
REAL-TIME LABVIEW IMPLEMENTATION OF COCHLEAR IMPLANT
SIGNAL PROCESSING ON PDA PLATFORMS

V. Peddigari, N. Kehtarnavaz, and P. Loizou

Department of Electrical Engineering, University of Texas at Dallas

ABSTRACT

This paper presents the real-time implementation of a
cochlear implant signal processing system on PDAs. The
PDAs were chosen as they provide portable and cost-
effective computation platforms. To gain software
flexibility and interactivity, the LabVIEW graphical
programming environment is used. The paper discusses the
optimization steps which are taken to achieve a real-time
throughput. These steps consist of using dynamic link
libraries, utilizing efficient memory allocation, and
performing fixed-point arithmetic. These steps are general
purpose in the sense that the same steps can be deployed for
real-time implementation of other clinical or industrial
signal processing applications on PDAs.

1. INTRODUCTION

Prosthetic devices such as cochlear implants are used to
restore partial hearing in profoundly deaf people or patients
suffering from nerve deafness [1]. With the rising demand
for implants, the field of cochlear implants has experienced
a considerable growth in the last few years. The number of
cochlear implant users grew from 12,000 in 1995 [1] to
nearly 100,000 during the past decade.

A cochlear implant is a prosthetic device surgically
implanted into the inner ear. It delivers an electrical signal
to the cochlea through a series of electrodes placed inside
the cochlea. It uses a speech processor to convert the sound
acquired from a microphone into electrical signals [2].

Current speech processors provided by cochlear
implant manufacturers are not portable and software
flexible. By software flexibility, we mean the ease with
which one may deploy new or modified algorithms. The
only commercially available portable research processor is
manufactured by Cochlear Corporation in collaboration
with CRC/Hearworks [3], however, this processor does not
offer software flexibility or ease-of-use as it requires a
skilled programmer to develop and test algorithms in
assembly language. Hence, it is deemed quite useful to have
a new development platform possessing portability,
flexibility, and interactivity features in order to accelerate

clinical and research applications involving cochlear
implants.

In this work, we consider the Personal Digital
Assistants (PDAs) to serve as such a platform for
implementing a cochlear implant signal processing system.
We consider the PDA platform because of its portability,
low-cost, and multimedia capabilities. Compared to the PCs
the PDAs have limited processing power and memory. The
challenge in this work has been to develop flexible cochlear
implant signal processing software that would run in real-
time on a relatively fast PDA (400-600 MHz clock rate).

Section 2, includes an overview of the cochlear implant
signal processing system considered in this work, namely a
16-channel noise-band vocoder. Section 3 covers the
implementation steps taken to achieve a real-time
throughput on any PDA platform using the National
Instruments LabVIEW programming environment. These
steps are general purpose in the sense that they can be
deployed for real-time implementation of other signal
processing systems on PDAs. Section 4 includes the
profiling results obtained towards achieving the real-time
implementation. Finally, the conclusions are stated in
section 5.

2. OVERVIEW OF COCHLEAR
IMPLANT SYSTEM

All cochlear implant devices consist of the following three
components: a microphone that picks up the sound, a signal
processor that converts the sound into electrical signals, a
transmission system that transmits the electrical signals to
the implanted electrodes, and an electrode array (consisting
of multiple electrodes) that is inserted into the cochlea by a
surgeon. In multi-channel cochlear implants, an electrode
array is inserted in the cochlea so that different auditory
nerve fibers can be stimulated at different places in the
cochlea depending on the frequency of the signal.
Electrodes near the base of the cochlea are stimulated with
high frequency signals, while electrodes near the apex are
stimulated with low frequency signals. The signal processor
is responsible for breaking the input signal into different
frequency bands or channels and delivering the filtered
signals to the appropriate electrodes.

Various signal processing strategies have been
proposed in the literature for converting the acoustic signals

to electrical signals [2] [4]. In this work, we implemented
the popular Continuous Interleaved Sampling (CIS) strategy
used in the commercially available implant devices. The
CIS strategy is a vocoder strategy [4]. In order to conduct a
qualitative analysis of the electrical stimuli obtained via the
CIS strategy, the synthesis stage is also included along with
the decomposition stage as illustrated in Fig. 1. The
synthesis method implemented here is based on the noise-
band vocoder simulation reported in [5].

During the decomposition stage as shown in Fig. 1, the
signal is first pre-emphasized and passed through a bank of
bandpass filters. The cutoff frequencies for the bandpass
filters are obtained by logarithmically dividing the signal
bandwidth equally over a given number of channels. The
envelopes of the filtered signals are then extracted via half-
wave rectification and lowpass filtering with a typical
cutoff frequency of 400Hz. During the synthesis stage, the
envelopes obtained after the decomposition are excited with
white noise and then filtered through the same bank of
bandpass filters. The synthesized signal is reconstructed by
summing all the filtered signals as indicated in Fig. 1.

3. REAL-TIME OPTIMIZATION

The LabVIEW graphical programming is chosen here to
achieve the real-time implementation of the cochlear
implant system on PDA platforms since this environment
allows one to run the same LabVIEW code on different
PDAs equipped with different processors. Furthermore, it
provides a higher level of abstraction through graphical
system design, thus increasing the software flexibility
aspect. LabVIEW graphical programs are named Virtual
Instruments (VIs) and consist of two components: Block
Diagram (BD) and Front Panel (FP). A BD consists of the
interconnected building blocks of a system similar to a
flowchart, whereas a FP constitutes its interactive
graphical-user-interface incorporating various controls and
displays. For more details on LabVIEW programming, the
interested reader is referred to [6]. The LabVIEW PDA
Module allows one to run the same code on Pocket PC,
Windows Mobile, or Palm OS PDAs [7].

The FP of the cochlear implant system depicted in Fig.
2 illustrates the interactivity and ease with which various
input parameters can be altered. Figure 3 shows a block-
level overview of the real-time implementation process
based on the CIS strategy. As shown in Fig. 3, an input
frame is acquired from the microphone on a PDA device,
and passed through the CIS decomposition and synthesis
stages. Synthesized frames are then sent to the speakers or
headphones. The filter coefficients and other input
parameters are pre-computed during the design phase and
are fed back continuously within a real-time loop as noted
in Fig. 3.

In this implementation, input frames of 100ms length
are acquired at a sampling rate of 22,050 Hz. To achieve a
real-time throughput, this requires completing the

processing of a frame before the next frame is captured. In
other words, the total processing time for a frame should
not exceed its length.

The initial LabVIEW implementation generated a
processing time of nearly 2 seconds per 100ms frame. The
first column in Table 1 lists the time taken by each sub-
block or component of the CIS algorithm. This initial
implementation is labeled Version A in the table. It should
be noted that the timing information was gathered by
making use of the flat sequence structure and the timing VI
Tick Count provided in LabVIEW.

From Table 1, it can be seen that the bandpass and
lowpass filtering sub-blocks are the most time-consuming
sub-blocks or components. In what follows, we present the
real-time optimization steps that were taken in order to
bring the processing time below 100ms, thus enabling the
system to run in real-time. It is worth emphasizing that
these steps are general purpose in the sense that they can be
deployed to run other clinical and industrial signal
processing algorithms in real-time on PDA platforms.

3.1. Dynamic Link Library (DLL)

Since most PDAs have limited processing power and run
fixed-point processors, one needs to minimize overheads.
The LabVIEW filtering VIs use floating-point math
depending on the selection of the parameters by the user. In
other words, there exist overheads associated with these
filtering VIs due to floating point emulation. Thus, we used
optimized C codes for the bandpass and lowpass filtering
sub-blocks and incorporated them as Dynamic Link
Libraries (DLLs) within the LabVIEW programming
environment [8]. This way we minimized the amount of
floating-point overheads.

3.2. Memory Allocation (MA)

For handheld devices such as PDAs, memory management
plays an important role in time-critical applications due to
their limited memory resources. In general, since dynamic
memory allocation requires more processing than static
memory allocation, we avoided using dynamic memory
allocation within the real-time loops [9]. Instead, a pre-
allocated array was initialized with a constant outside of the
loops. Furthermore, we de-allocated the memory that had
been allocated for temporary variables within the functions
of the LabVIEW DLLs. Finally, we passed a pointer to the
address of the pre-allocated array instead of copying the
data.

3.3. Fixed-Point Arithmetic (FPA)

Since most PDAs lack floating-point arithmetic capabilities,
the next real-time optimization step consisted of re-writing
the code based on fixed-point arithmetic operations. More

specifically, the following modifications were made: (1)
conversion of the floating point parameters to so called
fixed-point Q-format, (2) computation of the output in Q-
format to avoid overflows, and (3) conversion of the Q-
format output back to a higher precision integer for getting
the original dynamic range.

The floating point coefficients for the bandpass and
lowpass filters were converted to Q-20 format during the
design phase. This format ensured the stability of the filters
by getting all the poles and zeros within the unit circle.
Furthermore, it corresponded to the lowest Q-format that
avoided overflows, and cause of any noticeable loss in
accuracy.

4. REAL-TIME OUTCOME

The real-time implementation of the cochlear implant
system incorporates all the optimization steps discussed
above. To analyze the impact of the optimization steps on
the timing performance, each optimization step was added
to the initial Version A implementation in an incremental
fashion and the corresponding profiling results are tabulated
in Table 1. The timing numbers listed correspond to the
Dell PDA PXA270 model running at a clock rate of
624MHz and using the Windows Mobile 5.0 operating
system. Similar results were obtained with other PDA
models.

It can be observed that Version D with all the three
optimizations (Version A + DLL + MA + FPA) met the
real-time processing throughput of below 100ms processing
time for frame lengths of 100ms. As can be seen from Table
1, Version D took about 77ms to obtain a synthesized frame
for a 100ms length input frame. Note that although Version
C (Version A + DLL + MA) did not provide much
improvement in terms of speed, it ensured the system
stability by avoiding an inefficient memory usage. It should
be noted that an actual cochlear implant system only
includes the decomposition stage, which takes 52ms on the
PDA platform for 100ms frames. Although the real-time
constraint is met, additional steps can be taken to further
lower the processing time. For example, the use of IPPs for
PDAs equipped with Intel processors has been considered
to further speed up the processing time.

In brief, the hybrid programming approach (LabVIEW
+ C DLLs) together with the fixed-point and memory
optimization steps led to the real-time implementation of
the cochlear implant system on the PDA platform. The
optimization steps mentioned in this paper can be used to
speed up any other signal processing system on PDAs.

5. CONCLUSIONS

In this paper, we discussed the need for the deployment of a
PDA platform for cochlear implants to gain portability and
cost-effectiveness. We demonstrated the software flexibility

and interactivity offered by the PDA platform when
utilizing the LabVIEW graphical programming
environment. We presented three optimization steps that
can be used to optimize any signal processing algorithm for
real-time execution on PDAs.

6. ACKNOWLEDGEMENTS

This work has been funded by contract N01-DC-6-
0002 from NIDCD/NIH. The authors wish to thank Mr. Jim
Cahow, University Program Manager at National
Instruments, and Dr. Arthur Lobo for their comments.
Interested readers may contact Dr. Philip Loizou (contract
PI) at loizou@utdallas.edu for a copy of the LabVIEW
PDA code.

7. REFERENCES

[1] National Institutes of Health, Cochlear Implants in
Adults and Children, NIH Consensus Statement
Online, 1995.

[2] P. Loizou, “Mimicking the human ear,” IEEE Signal

Processing Magazine, vol. 15, pp. 101-130, 1998.

[3] Vandali, A., Harrison, J., Van Hoesel, R.,
McDermott, H. and Cowan, R., “A new speech
processor for cochlear implant/hearing aid research,”
Abstracts of 8th Symposium on Cochlear Implants in
Children, 2001.

[4] P. Loizou, "Speech processing in vocoder-centric
cochlear implants," Cochlear and Brainstem
Implants (ed. Moller, A.), Adv. Otorhinolaryngol.
Basel, Karger, vol. 64, pp. 109–143, 2006.

[5] Shannon, R., Zeng, F-G., Kamath, V., Wygonski, J.
and Ekelid, M., “Speech recognition with primarily
temporal cues,” Science, vol. 270, pp. 303-304,
1995.

[6] N. Kehtarnavaz and N. Kim, Digital Signal
Processing System-Level Design, Elsevier/Newnes,
2005.

[7] National Instruments, LabVIEW PDA 8.0 PDA
Module, http://www.ni.com/labview/whatsnew_in_
lv8_pda_module.htm.

[8] National Instruments, How to Call External Code in
LabVIEW PDA for Pocket PC, http://digital.ni.com/
public.nsf/allkb/517300B49212795986256DDD006
23FEE.

[9] National Instruments, Optimizing LabVIEW
Embedded Applications, http://zone.ni.com/
devzone/conceptd.nsf/webmain.

Fig. 1 Noise-band vocoder simulation of cochlear implants. Fig. 2 Real-time LabVIEW PDA Front Panel.

Fig. 3 Real-time implementation process of the noise-band vocoder algorithm shown in Fig. 1.

Table 1 Timing outcome corresponding to the optimization steps.

Processing time for 100ms length frames (ms)
Sub-block or Component Version A Version B

(A + DLL)
Version C
(B + MA)

Version D
(C + FPA)

DC Offset Removal 7 5 3 1
Pre-Emphasis 11 8 5 3

Bandpass Filtering
(Decomposition & Synthesis) 1450 705 412 34

Full-Wave Rectification 40 23 15 7
Lowpass Filtering 260 135 76 24

White-Noise Excitation 60 32 19 8
Total Processing Time 1828 908 530 77

