline condition (no pro-
cessing) for . This limitation is also present in beam-
formers. In [11], for example, the improvement with the beam-
former over that obtained with the front omindirectional micro-
phone was less than 1 dB when the noise source was located at
an angle less than 45 .

D. Speech Quality Evaluation

In this subsection, we assess the performance of the various
methods in terms of quality. This evaluation is done using an ob-
jective quality measure, and in particular, the Perceptual Eval-
uation of Speech Quality (PESQ) measure [40]. PESQ scores
model mean opinion scores (MOS) and range from 0.5 (bad)
to 4.5 (excellent). A high correlation between the results of sub-
jective listening tests and PESQ scores was reported in [41],
[42]. Figs. 7 and 8 show the PESQ scores for the single and
multiple interference scenarios, respectively. Clearly, the co-
herence-based method outperforms the beamformer in all noise
configurations. The proposed method yielded an average im-
provement of 0.7 relative to the scores obtained using the front-
microphone signals.

As mentioned earlier, our technique does not require esti-
mation of the noise statistics to compute the gain function.
This gives the proposed method the advantage in coping with
highly nonstationary noise including competing talkers. Further
tests indicated that our algorithm was performing well even in
competing-talker situations. In these tests, sentences produced
by a different speaker (female speaker) were used as maskers.
Table III shows the PESQ scores obtained by the proposed
method and the beamformer in six different test conditions in-
volving competing talkers. As can be seen, the proposed method
outperformed the beamformer in all conditions. Performance
obtained in the baseline OMNI condition was comparable, and

Fig. 7. PESQ scores obtained in single-noise source scenarios.

Fig. 8. PESQ scores obtained in multiple-noise sources scenarios (SNR �

� dB).

TABLE III
PESQ SCORES OBTAINED BY THE VARIOUS METHODS IN

COMPETING-TALKER CONDITIONS

in some cases, slightly better, than performance obtained with
the beamformer. The reason the beamformer did not provide
any benefit over the baseline (OMNI) condition is because
it relies on voice activity detector (VAD) decisions. When
speech is detected, adaptation is turned off (frozen) to prevent
from suppressing the target speech signal. Hence, when the
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Fig. 9. Spectrograms of the clean speech signal (top left) and noisy signal (top right) captured by the front OMNI microphone. Speech is degraded by speech-
weighted noise (��� � � dB) located at 90 azimuth. The bottom-left panel shows enhanced signal by the beamformer and the bottom-right panel shows
enhanced signal by the proposed coherence-based algorithm. The IEEE sentence was “To reach the end he needs much courage” uttered by a male speaker.

Fig. 10. Spectrograms of the clean speech signal (top left) and noisy signal (top right) captured by the front OMNI microphone. Speech is degraded by interfering
speech (��� � � dB) located at 120 azimuth. The bottom-left panel shows enhanced signal by the beamformer and the bottom-right panel shows enhanced
signal by the proposed coherence-based algorithm. The IEEE sentence was “A cloud of dust stung his tender eyes” uttered by a male speaker.

VAD detects speech presence (including that of the competing
talker’s), no suppression is applied to the input signals.

E. Spectrograms

Speech spectrograms are a useful tool for observing the struc-
ture of the residual noise and speech distortion in the outputs
of speech enhancement algorithms. Example spectrograms of
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clean and noisy speech and also those of the outputs of the beam-
former and coherence-based methods are presented in Figs. 9
and 10 for speech embedded in speech-weighted noise and com-
peting-talkers, respectively. The figures shows that the back-
ground noise is suppressed to a greater degree with the proposed
method than with the beamformer. This was done without in-
troducing much distortion in the speech signal. The superiority
of the proposed method over the beamformer is more apparent
by comparing the spectrograms at low frequencies, where our
method manages to recover the target speech signal compo-
nents more accurately. These evaluations suggest that speech
enhanced with our method will be more pleasant to human lis-
teners than speech processed by the beamformer. This outcome
is in agreement with the improvement in speech quality shown
in Figs. 7 and 8 and Table III.

IV. CONCLUSION

The proposed dual-microphone algorithm utilizes the co-
herence function between the input signals and yields a filter,
whose coefficients are computed based on the real and imagi-
nary parts of the coherence function. The proposed algorithm
makes no assumptions about the placement of the noise sources
and addresses the problem in its general form. The suggested
technique was tested in a dual-microphone application (e.g.,
hearing aids) wherein a small microphone spacing exists. Intel-
ligibility listening tests were carried out using normal-hearing
listeners, who were presented with speech processed by the
proposed algorithm and speech processed by a conventional
beamforming algorithm. Results indicated large gains in speech
intelligibly and speech quality in both single and multiple-noise
source scenarios relative to the baseline (front microphone)
condition in all target-noise configurations. The proposed
algorithm was also found to yield substantially higher intel-
ligibility and quality than that obtained by the beamformer,
particularly in multiple noise-source scenarios and competing
talkers. The simplicity of the implementation and intelligibility
benefits make this method a potential candidate for future use
in commercial hearing aids and cochlear implant devices.
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