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ABSTRACT 

This paper presents the real-time implementation of a 
cochlear implant signal processing system on PDAs. The 
PDAs were chosen as they provide portable and cost-
effective computation platforms. To gain software 
flexibility and interactivity, the LabVIEW graphical 
programming environment is used. The paper discusses the 
optimization steps which are taken to achieve a real-time 
throughput. These steps consist of using dynamic link 
libraries, utilizing efficient memory allocation, and 
performing fixed-point arithmetic. These steps are general 
purpose in the sense that the same steps can be deployed for 
real-time implementation of other clinical or industrial 
signal processing applications on PDAs. 

1. INTRODUCTION 

Prosthetic devices such as cochlear implants are used to 
restore partial hearing in profoundly deaf people or patients 
suffering from nerve deafness [1]. With the rising demand 
for implants, the field of cochlear implants has experienced 
a considerable growth in the last few years. The number of 
cochlear implant users grew from 12,000 in 1995 [1] to 
nearly 100,000 during the past decade. 

A cochlear implant is a prosthetic device surgically 
implanted into the inner ear. It delivers an electrical signal 
to the cochlea through a series of electrodes placed inside 
the cochlea. It uses a speech processor to convert the sound 
acquired from a microphone into electrical signals [2]. 

Current speech processors provided by cochlear 
implant manufacturers are not portable and software 
flexible. By software flexibility, we mean the ease with 
which one may deploy new or modified algorithms. The 
only commercially available portable research processor is 
manufactured by Cochlear Corporation in collaboration 
with CRC/Hearworks [3], however, this processor does not 
offer software flexibility or ease-of-use as it requires a 
skilled programmer to develop and test algorithms in 
assembly language. Hence, it is deemed quite useful to have 
a new development platform possessing portability, 
flexibility, and interactivity features in order to accelerate 

clinical and research applications involving cochlear 
implants.  

In this work, we consider the Personal Digital 
Assistants (PDAs) to serve as such a platform for 
implementing a cochlear implant signal processing system. 
We consider the PDA platform because of its portability, 
low-cost, and multimedia capabilities. Compared to the PCs 
the PDAs have limited processing power and memory. The 
challenge in this work has been to develop flexible cochlear 
implant signal processing software that would run in real-
time on a relatively fast PDA (400-600 MHz clock rate).  

Section 2, includes an overview of the cochlear implant 
signal processing system considered in this work, namely a 
16-channel noise-band vocoder.  Section 3 covers the 
implementation steps taken to achieve a real-time 
throughput on any PDA platform using the National 
Instruments LabVIEW programming environment. These 
steps are general purpose in the sense that they can be 
deployed for real-time implementation of other signal 
processing systems on PDAs. Section 4 includes the 
profiling results obtained towards achieving the real-time 
implementation. Finally, the conclusions are stated in 
section 5. 

2. OVERVIEW OF COCHLEAR 
IMPLANT SYSTEM  

All cochlear implant devices consist of the following three 
components: a microphone that picks up the sound, a signal 
processor that converts the sound into electrical signals, a 
transmission system that transmits the electrical signals to 
the implanted electrodes, and an electrode array (consisting 
of multiple electrodes) that is inserted into the cochlea by a 
surgeon. In multi-channel cochlear implants, an electrode 
array is inserted in the cochlea so that different auditory 
nerve fibers can be stimulated at different places in the 
cochlea depending on the frequency of the signal. 
Electrodes near the base of the cochlea are stimulated with 
high frequency signals, while electrodes near the apex are 
stimulated with low frequency signals. The signal processor 
is responsible for breaking the input signal into different 
frequency bands or channels and delivering the filtered 
signals to the appropriate electrodes.  

Various signal processing strategies have been 
proposed in the literature for converting the acoustic signals 



 

to electrical signals [2] [4]. In this work, we implemented 
the popular Continuous Interleaved Sampling (CIS) strategy 
used in the commercially available implant devices. The 
CIS strategy is a vocoder strategy [4]. In order to conduct a 
qualitative analysis of the electrical stimuli obtained via the 
CIS strategy, the synthesis stage is also included along with 
the decomposition stage as illustrated in Fig. 1. The 
synthesis method implemented here is based on the noise-
band vocoder simulation reported in [5]. 

During the decomposition stage as shown in Fig. 1, the 
signal is first pre-emphasized and passed through a bank of 
bandpass filters. The cutoff frequencies for the bandpass 
filters are obtained by logarithmically dividing the signal 
bandwidth equally over a given number of channels. The 
envelopes of the filtered signals are then extracted via half-
wave rectification and lowpass filtering with a typical 
cutoff frequency of 400Hz. During the synthesis stage, the 
envelopes obtained after the decomposition are excited with 
white noise and then filtered through the same bank of 
bandpass filters. The synthesized signal is reconstructed by 
summing all the filtered signals as indicated in Fig. 1. 

3. REAL-TIME OPTIMIZATION  

The LabVIEW graphical programming is chosen here to 
achieve the real-time implementation of the cochlear 
implant system on PDA platforms since this environment 
allows one to run the same LabVIEW code on different 
PDAs equipped with different processors. Furthermore, it 
provides a higher level of abstraction through graphical 
system design, thus increasing the software flexibility 
aspect. LabVIEW graphical programs are named Virtual 
Instruments (VIs) and consist of two components: Block 
Diagram (BD) and Front Panel (FP). A BD consists of the 
interconnected building blocks of a system similar to a 
flowchart, whereas a FP constitutes its interactive 
graphical-user-interface incorporating various controls and 
displays. For more details on LabVIEW programming, the 
interested reader is referred to [6]. The LabVIEW PDA 
Module allows one to run the same code on Pocket PC, 
Windows Mobile, or Palm OS PDAs [7].  

The FP of the cochlear implant system depicted in Fig. 
2 illustrates the interactivity and ease with which various 
input parameters can be altered. Figure 3 shows a block-
level overview of the real-time implementation process 
based on the CIS strategy. As shown in Fig. 3, an input 
frame is acquired from the microphone on a PDA device, 
and passed through the CIS decomposition and synthesis 
stages. Synthesized frames are then sent to the speakers or 
headphones. The filter coefficients and other input 
parameters are pre-computed during the design phase and 
are fed back continuously within a real-time loop as noted 
in Fig. 3. 

In this implementation, input frames of 100ms length 
are acquired at a sampling rate of 22,050 Hz. To achieve a 
real-time throughput, this requires completing the 

processing of a frame before the next frame is captured. In 
other words, the total processing time for a frame should 
not exceed its length. 

The initial LabVIEW implementation generated a 
processing time of nearly 2 seconds per 100ms frame. The 
first column in Table 1 lists the time taken by each sub-
block or component of the CIS algorithm. This initial 
implementation is labeled Version A in the table. It should 
be noted that the timing information was gathered by 
making use of the flat sequence structure and the timing VI 
Tick Count provided in LabVIEW.  

From Table 1, it can be seen that the bandpass and 
lowpass filtering sub-blocks are the most time-consuming 
sub-blocks or components. In what follows, we present the 
real-time optimization steps that were taken in order to 
bring the processing time below 100ms, thus enabling the 
system to run in real-time. It is worth emphasizing that 
these steps are general purpose in the sense that they can be 
deployed to run other clinical and industrial signal 
processing algorithms in real-time on PDA platforms. 

3.1. Dynamic Link Library (DLL) 

Since most PDAs have limited processing power and run 
fixed-point processors, one needs to minimize overheads. 
The LabVIEW filtering VIs use floating-point math 
depending on the selection of the parameters by the user. In 
other words, there exist overheads associated with these 
filtering VIs due to floating point emulation. Thus, we used 
optimized C codes for the bandpass and lowpass filtering 
sub-blocks and incorporated them as Dynamic Link 
Libraries (DLLs) within the LabVIEW programming 
environment [8]. This way we minimized the amount of 
floating-point overheads.  

3.2. Memory Allocation (MA) 

For handheld devices such as PDAs, memory management 
plays an important role in time-critical applications due to 
their limited memory resources. In general, since dynamic 
memory allocation requires more processing than static 
memory allocation, we avoided using dynamic memory 
allocation within the real-time loops [9]. Instead, a pre-
allocated array was initialized with a constant outside of the 
loops. Furthermore, we de-allocated the memory that had 
been allocated for temporary variables within the functions 
of the LabVIEW DLLs. Finally, we passed a pointer to the 
address of the pre-allocated array instead of copying the 
data. 

3.3. Fixed-Point Arithmetic (FPA) 

Since most PDAs lack floating-point arithmetic capabilities, 
the next real-time optimization step consisted of re-writing 
the code based on fixed-point arithmetic operations. More 



 

specifically, the following modifications were made: (1) 
conversion of the floating point parameters to so called 
fixed-point Q-format, (2) computation of the output in Q- 
format to avoid overflows, and (3) conversion of the Q-
format output back to a higher precision integer for getting 
the original dynamic range. 

The floating point coefficients for the bandpass and 
lowpass filters were converted to Q-20 format during the 
design phase. This format ensured the stability of the filters 
by getting all the poles and zeros within the unit circle. 
Furthermore, it corresponded to the lowest Q-format that 
avoided overflows, and cause of any noticeable loss in 
accuracy.  

4. REAL-TIME OUTCOME 

The real-time implementation of the cochlear implant 
system incorporates all the optimization steps discussed 
above. To analyze the impact of the optimization steps on 
the timing performance, each optimization step was added 
to the initial Version A implementation in an incremental 
fashion and the corresponding profiling results are tabulated 
in Table 1. The timing numbers listed correspond to the 
Dell PDA PXA270 model running at a clock rate of 
624MHz and using the Windows Mobile 5.0 operating 
system. Similar results were obtained with other PDA 
models.   

It can be observed that Version D with all the three 
optimizations (Version A + DLL + MA + FPA) met the 
real-time processing throughput of below 100ms processing 
time for frame lengths of 100ms. As can be seen from Table 
1, Version D took about 77ms to obtain a synthesized frame 
for a 100ms length input frame. Note that although Version 
C (Version A + DLL + MA) did not provide much 
improvement in terms of speed, it ensured the system 
stability by avoiding an inefficient memory usage. It should 
be noted that an actual cochlear implant system only 
includes the decomposition stage, which takes 52ms on the 
PDA platform for 100ms frames. Although the real-time 
constraint is met, additional steps can be taken to further 
lower the processing time. For example, the use of IPPs for 
PDAs equipped with Intel processors has been considered 
to further speed up the processing time. 

In brief, the hybrid programming approach (LabVIEW 
+ C DLLs) together with the fixed-point and memory 
optimization steps led to the real-time implementation of 
the cochlear implant system on the PDA platform. The 
optimization steps mentioned in this paper can be used to 
speed up any other signal processing system on PDAs. 

5. CONCLUSIONS 

In this paper, we discussed the need for the deployment of a 
PDA platform for cochlear implants to gain portability and 
cost-effectiveness. We demonstrated the software flexibility 

and interactivity offered by the PDA platform when 
utilizing the LabVIEW graphical programming 
environment. We presented three optimization steps that 
can be used to optimize any signal processing algorithm for 
real-time execution on PDAs. 
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Fig. 1 Noise-band vocoder simulation of cochlear implants.             Fig. 2 Real-time LabVIEW PDA Front Panel. 

 

 
Fig. 3 Real-time implementation process of the noise-band vocoder algorithm shown in Fig. 1. 

 

Table 1 Timing outcome corresponding to the optimization steps. 

Processing time for 100ms length frames (ms) 
Sub-block or Component Version A Version B 

(A + DLL) 
Version C 
(B + MA) 

Version D 
(C + FPA) 

DC Offset Removal 7 5 3 1 
Pre-Emphasis 11 8 5 3 

Bandpass Filtering 
(Decomposition & Synthesis) 1450 705 412 34 

Full-Wave Rectification 40 23 15 7 
Lowpass Filtering 260 135 76 24 

White-Noise Excitation 60 32 19 8 
Total Processing Time 1828 908 530 77 


