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The normalized covariance measure (NCM) has been shown previously to predict reliably the intelli-

gibility of noise-suppressed speech containing non-linear distortions. This study analyzes a simplified

NCM measure that requires only a small number of bands (not necessarily contiguous) and uses sim-

ple binary (1 or 0) weighting functions. The rationale behind the use of a small number of bands is to

account for the fact that the spectral information contained in contiguous or nearby bands is corre-

lated and redundant. The modified NCM measure was evaluated with speech intelligibility scores

obtained by normal-hearing listeners in 72 noisy conditions involving noise-suppressed speech cor-

rupted by four different types of maskers (car, babble, train, and street interferences). High correla-

tion (r ¼ 0.8) was obtained with the modified NCM measure even when only one band was used.

Further analysis revealed a masker-specific pattern of correlations when only one band was used, and

bands with low correlation signified the corresponding envelopes that have been severely distorted

by the noise-suppression algorithm and/or the masker. Correlation improved to r ¼ 0.84 when only

two disjoint bands (centered at 325 and 1874 Hz) were used. Even further improvements in correla-

tion (r ¼ 0.85) were obtained when three or four lower-frequency (<700 Hz) bands were selected.
VC 2010 Acoustical Society of America. [DOI: 10.1121/1.3502473]
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I. INTRODUCTION

The speech transmission index (STI) (Houtgast and

Steeneken, 1971; Steeneken and Houtgast, 1980) is an intelli-

gibility metric that has been found to reliably predict the

effects of reverberation as well as additive noise. The compu-

tation of the STI is based on detecting changes in signal modu-

lation when modulated probe stimuli are transmitted through a

channel of interest. The responses to probe stimuli are meas-

ured in multiple frequency bands for a range of modulation

frequencies (0.63–12.7 Hz) relevant to speech. The traditional

STI method has been found to perform poorly in terms of pre-

dicting the intelligibility of processed speech wherein non-lin-

ear operations (e.g., envelope compression, peak-clipping,

envelope thresholding, etc.) are involved (Ludvigsen et al.,
1993; van Buuren et al., 1999; Goldsworthy and Greenberg,

2004). A number of speech-based STI measures have been

examined and analyzed by Goldsworthy and Greenberg (2004)

to determine the extent to which some measures fail to predict

speech intelligibility for non-linear operations. Among those,

the normalized covariance measure (NCM) has been shown by

Goldsworthy and Greenberg (2004) to perform better than the

conventional STI method in predicting the effects of non-linear

operations such as envelope thresholding or distortions intro-

duced by spectral-subtractive algorithms. This was also con-

firmed by Ma et al. (2009) who evaluated the performance of

the NCM measure with noise-suppressed speech, which gener-

ally contains various forms of non-linear distortions including

the distortions introduced by spectral-subtractive algorithms.

The correlation of the NCM measure with noise-suppressed

speech was found to be quite high (r ¼ 0.89) (Ma et al., 2009).

Given the success of the NCM measure in predicting

reliably the intelligibility of noise-suppressed speech contain-

ing non-linear distortions (Ma et al., 2009), we consider in

this study analyzing the NCM measure in terms of determin-

ing the minimum number of bands required (without compro-

mising performance) and the shape of weighting functions to

be applied to each band. We sought for a simplified NCM

measure that required only a small number of bands (not nec-

essarily contiguous) and used simple binary (1 or 0) weight-

ing functions. The motivation behind the use of a small

number of bands is that the spectral information contained in

contiguous bands is correlated and redundant (Steeneken and

Houtgast, 1999; Crouzet and Ainsworth, 2001). Conse-

quently, a simple weighted summation of the individual con-

tribution of each band (as measured by the band transmission

indices) will result in an overestimation of the true in-

formation content (Steeneken and Houtgast, 1999; Musch

and Buss, 2001). Steeneken and Houtgast (1999, 2002) modi-

fied the STI method by including a correction factor that

accounted for the mutual dependence between adjacent

octave bands. The modified STI method provided a better

prediction of speech intelligibility particularly in situations

with a non-contiguous frequency transfer. An iterative proce-

dure was used by Steeneken and Houtgast (1999) to derive

the optimal “redundancy-correction” factors across a number

of carefully constructed conditions designed to include non-

contiguous frequency transfer. A more simplified procedure

is taken in the present study by examining the individual
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contribution of information carried by a single or a small

number of bands to speech intelligibility. Two methods are

proposed for selecting a small number of bands (2–4) and the

prediction power of the modified NCM measure is evaluated

with the intelligibility scores collected in our prior study (Hu

and Loizou, 2007). Special attention is paid to assessing the

relationship between the center frequency of the selected

band(s) and the effect of the masker and/or applied gain of

the noise-suppression algorithm on that band. It is hypothe-

sized that low correlations of individual bands with speech

intelligibility will reflect inconsistencies in the way the noise-

suppression algorithm(s) and/or masker affects (e.g., distorts)

different bands (regions) of the spectrum. These inconsisten-

cies are caused by the fact that some bands are severely dis-

torted while other bands are effectively “cleaned” by the

noise-suppression algorithm. Hence, the low correlations of

individual bands (with speech intelligibility scores) might

provide useful information about the regions of the spectrum

and corresponding envelopes that have been heavily masked

or distorted by the noise-suppression algorithm. The proposed

method for band selection can thus provide diagnostic infor-

mation in as far as identifying which bands are effectively

suppressed (or not) by noise-reduction algorithms.

II. THE NORMALIZED COVARIANCE MEASURE (NCM)

The NCM measure is computed as follows (Holube and

Kollmeier, 1996; Goldsworthy and Greenberg, 2004). The

stimuli are first bandpass filtered into N bands spanning the sig-

nal bandwidth (300–3400 Hz in this study). Table I shows the

filter cut-off frequencies used to decompose the signal into N
¼ 20 bands. The envelope of each band is computed using the

Hilbert transform and then downsampled to 2fcut Hz, thereby

limiting the envelope modulation rate to fcut Hz (fcut ¼ 12.5 Hz

in this study). An anti-aliasing low-pass filter was used prior

to downsampling to eliminate aliasing artifacts. Let xi(t) and

yi(t) be the downsampled envelope in the ith band of the

clean signal and the processed signal, respectively. The nor-

malized covariance in the ith frequency band is computed as

qi ¼

X
t

ðxiðtÞ � liÞðyiðtÞ � miÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

ðxiðtÞ � liÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

t

ðyiðtÞ � miÞ2
r ; (1)

where li and vi are the mean values of the xi(t) and yi(t),
respectively. The signal-to-noise ratio (SNR) in each band is

computed as

SNRi ¼ 10 log10

q2
i

1� q2
i

� �
; (2)

and subsequently limited to the range of [�15,15] dB [as

done in the computation of the SII measure (ANSI, 1997)].

The transmission index (TI) in each band is computed by lin-

early mapping the SNR values between 0 and 1 using the fol-

lowing equation:

TIi ¼
SNRi þ 15

30
: (3)

Finally, the transmission indices are averaged across all

frequency bands to produce the NCM index:

NCM ¼

XN

i¼1

TIi � wi

XN

i¼1

wi

; (4)

where W ¼ (w1 … wi … wN)T denotes the weight vector

applied to the transmission-index TIi of N bands.

There are several methods for choosing the weight

vector W in Eq. (4), with the most common being the articu-

lation index (AI) weights (ANSI, 1997). Ma et al. (2009)

proposed the use of signal-dependent weighting vectors, and

more specifically, they proposed the following:

W
ð1Þ
i ¼

X
t

x2
i ðtÞ

 !p

; (5)

W
ð2Þ
i ¼

X
t

ðmax½xiðtÞ � diðtÞ; 0�Þ2
 !p

; (6)

where di(t) denotes the downsampled envelope of the scaled

masker signal in the time domain (the power exponent p was

varied from 0.12 to 1.5 in this study). The motivation behind

the use of Eq. (5) is to place weight to each TI value in pro-

portion to the signal energy in each band, while the motiva-

tion behind the use of Eq. (6) is to place weight to each TI

value in proportion to the excess masked signal.

In the present study, we consider using a more simpli-

fied method for choosing the weights wi for each band. More

precisely, we investigate the use of a binary weight vector

WM, where wi in WM is either set to 1 or 0, and M (M < 20)

TABLE I. The filter cut-off frequencies and AI weights (ANSI, 1997) used

in the implementation of the NCM measure.

Band

Low-High cut-off

frequencies (Hz)

Center

frequency (Hz) AI weight

1 300–350 325 0.0772

2 350–405 378 0.0955

3 405–466 436 0.1016

4 466–534 500 0.0908

5 534–609 571 0.0734

6 609–692 650 0.0659

7 692–784 738 0.0580

8 784–885 834 0.0500

9 885–998 942 0.0460

10 998–1123 1060 0.0440

11 1123–1261 1192 0.0445

12 1261–1413 1337 0.0482

13 1413–1583 1498 0.0488

14 1583–1770 1676 0.0488

15 1770–1977 1874 0.0493

16 1977–2207 2092 0.0491

17 2207–2461 2334 0.0520

18 2461–2743 2602 0.0549

19 2743–3055 2899 0.0555

20 3055–3400 3227 0.0514
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is the total number of bands used with unity weight (wi ¼ 1).

The weights for the remaining (20 � M) bands are set to

zero. As mentioned in Sec. I, the rationale for choosing a sub-

set of the N bands (N ¼ 20 in our study) is that the spectral in-

formation in adjacent or nearby bands is highly correlated

and therefore redundant. This could in turn diminish the per-

formance of the NCM measure. By using binary weights in

Eq. (4), we hope to answer a number of interesting questions:

(1) What is the minimum number of bands needed to obtain

good intelligibility prediction with the NCM measure? (2)

How should these bands be chosen? (3) Does the answer to

the previous two questions depend on the spectral characteris-

tics of the masker? (4) Do the binary weights reveal a specific

pattern for each masker signifying perhaps weaknesses/limi-

tations of the noise suppression algorithms in terms of effec-

tively suppressing background noise?

III. SPEECH INTELLIGIBILITY DATA

Data taken from the intelligibility evaluation of noise-

corrupted speech processed through eight different noise-

suppression algorithms by normal-hearing listeners were used

in the present study (Hu and Loizou, 2007). IEEE sentences

(IEEE, 1969) were used as test material. The masker signals

were taken from the AURORA database (Hirsch and Pearce,

2000), and included the following real-world recordings from

different places: Babble, car, street, and train. The maskers

were artificially added to the speech signals at SNRs of 0 and

5 dB. A total of 40 normal-hearing listeners participated in

the sentence intelligibility tests (Hu and Loizou, 2007). The

intelligibility scores obtained from the normal-hearing listen-

ers in a total of 72 conditions were used in the present study

to evaluate the predictive power of the NCM measure imple-

mented using binary weights.

IV. RESULTS AND DISCUSSION

The Pearson’s correlation coefficient (r) was used to

assess the correlation of the NCM measure with the speech

intelligibility scores. The performance of the NCM measure

implemented using a single band or multiple bands was

examined and analyzed next.

A. Using a single band for computing the NCM
measure

Figure 1 shows the correlation coefficients obtained

when using a W1 binary vector, i.e., W1 ¼ (00 … 1 … 00)T,

where the ith band has a weight of 1 and the remaining bands

have a weight of 0. That is, the weight wi in Eq. (4) was set to

1 for the ith band while the weights for the remaining 19

bands were set to zero. This was repeated for all 20 bands.

Figure 1 reports the correlations obtained when each of the

20 bands was used in the computation of the NCM measure.

The first data point in Fig. 1 indicates the correlation obtained

when only band 1 was used (the remaining 19 bands were not

used), the second data point in Fig. 1 indicates the correlation

obtained when only band 2 was used (the remaining 19 bands

were not used), and so forth. The resulting correlation coeffi-

cients ranged from a low of 0.3 (band 17) to a high of 0.8

(band 1). The baseline correlation coefficient obtained when

using the ANSI weights and all 20 bands was found to be

0.82 (Ma et al., 2009). Hence, the surprising finding from

Fig. 1 is that high correlation can be obtained with the NCM

measure even with only one band (e.g., band 1).

As shown in Fig. 1, some bands exhibited low correla-

tions with intelligibility scores while others exhibited rela-

tively high correlation. The reasons for that were unclear at

first; hence, further analysis was conducted to determine the

reason. In particular, we analyzed the correlations separately

for each of the four maskers. The correlations were com-

puted based on 18 noisy conditions for each type of masker.

Figure 2 shows the correlation coefficients obtained using a

W1 binary vector for the four maskers tested, i.e., babble,

car, street, and train interferences. As can be seen from Fig.

2, each masker has its own correlation pattern, which we

refer to as the r-pattern. The r-pattern for babble is relatively

flat, while that of train has two significant dips at bands 5

and 17. For the street interference, the lowest correlation

was close to zero in band 17. The bands with low correlation

differed among the car, street, and train interferences. Low

correlation was obtained for the band centered near 834 Hz

for the car interference, at 2334 Hz for the street interfer-

ence, and near 571 and 2334 Hz for the train interference.

Figure 2 raises the question: What is the significance of

the r-pattern and, perhaps more importantly, can we use these

r-patterns to determine how effective the noise suppression

algorithms are in reducing background noise? We believe that

the frequency location of the dips in the r-pattern identifies

inconsistencies (or perhaps differences) in the way the noise-

suppression algorithm(s) affects (e.g., distorts) different bands

(regions) of the spectrum. These inconsistencies are caused by

the fact that some bands are severely distorted while other

bands are effectively cleaned by the noise-suppression algo-

rithm. In the r-pattern (Fig. 2), bands with high correlation

indicate consistent performance with overall intelligibility

scores, and one can view those bands as being representative

of overall performance. As such, when the TI (or equivalently

the effective SNR) is high in those bands, intelligibility is

high, and when the TI is low in those bands, intelligibility is

FIG. 1. The individual correlation coefficients r obtained using the modified

NCM measure when only one band is used at a time.

J. Acoust. Soc. Am., Vol. 128, No. 6, December 2010 F. Chen and P. C. Loizou: Simplified normalized covariance measure 3717

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



low. In contrast, bands with low correlation are likely affected

differently by the noise-suppression algorithm (compared to

the other bands), and in a way that is inconsistent with the

overall intelligibility score. Consider, for instance, a hypothet-

ical scenario wherein a noise-suppression algorithm effec-

tively suppresses the background noise in all bands except

the last high-frequency band, which is severely distorted. In

such a case, intelligibility will be mildly affected (since the

majority of the bands were not distorted) and the correlations

of the majority of the bands will be high. In contrast, the cor-

relation with the single high-frequency band will be low,

since the TI for that band will likely be low (due to the

presence of severe distortion) and thus inconsistent with the

high intelligibility scores. To illustrate this, Fig. 3 shows an

example TI pattern for speech processed in the street-masker

conditions. Bands 17–20 have low TI values (<0.4), suggest-

ing that they have been distorted or not effectively enhanced,

while most of the lower-frequency bands have comparatively

higher TI values (>0.7). The TI values in bands 17–20 are

low relative to the TI values in bands 1–16, and this differ-

ence caused the low correlations for bands 17–20 [see Fig.

2(c)]. This is so because the low TI values in bands 17–20

were not consistent with the overall intelligibility scores, in

that subjects were able to recognize the sentences, despite the

presence of a few distorted or noise-masked bands in the high

frequencies (Hu and Loizou, 2007).

In summary, we believe that the frequency location of

the dips in the r-pattern effectively signifies the correspond-

ing envelopes that have been severely distorted by the noise-

suppression algorithm and/or the masker. In principle, a low

correlation in the r-pattern could also indicate the ability of

the noise reduction algorithm to effectively suppress the

background noise in a particular band(s) (assuming that the

remaining bands are severely distorted), however, we did not

find that to be the case in our study, at least for the class of

noise reduction algorithms tested. Based on the outcomes of

our study, we thus believe that the low correlation in the

r-pattern must be due to the poor ability of the noise reduc-

tion algorithm to suppress background noise in a specific

band. To demonstrate this, we show in Fig. 4 spectrograms

of four sentences, which were corrupted by four types of

maskers at 0 dB SNR and processed by the spectral subtrac-

tion algorithm based on reduced-delay convolution (RDC)1

(Gustafsson et al., 2001). Figure 4 shows the spectrograms

FIG. 2. The individual correlation co-

efficients (r-pattern) obtained for the

four maskers tested using the modified

NCM measure when only one band is

used at a time.

FIG. 3. Mean TI values obtained for each band using data from all street-

masker conditions. Error bars indicate standard deviations.
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of four sentences in quiet [Figs. 4(a)–4(d)] and the spectro-

grams of processed (by the RDC algorithm) sentences origi-

nally corrupted by four types of maskers at 0 dB SNR [Figs.

4(e)–4(h)]. As shown in Fig. 2(b), the correlation obtained

for the car interference is low (r ¼ 0.40) for the eighth band

and high for the third band (r ¼ 0.83). Accordingly, it is

observed in Fig. 4(f) that the spectral region around band 8 is

still heavily corrupted even after noise-suppression, while the

region centered around band 3 in Fig. 4(f) is relatively un-

affected and close to that of the clean stimulus in Fig. 4(b).

The differential effects of distortion introduced in differ-

ent bands [e.g., bands 3 and 8 in Fig. 4(f)] by a noise-

FIG. 4. The spectrograms of sentences

in quiet are shown in (a), (b), (c), and (d),

and the corresponding processed senten-

ces (by the RDC noise-reduction algo-

rithm) in four types of maskers are

shown in (e), (f), (g), and (h). The senten-

ces were originally corrupted at 0 dB

SNR. Arrows point to regions (bands) of

the spectrum that have been either

severely distorted [e.g., band 17 in (g)] or

not sufficiently enhanced by the noise-

suppression algorithm [e.g., band 8 in

(f)]. The center frequencies of the indi-

cated bands are given in Table I.
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suppression algorithm (RDC algorithm) is also demonstrated

in Fig. 5, which shows the envelopes of the clean and noise-

suppressed sentences for bands with high and low correla-

tions in the r-pattern. The envelopes in Figs. 5(a) and 5(b),

5(c) and 5(d), and 5(e) and 5(f) are corrupted by car, street,

and train maskers, respectively, at 0 dB SNR. The output enve-

lopes in Figs. 5(a) and 5(b) show that the background noise

was suppressed more effectively for band 3 than for band 8.

Similarly, the correlation coefficient is low for the 17th band

and high for the 3rd band for the street and train interferences

in Figs. 2(c) and 2(d). The spectrograms in Figs. 4(g) and

4(h) and the envelopes in Figs. 5(c)–5(f) both suggest that the

noise-suppression algorithm performs much better for band 3

than for band 17 for the street and train interferences. Taking

these observations together, we believe that the band with low

r in the r-pattern in Fig. 2 is also the band in which the

noise-suppression algorithm does not perform well in terms of

effectively suppressing the background noise in that band or

the band that is severely distorted by the noise-suppression

algorithm. The spectrogram in Fig. 4(e) for the babble interfer-

ence demonstrates that there is still much residual noise for all
20 bands after noise-suppression, which might account for the

flat r-pattern of the babble masker in Fig. 2(a). Alternatively,

we can say that all bands were affected uniformly by the noise-

suppression algorithms for speech corrupted by babble, thereby

yielding a flat r-pattern. In brief, the r-pattern obtained for each

FIG. 5. Envelopes, extracted from

the indicated bands, of sentences in

quiet and the corresponding enve-

lopes of noise-suppressed (by RDC

algorithm) sentences originally cor-

rupted by three types of maskers at

0 dB SNR. The resulting correla-

tions with speech intelligibility

scores of the bands shown in (a), (c),

and (e) are high (refer to Fig. 2),

while those in (b), (d), and (f) are

low. The center frequencies of the

indicated bands are given in Table I.
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masker is quite informative and to some extent it is indicative

of how effective or ineffective noise reduction algorithms are

in suppressing noise in specific bands. This information is

obtained indirectly by observing the bands with low correlation

in the r-pattern. Consequently, the r-patterns can be diagnostic

in terms of identifying weaknesses of noise reduction algo-

rithms in suppressing specific types of background noise, and

can thus be used to re-design and improve existing noise reduc-

tion algorithms.

Given that the r-pattern is different for each masker [see

Figs. 2(a)–2(d)], we wanted to examine whether we could use

it as a masker-dependent weighting function in Eq. (4) for

better prediction of speech intelligibility. We thus replaced

the weights wi in Eq. (4) with the corresponding correlations

given by the r-pattern (Fig. 2). Table II compares the correla-

tions obtained with AI weights (ANSI, 1997) and weights

determined from the individual r-patterns of each masker

(Fig. 2). As can be seen, the prediction was improved for cer-

tain types of maskers (i.e., the street and train interferences in

Table III) when using the corresponding r-patterns as weight-

ing functions. The baseline correlation coefficient for the

street noise conditions, for instance, improved from r ¼ 0.78

to r ¼ 81. This result suggests the possible benefit of using

the r-pattern as masker-dependent weighting function to pre-

dict speech intelligibility of noise-suppressed speech.

B. Selecting multiple bands for computing the NCM
measure

Figure 1 showed that high correlation can be maintained

even when only one band is used in the implementation of

the NCM measure. The correlation with one band was nearly

as high (0.8 vs 0.82) as that obtained with 20 bands (ANSI

weights). Next, we considered two different methods for

selecting M out of 20 bands for implementing the NCM mea-

sure. In the first method, the r-pattern was divided into M

non-overlapping sub-bands, and only the bands with the

highest correlations in each sub-band were considered in the

computation of the NCM measure. When M ¼ 3, for instance,

the following three sub-bands were used: 300–1000 Hz,

1000–2000 Hz, 2000–3400 Hz. Only bands with the highest

correlations in each of the M sub-bands were incorporated in

the computation of the NCM measure [Eq. (4)]. This method

ensures that the selected bands are not contiguous, unless

they happen to fall at the edges of two adjacent sub-bands.

In the second method, the M bands with the highest correla-

tion in the r-pattern were selected, independent of their fre-

quency location in the spectrum. As such, the selected bands

might be either contiguous or non-contiguous. The M
selected bands were finally used to construct the new binary

weight vector WM in Eq. (4).

To assess the robustness of selecting M out of 20 bands

for the implementation of the NCM measure, we used a cross-

validation approach. More precisely, the dataset (i.e., 72 condi-

tions) was divided into a training set that was used to obtain

the binary weight vector WM and a testing set that was used to

assess the performance of the simplified NCM measure. The

partitions were done as follows. The complete set of conditions

was first ordered according to their intelligibility scores. The

training dataset was constructed by selecting one out of every

two conditions, leading to a 50%–50% partition of the train-

ing–testing datasets. Three additional training–testing dataset

partitions were also implemented including 33%–67%, 25%–

75%, and 20%–80% by selecting one out of every three, four,

and five conditions, respectively, from the complete dataset.

Table III shows the resulting correlations with the binary

weight vector WM obtained using two different methods for

selecting M (out of 20) bands, one based on sub-bands and

one based on the M-maximum r values in the r-pattern

spanning the full bandwidth (300–3400 Hz). We will refer to

these two methods as sub-band and full-band M selection

methods accordingly. For comparison, the correlation obtained

using M ¼ 20 bands and ANSI weights are also reported for

the same partitions of the testing conditions. Comparing the

correlations given in Fig. 1 with the W1 vector, we observe

that increasing the number of bands improves to some extent

the overall correlation. Notable improvement in correlation

was noted with M ¼ 2 in the sub-band method, but perform-

ance dropped for M > 2. We suspect that this was due to the

fact that bands were forcefully selected with low correlation.

Note that in the sub-band method, bands are selected from

each sub-band regardless of the possibility that some

TABLE II. The correlation coefficients r obtained in the various masker

conditions by the NCM measure based on AI weights and weights deter-

mined by the masker-specific r-patterns (Fig. 2).

Masker AI weights r-pattern weights

Babble 0.91 0.91

Car 0.82 0.82

Street 0.78 0.81

Train 0.85 0.86

TABLE III. The correlation coefficients r obtained by the modified NCM measure based on M selected bands for the various training–testing partitions of the

dataset. Correlations with the original NCM measure implemented using 20 bands and ANSI weights are also shown for comparison.

Training–testing dataset partition

Binary weights

AI weights (M ¼ 20)

Sub-band M selection Full-band M selection

M ¼ 1 M ¼ 2 M ¼ 3 M ¼ 4 M ¼ 1 M ¼ 2 M ¼ 3 M ¼ 4

50%–50% 0.80 0.84 0.78 0.77 0.80 0.84 0.86 0.85 0.78

33%–67% 0.78 0.84 0.83 0.81 0.78 0.72 0.80 0.83 0.86

25%–75% 0.83 0.85 0.75 0.79 0.83 0.87 0.87 0.85 0.82

20%–80% 0.82 0.85 0.74 0.78 0.82 0.86 0.86 0.88 0.84

Average 0.81 0.84 0.77 0.79 0.81 0.82 0.85 0.85 0.83
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correlations in a specific sub-band might be small [see for

instance the correlations of the higher frequency bands in Fig.

2(c)]. In contrast, correlations improved consistently in the

full-band method as M increased. In most cases, M ¼ 3 and M
¼ 4 yielded the highest correlation. The resulting correlation

with M ¼ 4 was in fact higher than that obtained with the

ANSI weights (M ¼ 20) for most training–testing partitions.

For the conditions involved in the 50%–50% partition, for

instance, baseline correlation improved from r ¼ 0.78 to r ¼
0.85 (M ¼ 4). On average, across all conditions, the baseline

correlation improved from r ¼ 0.83 to r ¼ 0.85 (M ¼ 4).

Overall, the full-band method (M ¼ 3, 4) was found to be

more robust as it yielded consistently higher correlations than

the baseline NCM measure implemented using M ¼ 20 bands

and ANSI weights.

Table IV shows the corresponding bands selected in the

various conditions. Interestingly, when M¼ 2, a low-frequency

(325 Hz) and a high-frequency (1874 Hz) band were consis-

tently selected by the sub-band method in all conditions. These

two disjoint bands alone seemed to be sufficient in terms

of reliably predicting (r ¼ 0.84) the intelligibility of noise-

suppressed speech. This outcome is consistent with that

reported by Larm and Hongisto (2006), who utilized a simpli-

fied version of the STI (the rapid speech trasmission index,

RASTI) to compute the envelopes from only the 500 and 2000

Hz octave bands. High correlations were obtained with RASTI.

It should be pointed out, however, that the RASTI measure

was evaluated using 4–5 modulation frequencies (spanning

0.7–11.2 Hz) for each octave band. Hence, a total of nine mod-

ulation-based SNR values were used to compute the RASTI

index. In contrast, only two covariance-based SNR values [Eq.

(2)] were used to compute the simplified NCM measure imple-

mented using M ¼ 2.

For the full-band method used in the present study, low-

frequency bands (f < 700 Hz) were selected more often than

high-frequency bands (Table IV). High correlation (r ¼ 0.85)

was obtained with M ¼ 3, and the selected bands were all

low in frequency (<500 Hz). This result is consistent with

the outcomes from the study by Ma et al. (2009). A low-fre-

quency version of the NCM measure was proposed that incor-

porated only low-frequency (100–1000 Hz) envelope

information in its computation (Ma et al., 2009). The correla-

tion obtained with this measure, based only on bands 1–10,

for predicting sentence recognition scores was nearly as good

as that obtained with the full-bandwidth NCM measure.

Further improvement can be obtained with the full-band

method if the M selected bands are weighted by the segment-

dependent weighting functions given in Eqs. (5) and (6) (Ma

et al., 2009). The results are shown in Table V. Large

improvements were particularly noted for M ¼ 2, 3, and 4

when the training–testing partition was 33%–67%. The aver-

age correlation with M ¼ 4 improved from 0.85 (based on

binary weights in Table III) to 0.87 based on the signal-

dependent weighting functions [Eqs. (5) and (6)].

V. CONCLUSIONS

This study presented a detailed analysis of a simplified

NCM measure that was based on binary weighting functions.

In order to account for the inherent redundancy in spectral

TABLE IV. The M selected bands reported in Table III in the various conditions. The center frequencies of the bands are given in Table I. Band 1, for

instance, corresponds to a center frequency of 325 Hz.

Training–testing dataset partition

Method

Sub-band M selection Full-band M selection

M ¼ 1 M ¼ 2 M ¼ 3 M ¼ 4 M ¼ 1 M ¼ 2 M ¼ 3 M ¼ 4

50%–50% 1 1/15 1/11/20 1/11/15/20 1 1/2 1/2/3 1/2/3/4

33%–67% 1 1/14 1/13/20 1/13/14/20 1 1/6 1/2/6 1/2/3/6

25%–75% 1 1/15 1/15/20 1/11/15/20 1 1/3 1/2/3 1/2/3/6

20%–80% 1 1/15 1/15/20 1/9/15/20 1 1/3 1/2/3 1/2/3/15

TABLE V. The correlation coefficients r obtained by the modified NCM measure based on M selected bands

(full-band method) for the various training–testing partitions of the dataset. The weighting functions given in

Eqs. (5) and (6) are used.

Training–testing dataset partition M ¼ 1 M ¼ 2 M ¼ 3 M ¼ 4

50%–50% 0.80 0.84 0.86 0.86

Wi
(2), p ¼ 0.5 Wi

(1), p ¼ 0.12 Wi
(1), p ¼ 0.5 Wi

(2), p ¼ 1.5

33%–67% 0.78 0.77 0.85 0.86

Wi
(2), p ¼ 0.5 Wi

(2), p ¼ 1.5 Wi
(2), p ¼ 1.5 Wi

(2), p ¼ 1.5

25%–75% 0.83 0.87 0.87 0.87

Wi
(2), p ¼ 0.5 Wi

(2), p ¼ 1 Wi
(1), p ¼ 0.12 Wi

(2), p ¼ 1.5

20%–80% 0.82 0.86 0.86 0.88

Wi
(1), p ¼ 0.12 Wi

(2), p ¼ 0.25 Wi
(1), p ¼ 0.12 Wi

(2), p ¼ 0.25

Average 0.81 0.84 0.86 0.87
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information contained in adjacent or nearby bands, two meth-

ods were proposed for selecting a small number (1–4) of dis-

joint (or contiguous) bands. Only the selected bands were

subsequently used in the computation of the simplified NCM

measure. Data taken from the intelligibility evaluation of

noise-corrupted speech processed through eight different

noise-suppression algorithms by normal-hearing listeners

were used (Hu and Loizou, 2007) to assess the prediction

power of the modified NCM measure. The following conclu-

sions can be drawn from the present study:

(1) High correlation (r ¼ 0.8) can be obtained with the modi-

fied NCM measure even when only one band (e.g., band 1)

is used (Fig. 1). Further analysis revealed a masker-specific

pattern of correlations when only one band was used in the

implementation of the NCM measure (Fig. 2). The so-

called r-pattern differed across the four maskers (babble,

car, street, and train interferences) tested. The frequency

location of the dips (minima) in the r-pattern identified dif-

ferences (and inconsistencies) in the way the noise-suppres-

sion algorithm(s) affected different bands (regions) of the

spectrum. These inconsistencies are caused by the fact that

some bands are severely distorted while other bands are

effectively cleaned by the noise-suppression algorithm.

Overall, our data (Figs. 2 and 4) suggest that the low corre-

lations obtained in certain bands effectively signify the cor-

responding envelopes that have been severely distorted by

the noise-suppression algorithm and/or the masker.

(2) Further improvements in correlation were obtained when

2–4 bands (out of a total of 20 bands) were included in the

computation of the modified NCM measure (Table III).

Correlation improved to r ¼ 0.84 when only two disjoint

bands (centered at 325 and 1874 Hz) were used. Even

further improvements in correlation (r ¼ 0.85) were

obtained when 3 or 4 lower-frequency (<700 Hz) bands

were selected. This suggests that the low-frequency

region of the spectrum carries critically important infor-

mation about speech. The low-frequency region of the

spectrum is known to carry F1 and voicing information,

which in turn provides listeners with access to low-fre-

quency acoustic landmarks of the signal (Li and Loizou,

2008). These landmarks, often blurred in noisy condi-

tions, are critically important for understanding speech

in noise as it aids listeners to better determine syllable

structure and word boundaries (Stevens, 2002).

(3) The resulting correlation with M ¼ 4 was higher than the

baseline correlation of 0.83 obtained with the NCM mea-

sure implemented using 20 bands and the ANSI weigh-

ting functions. Further improvements in correlations (see

Table V) were obtained by using signal-dependent weight-

ing functions (Ma et al., 2009) for the selected bands. The

highest correlation obtained with M ¼ 4 was 0.87.
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