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ABSTRACT 

This paper presents a real-time and interactive 
implementation of the recursive Fourier transform approach 
on PDA platforms for cochlear implant signal processing 
applications. PDA platforms provide a cost-effective and 
portable platform for cochlear implant studies. The 
computational complexities of the two commonly used 
signal processing strategies that are being used in 
commercial cochlear implants are compared. A more 
computationally efficient approach using recursive Fourier 
transform is discussed and a real-time implementation of 
this approach is then accomplished on a PDA platform.  
Different versions of the implementation are examined and 
compared in terms of speed and accuracy.  
 

Index Terms—Cochlear implant signal processing, 
real-time signal processing, PDA platforms, recursive 
Fourier transform.  

1. INTRODUCTION 

Cochlear implants are prosthetic devices which restore 
partial hearing in profoundly deaf people suffering from 
sensorineural hearing loss. There has been a considerable 
increase in the number of patients outfitted with cochlear 
implants since their approval by the FDA. The number of 
patients having cochlear implants now exceeds 110,000 [1]. 
The major components involved in cochlear implants 
include a microphone that captures speech signals, a signal 
processor that processes the signals and a surgically 
implanted array of electrodes in the inner ear.  
       Since the introduction of cochlear implants, there has 
been a steady attempt at improving their signal processing 
algorithms to improve speech intelligibility. Several 
cochlear implant manufacturers, for example Med El and 
Advanced Bionics Corporation, offer research platforms for 
cochlear implant studies (e.g., see [2]), but these platforms 
do not meet the following three key features at the same 
time: cost-effectiveness, portability, and ease of 
programming/interactivity. In our previous work [3], we 
introduced a PDA-based research platform to gain cost-
effectiveness and portability as well as a LabVIEW-based 

hybrid programming approach to gain interactivity and 
software flexibility. In this paper, we have improved our 
previous solution in terms of processing speed by 
considering a recursive Fourier transform approach while 
maintaining the software flexibility aspect of our solution on 
any PDA platform. 
      Section 2 describes the two common signal processing 
approaches that are used in commercial cochlear implants, 
one being the filterbank approach and the other being the 
FFT approach. Section 3 describes how the use of recursive 
Fourier transform reduces the amount of computation 
compared to the commonly used methods. Section 4 covers 
the implementation of the recursive approach. In addition, it 
includes a comparison of our various implementation 
versions in terms of speed and accuracy. Finally, the 
conclusions are stated in section 5.  

2. COMMON COCHLEAR IMPLANT 
SIGNAL PROCESSING STRATEGIES  

The function of the signal processor in a cochlear implant 
primarily consists of dividing an input speech signal into a 
number of frequency bands (12-22) in order to extract the 
signal strength in each band for exciting the implanted 
electrodes accordingly. In other words, the signal processor 
is programmed to emulate the functioning of the inner ear. 
The most common strategies used in commercial cochlear 
implants are Continuous Interleaved Sampling (CIS) and 
Advanced Combination Encoder (ACE) [4][5]. Both of 
these strategies can be realized using either a filterbank 
approach or an FFT approach.   
       When using the filterbank approach, a set of bandpass 
filters is used to divide the signal into a number of 
frequency bands or channels. Then, the filtered output is 
fullwave rectified and passed through lowpass filters to 
extract channel envelopes based on which, electrode pulses 
are generated. Figure 1(a) illustrates the CIS strategy where 
the input signal is passed to a bank of bandpass filters. The 
computational complexity of this approach increases as the 
number of channels and the order of the filters are increased. 
The same output can be achieved by computing the FFT of 
the input signal, grouping the frequency bins into different 
channels, and then summing up the power of adjacent 
frequency bins falling in a channel to obtain the signal 



 

strength in that channel. Figure 1(b) provides an illustration 
of the FFT approach.  
       When using the FFT approach, FFTs cannot be 
computed at the input sampling rate due to the 
computational demand associated with calculating FFT per 
sampling time interval. The output rate is often determined 
based on the rate at which FFTs can be computed in real-
time. In the ACE implementation reported in [4], 128-point 
FFTs are computed every 9th input sample at an input 
sampling rate of 16kHz, thus giving a 125Hz frequency bin 
resolution and a channel output rate of about 760Hz, which 
is much lower than the input sampling rate.  
       To achieve higher stimulation rates, the channel output 
rate has to be increased. In general, depending on the 
channel output rate and the excitation method used, the 
electrodes are excited at the rate of 800 to 2500 
pulses/sec/channel [5]. The highest rate achievable 
corresponds to the input sampling rate which means shifting 
the frame or window one sample at a time. When the 
window is shifted by one sample, there exists a significant 
amount of overlap from one window to next. Noting this 
fact, a recursive computation of DFT is considered in this 
paper to allow achieving high stimulation rates. The 
recursive approach for updating DFT is shown to be much 
more computationally efficient, thus leading to a real-time 
throughput on PDA platforms.  

3. RECURSIVE COMPUTATION OF 
DISCRETE FOURIER TRANSFORM  

As discussed in [6], for a new window or frame shifted from 
a previous window by one sample position, Fourier 
transform can be updated in a recursive manner. Such an 
approach is computationally attractive for cochlear implant 
applications as it allows one to achieve high stimulation 
rates. The recursive updating of Fourier transform at 
frequency ω and time instant n+1 can be updated from the 
Fourier transform of the previous window as follows [6]:  

 
(1) 

    
where x(n+1) represents the sampled input at instant n+1, N 
the window size and F(ω,n+1) the Fourier transform at 
instant n+1 and frequency ω. In Equation 1, the newest 
sample gets added while the oldest sample is subtracted 
after getting phase shifted. To update an N-point DFT at 
frequencies ωk = (2πk/N), k taking integer values 0, 1,... N-1, 
Equation 1 can be rewritten as follows:  

 
                             (2) 

 
As seen from Equation 2, the DFT computation at a single 
frequency point requires only one complex multiplication.  
      If a smooth frequency response is desired, a Hanning, a 
Hamming, a triangular, or an all-pole window may be used 

as discussed in [7][8]. Note that the use of these windows 
increases the computational complexity by a factor of 2. For 
example, as described in [8], a second order all-pole 
window represented by: 

                                    (3) 
where 

    (4) 
and L denoting a delay factor, results in the following 
recursive equation: 

        (5) 
As an example, Table 1 lists the number of 

multiplications for 46.4ms (1024 samples) input speech 
frames at a sampling rate of 22kHz with 22 channels using 
the filterbank, the 128-point FFT, and the recursive 128-
point DFT update methods. For the filterbank method, the 
bandpass filters are considered to be of 6th order 
(Butterworth) and the lowpass filters of 4th order. 

4. REAL-TIME IMPLEMENTATION ON 
PDA PLATFORMS 

Our implementation was performed within the LabVIEW 
hybrid programming framework previously reported in [3]. 
This hybrid framework allows one to incorporate C code 
within the interactive environment of LabVIEW. As a 
result, one can easily change various parameters of the 
signal processing algorithm. Through the interactive Front 
Panel capability of LabVIEW, users can alter sampling rate, 
frequency spacing of channels, number of channels, and 
other parameters, as shown in Figure 2. There is an option to 
make the channel spacing logarithmic or linear from 300Hz 
to 1800Hz and logarithmically thereafter. The C code 
corresponding to the signal processing components was 
placed in the LabVIEW environment as a Dynamic Link 
Libraries (DLL). The twiddle factors and the channel 
bandwidths were computed in the graphical environment of 
LabVIEW and passed as parameters to the C code. All the 
optimization steps as discussed in [3] were also performed 
for this implementation.  
      In addition, the implementation was done in fixed-point 
arithmetic with word size of either 16 bit or 32 bit. In 
general, there is a loss of accuracy when performing fixed-
point implementation. This issue was addressed by adopting 
a 32 bit word size. Furthermore, due to the steady increase 
in the quantization error after every iteration, the DFT 
update was terminated every 50ms. This allowed the 
percentage mean-square quantization error to remain within 
1% of the floating-point high-precision implementation for a 
reset rate of 1024 frames. It should be mentioned that the 
overhead incurred by computing FFT once every 50ms did 
not impose a real-time limitation as it only added 1ms to the 
total processing time. For all the implementation versions, 
the twiddle factors were kept in the Q15 (15 fractional bits) 
fixed-point format. Table 2 gives the percentage of time 



 

spent by each of the sub-processes and Table 3 lists the real-
time timing outcomes on an Intel processor-based PDA with 
a clock speed of 625MHz. 
     Figure 3 shows the percentage mean-square error of two 
of the channel envelope outputs (1 and 15) between the 
fixed-point and floating-point versions for the 16 and 32 bit 
implementations. Here the channel cutoff frequencies were 
placed linearly in the lower range and logarithmically for 
frequencies above 1800 Hz. 
      An additional optimization step was also carried out for 
Intel processor based PDAs. This step comprised 
incorporating Intel Integrated Performance Primitive (IPP) 
functions within the C code. These functions have been 
fully optimized for Intel processors. The performance 
improvement when using the IPP functions is also listed in 
Table 3.  

In all of our implementations, special attention was paid 
to minimizing the use of dynamic memory allocation and 
freeing buffers as soon as a function was done. Our PDA 
implementation also included a synthesized component to 
play back reconstructed speech signals using the Windows 
operating system APIs (application programming 
interfaces). The synthesis was done using the noise-band 
vocoder strategy described in [5][9]. 

5. CONCLUSION 

In this paper, various real-time implementations of cochlear 
implant signal processing on PDA platforms were 
investigated. All the implementations except for the IPP 
versions are platform independent meaning that they can be 
run on any PDA platform. It is shown that the most 
computationally efficient and interactive approach consists 
of the use of recursive Fourier transform allowing one to 
obtain Fourier transform at the input sampling rate. 
Furthermore, by utilizing 32-bit fixed-point arithmetic and a 
resetting procedure, it is ensured that the quantization error 
remains very small as compared to the floating-point 
version. 
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(a)                                                                                                         (b) 

Fig.1 - Two common signal processing strategies for cochlear implants based on:                                                         
(a) Filterbank approach, and (b) FFT approach. 



 

Recursive DFT update Filterbank FFT (N-
point) Rectangular window 2nd order all-pole 

window 
No. of channels * (3 stage 
cascaded 2nd order BPF +     2 
stage cascaded 2nd order LPF) 

2N(log 2N) 
+ (N/2)*2  

(N/2)*4 + (N/2)*2  (N/2)*8 + (N/2)*2  

Number of real 
multiplications 
for 
1024 sample 
frames, 128-point 
FFT,      22 
channels         ≈560K ≈2M ≈400K ≈660K 

Table 1 - Computational complexity of different implementations of cochlear implant signal processing strategies. 

 
Read speech input 
and write output 

Recursive DFT 
update 

DFT magnitude 
square computation 

Analysis channel 
output computation 

Percentage time of 
sub-processes  

5%  45% 30% 20% 

Table 2 – Percentage time spent by sub-processes.  

 
FFT Filterbank 

Non recursive Recursive 
Non  
interactive 

Interactive Non interactive Interactive 

Rectangular 
window - 
Using 
LabVIEW + 
C 

2nd order all-
pole window - 
Using 
LabVIEW +  
C 

Rectangular 
window - 
Using  
LabVIEW + C + 
IPP 

Using C + 
IPP+  
Assembly  

Using 
LabVIEW 
+ C 

Using C + IPP 

16bit 32bit 16bit 32bit 16bit 32bit 

Specifications: 
16 channels 

Filterbank:     
6th & 4th order 
BPF & LPF 

FFT: 128-point 
 

6 19 248>46.4 
(non real-time) 

11 13 15 16 8 10 

Table 3 - Timing outcomes corresponding to different implementations on a PDA platform. Numbers indicate time (in ms) 
required to process 46.4 ms duration frames. 
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Fig.2 – Front Panel of real-time PDA implementation. Fig. 3 – Percentage mean-square error (MSE) between 

envelope outputs obtained using fixed-point and floating-
point. 


