
REAL-TIME PDA-BASED RECURSIVE FOURIER TRANSFORM
IMPLEMENTATION FOR COCHLEAR IMPLANT APPLICATIONS

V. Gopalakrishna, N. Kehtarnavaz, and P. Loizou

Department of Electrical Engineering, University of Texas at Dallas

ABSTRACT

This paper presents a real-time and interactive
implementation of the recursive Fourier transform approach
on PDA platforms for cochlear implant signal processing
applications. PDA platforms provide a cost-effective and
portable platform for cochlear implant studies. The
computational complexities of the two commonly used
signal processing strategies that are being used in
commercial cochlear implants are compared. A more
computationally efficient approach using recursive Fourier
transform is discussed and a real-time implementation of
this approach is then accomplished on a PDA platform.
Different versions of the implementation are examined and
compared in terms of speed and accuracy.

Index Terms—Cochlear implant signal processing,
real-time signal processing, PDA platforms, recursive
Fourier transform.

1. INTRODUCTION

Cochlear implants are prosthetic devices which restore
partial hearing in profoundly deaf people suffering from
sensorineural hearing loss. There has been a considerable
increase in the number of patients outfitted with cochlear
implants since their approval by the FDA. The number of
patients having cochlear implants now exceeds 110,000 [1].
The major components involved in cochlear implants
include a microphone that captures speech signals, a signal
processor that processes the signals and a surgically
implanted array of electrodes in the inner ear.
 Since the introduction of cochlear implants, there has
been a steady attempt at improving their signal processing
algorithms to improve speech intelligibility. Several
cochlear implant manufacturers, for example Med El and
Advanced Bionics Corporation, offer research platforms for
cochlear implant studies (e.g., see [2]), but these platforms
do not meet the following three key features at the same
time: cost-effectiveness, portability, and ease of
programming/interactivity. In our previous work [3], we
introduced a PDA-based research platform to gain cost-
effectiveness and portability as well as a LabVIEW-based

hybrid programming approach to gain interactivity and
software flexibility. In this paper, we have improved our
previous solution in terms of processing speed by
considering a recursive Fourier transform approach while
maintaining the software flexibility aspect of our solution on
any PDA platform.
 Section 2 describes the two common signal processing
approaches that are used in commercial cochlear implants,
one being the filterbank approach and the other being the
FFT approach. Section 3 describes how the use of recursive
Fourier transform reduces the amount of computation
compared to the commonly used methods. Section 4 covers
the implementation of the recursive approach. In addition, it
includes a comparison of our various implementation
versions in terms of speed and accuracy. Finally, the
conclusions are stated in section 5.

2. COMMON COCHLEAR IMPLANT
SIGNAL PROCESSING STRATEGIES

The function of the signal processor in a cochlear implant
primarily consists of dividing an input speech signal into a
number of frequency bands (12-22) in order to extract the
signal strength in each band for exciting the implanted
electrodes accordingly. In other words, the signal processor
is programmed to emulate the functioning of the inner ear.
The most common strategies used in commercial cochlear
implants are Continuous Interleaved Sampling (CIS) and
Advanced Combination Encoder (ACE) [4][5]. Both of
these strategies can be realized using either a filterbank
approach or an FFT approach.
 When using the filterbank approach, a set of bandpass
filters is used to divide the signal into a number of
frequency bands or channels. Then, the filtered output is
fullwave rectified and passed through lowpass filters to
extract channel envelopes based on which, electrode pulses
are generated. Figure 1(a) illustrates the CIS strategy where
the input signal is passed to a bank of bandpass filters. The
computational complexity of this approach increases as the
number of channels and the order of the filters are increased.
The same output can be achieved by computing the FFT of
the input signal, grouping the frequency bins into different
channels, and then summing up the power of adjacent
frequency bins falling in a channel to obtain the signal

strength in that channel. Figure 1(b) provides an illustration
of the FFT approach.
 When using the FFT approach, FFTs cannot be
computed at the input sampling rate due to the
computational demand associated with calculating FFT per
sampling time interval. The output rate is often determined
based on the rate at which FFTs can be computed in real-
time. In the ACE implementation reported in [4], 128-point
FFTs are computed every 9th input sample at an input
sampling rate of 16kHz, thus giving a 125Hz frequency bin
resolution and a channel output rate of about 760Hz, which
is much lower than the input sampling rate.
 To achieve higher stimulation rates, the channel output
rate has to be increased. In general, depending on the
channel output rate and the excitation method used, the
electrodes are excited at the rate of 800 to 2500
pulses/sec/channel [5]. The highest rate achievable
corresponds to the input sampling rate which means shifting
the frame or window one sample at a time. When the
window is shifted by one sample, there exists a significant
amount of overlap from one window to next. Noting this
fact, a recursive computation of DFT is considered in this
paper to allow achieving high stimulation rates. The
recursive approach for updating DFT is shown to be much
more computationally efficient, thus leading to a real-time
throughput on PDA platforms.

3. RECURSIVE COMPUTATION OF
DISCRETE FOURIER TRANSFORM

As discussed in [6], for a new window or frame shifted from
a previous window by one sample position, Fourier
transform can be updated in a recursive manner. Such an
approach is computationally attractive for cochlear implant
applications as it allows one to achieve high stimulation
rates. The recursive updating of Fourier transform at
frequency ω and time instant n+1 can be updated from the
Fourier transform of the previous window as follows [6]:

(1)

where x(n+1) represents the sampled input at instant n+1, N
the window size and F(ω,n+1) the Fourier transform at
instant n+1 and frequency ω. In Equation 1, the newest
sample gets added while the oldest sample is subtracted
after getting phase shifted. To update an N-point DFT at
frequencies ωk = (2πk/N), k taking integer values 0, 1,... N-1,
Equation 1 can be rewritten as follows:

 (2)

As seen from Equation 2, the DFT computation at a single
frequency point requires only one complex multiplication.
 If a smooth frequency response is desired, a Hanning, a
Hamming, a triangular, or an all-pole window may be used

as discussed in [7][8]. Note that the use of these windows
increases the computational complexity by a factor of 2. For
example, as described in [8], a second order all-pole
window represented by:

 (3)
where

 (4)
and L denoting a delay factor, results in the following
recursive equation:

 (5)
As an example, Table 1 lists the number of

multiplications for 46.4ms (1024 samples) input speech
frames at a sampling rate of 22kHz with 22 channels using
the filterbank, the 128-point FFT, and the recursive 128-
point DFT update methods. For the filterbank method, the
bandpass filters are considered to be of 6th order
(Butterworth) and the lowpass filters of 4th order.

4. REAL-TIME IMPLEMENTATION ON
PDA PLATFORMS

Our implementation was performed within the LabVIEW
hybrid programming framework previously reported in [3].
This hybrid framework allows one to incorporate C code
within the interactive environment of LabVIEW. As a
result, one can easily change various parameters of the
signal processing algorithm. Through the interactive Front
Panel capability of LabVIEW, users can alter sampling rate,
frequency spacing of channels, number of channels, and
other parameters, as shown in Figure 2. There is an option to
make the channel spacing logarithmic or linear from 300Hz
to 1800Hz and logarithmically thereafter. The C code
corresponding to the signal processing components was
placed in the LabVIEW environment as a Dynamic Link
Libraries (DLL). The twiddle factors and the channel
bandwidths were computed in the graphical environment of
LabVIEW and passed as parameters to the C code. All the
optimization steps as discussed in [3] were also performed
for this implementation.
 In addition, the implementation was done in fixed-point
arithmetic with word size of either 16 bit or 32 bit. In
general, there is a loss of accuracy when performing fixed-
point implementation. This issue was addressed by adopting
a 32 bit word size. Furthermore, due to the steady increase
in the quantization error after every iteration, the DFT
update was terminated every 50ms. This allowed the
percentage mean-square quantization error to remain within
1% of the floating-point high-precision implementation for a
reset rate of 1024 frames. It should be mentioned that the
overhead incurred by computing FFT once every 50ms did
not impose a real-time limitation as it only added 1ms to the
total processing time. For all the implementation versions,
the twiddle factors were kept in the Q15 (15 fractional bits)
fixed-point format. Table 2 gives the percentage of time

spent by each of the sub-processes and Table 3 lists the real-
time timing outcomes on an Intel processor-based PDA with
a clock speed of 625MHz.
 Figure 3 shows the percentage mean-square error of two
of the channel envelope outputs (1 and 15) between the
fixed-point and floating-point versions for the 16 and 32 bit
implementations. Here the channel cutoff frequencies were
placed linearly in the lower range and logarithmically for
frequencies above 1800 Hz.
 An additional optimization step was also carried out for
Intel processor based PDAs. This step comprised
incorporating Intel Integrated Performance Primitive (IPP)
functions within the C code. These functions have been
fully optimized for Intel processors. The performance
improvement when using the IPP functions is also listed in
Table 3.

In all of our implementations, special attention was paid
to minimizing the use of dynamic memory allocation and
freeing buffers as soon as a function was done. Our PDA
implementation also included a synthesized component to
play back reconstructed speech signals using the Windows
operating system APIs (application programming
interfaces). The synthesis was done using the noise-band
vocoder strategy described in [5][9].

5. CONCLUSION

In this paper, various real-time implementations of cochlear
implant signal processing on PDA platforms were
investigated. All the implementations except for the IPP
versions are platform independent meaning that they can be
run on any PDA platform. It is shown that the most
computationally efficient and interactive approach consists
of the use of recursive Fourier transform allowing one to
obtain Fourier transform at the input sampling rate.
Furthermore, by utilizing 32-bit fixed-point arithmetic and a
resetting procedure, it is ensured that the quantization error
remains very small as compared to the floating-point
version.

6. ACKNOWLEDGMENT
This work has been funded by the NIH contract N01-DC-6-
0002 from NIDCD. Interested readers may contact Dr.

Philip Loizou (contract PI) at loizou@utdallas.edu for a
copy of the LabVIEW PDA code.

7. REFERENCES

[1] National Institute on Deafness and Other
Communication Disorders,“Cochlear Implants,”
National Institutes of Health, Bethesda, MD, 2005
http://www.nidcd.nih.gov/health/hearing/coch.asp.

[2] P. Loizou, G. Stickney, M. Mishra, and P. Assmann,
“Comparison of speech processing strategies used in
the Clarion implant processor,” Ear and Hearing,
vol. 24, no. 1, pp. 12-19, 2003.

[3] V. Peddigari, N. Kehtarnavaz, and P. Loizou, “Real-
time LabVIEW implementation of cochlear implant
signal processing on PDA platforms,” Proc. of IEEE
Intern. Conf. Acoust. Speech, Signal. Processing,
Hawaii, April 2007.

[4] A. Vandali, L. Whitford, K. Plant and G. Clark,
“Speech perception as a function of electrical
stimulation rate using the Nucleus 24 cochlear
implant system,” Ear Hear. , vol. 21, no. 6, pp. 608-
624, 2000.

[5] P. Loizou, "Speech processing in vocoder-centric
cochlear implants," Cochlear and Brainstem
Implants (ed. Moller, A.), Adv. Otorhinolaryngol.
Basel, Karger, vol. 64, pp. 109–143, 2006.

[6] M. Amin, “A new approach to recursive Fourier
transform,” Proc. of IEEE, vol. 75, pp. 1537-1538,
1987.

[7] E. Sherlock, D. Monro, “Moving discrete Fourier
transform,” IEE Proceedings on Radar and Signal
Processing, vol. 139, no. 4, pp. 279-282, 1992.

[8] W. Chen, N. Kehtarnavaz, T. Spencer, “An efficient
recursive algorithm for time-varying Fourier
transform,” IEEE Transactions on Signal
Processing, vol. 41, no 7, pp. 2488-2490, 1993.

[9] R. Shannon, F. Zeng, V. Kamath, J. Wygonski, and
M. Ekelid, “Speech recognition with primarily
temporal cues,” Science, vol. 270, pp. 303-304,
1995.

(a) (b)

Fig.1 - Two common signal processing strategies for cochlear implants based on:
(a) Filterbank approach, and (b) FFT approach.

Recursive DFT update Filterbank FFT (N-
point) Rectangular window 2nd order all-pole

window
No. of channels * (3 stage
cascaded 2nd order BPF + 2
stage cascaded 2nd order LPF)

2N(log 2N)
+ (N/2)*2

(N/2)*4 + (N/2)*2 (N/2)*8 + (N/2)*2

Number of real
multiplications
for
1024 sample
frames, 128-point
FFT, 22
channels ≈560K ≈2M ≈400K ≈660K

Table 1 - Computational complexity of different implementations of cochlear implant signal processing strategies.

Read speech input
and write output

Recursive DFT
update

DFT magnitude
square computation

Analysis channel
output computation

Percentage time of
sub-processes

5% 45% 30% 20%

Table 2 – Percentage time spent by sub-processes.

FFT Filterbank

Non recursive Recursive
Non
interactive

Interactive Non interactive Interactive

Rectangular
window -
Using
LabVIEW +
C

2nd order all-
pole window -
Using
LabVIEW +
C

Rectangular
window -
Using
LabVIEW + C +
IPP

Using C +
IPP+
Assembly

Using
LabVIEW
+ C

Using C + IPP

16bit 32bit 16bit 32bit 16bit 32bit

Specifications:
16 channels

Filterbank:
6th & 4th order
BPF & LPF

FFT: 128-point

6 19 248>46.4
(non real-time)

11 13 15 16 8 10

Table 3 - Timing outcomes corresponding to different implementations on a PDA platform. Numbers indicate time (in ms)
required to process 46.4 ms duration frames.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5
Channel 1: 32 bit implementation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5
Channel 15: 32 bit implementation

P
er

ce
nt

ag
e

M
S

E

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5
1

Channel 1: 16 bit implementation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5
1

Channel 15: 16 bit implementation

Number of frames
Fig.2 – Front Panel of real-time PDA implementation. Fig. 3 – Percentage mean-square error (MSE) between

envelope outputs obtained using fixed-point and floating-
point.

