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Modeling, Estimating, and Compensating Low-Bit
Rate Coding Distortion in Speech Recognition

Néstor Becerra Yoma, Member, IEEE, Carlos Molina, Jorge Silva, and Carlos Busso

Abstract—A solution to the problem of speech recognition
with signals distorted by low-bit rate coders is presented in
this paper. A model for the coding-decoding distortion, a HMM
compensation method to include this model, and an EM-based
adaptation algorithm to estimate this distortion are proposed
here. Medium vocabulary continuous-speech speaker-indepen-
dent recognition experiments with 8 kbps G.729(CS-CELP),
13 kbps RPE-LTP (GSM), 5.3 kbps G723.1, 4.8 kbps FS-1016 and
32 kbps G.726(ADPCM) coders show that the approach described
in this paper is able to dramatically reduce the effect of the
coding distortion and, in some cases, gives a word accuracy higher
than the baseline system with uncoded speech. Finally, the EM
estimation algorithm requires only one adapting utterance and
the approach described is certainly suitable for dialogue systems
where just a few adapting utterances are available.

Index Terms—Coding distortion, EM estimation algorithm,
HMM compensation, low-bit rate coders, speech recognition.

1. INTRODUCTION

HE evolution and popularity of cellular and TCP/IP

networks has created the problem of improving the recog-
nition accuracy for speech distorted by low-bit rate coders. The
distortion of coding schemes in speech recognizers is difficult
to model and is an open problem that cannot be solved by
applying conventional noise cancelling techniques [1] such
as spectral subtraction [2], cepstral mean subtraction [3] and
RASTA [4]. For instance, the effect of GSM coding in the cep-
stral domain leads to a spreading and displacing of the means of
the Gaussians [5]. In [6] the application of probabilistic optimal
filtering to various coding topologies scenarios was studied.
The effect of coding and the relationship between bit rate and
tandeming on small vocabulary isolated word and phone based
speech recognition systems were reported in [7]. The effect of
coding on speech recognition was also addressed in [8] where
the performance of different cepstral features was analyzed.
In [9], HMMs were trained with speech signals processed
by several coders, and the most suitable acoustic model was
selected using one utterance in the testing procedure. This
method reduced the recognition error rate in cellular phone
speech by 33%. The estimation of the instantaneous distortion
introduced by GSM coding was able to lead to a reduction of
70% in the error rate introduced by the compression technique
[5]. In [10], a front-end for speech recognition over IP networks
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was proposed to extract the feature vectors directly from the
encoded speech instead of extracting the parameters after
decoding. However, this approach requires access to the bit
stream and does not avoid the distortion problem in the coding
process.

This paper addresses the problem of the distortion produced
by coding—decoding schemes employed in cellular systems
and VoIP. For this purpose, the cepstral coefficients from un-
coded and coded-decoded speech signals are linearly aligned
to estimate a model for the distortion introduced by coding
schemes. As a result, this distortion can be approximated with a
Gaussian distribution whose mean and variance do not depend
on the phonetic class. Then, a HMM compensation method
is proposed by considering the original and unseen uncoded
cepstral parameter as a random variable and by estimating
the expected value of the output probability density function.
Moreover, an Expectation-Maximization (EM) based algorithm
to compute the coding distortion is proposed. This estimation
algorithm requires no information about the coding scheme.
The approach described in this paper has not been found
in the literature, and dramatically eliminates the additional
speech recognition errors introduced by the coder giving, in
some scenarios, a word accuracy (WAC) even higher than the
speaker-independent (SI) baseline system with uncoded speech.
It is worth highlighting the fact that the method employs as
few as one adapting utterance. Finally, the proposed scheme
could also allow unsupervised retraining of the models using
data which may even be slightly biased when compared to the
original data.

II. MODELING DISTORTION DUE TO CODING

In order to model the distortion caused by coding algorithms,
samples of clean speech were coded and decoded with the
following coding schemes: 8 kbps CS-CELP [11] 13 kbps
GSM [12], 5.3 kbps G723.1 [13], 4.8 kbps FS-1016 [14] and
32 kbps ADPCM [15]. After that, the original and coded-de-
coded speech signals, which were sampled at a rate of 8000
samples/s, were divided in 25 ms frames with 12.5 ms over-
lapping. Each frame was processed with a Hamming window,
the band from 300 to 3400 Hz was covered with 14 Mel DFT
filters, at the output of each channel the energy was computed
and the log of the energy was estimated. The frame energy plus
ten static cepstral coefficients, and their first and second time
derivatives were estimated. Then, the parameterized original
and coded-decoded utterances were linearly aligned to generate
Figs. 1-6. The points (02, 0%), where O° and O are the
cepstral coefficient n estimated with the original and coded-de-
coded signals, respectively, are symmetrically distributed with
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Fig. 1. Cepstral coefficients from uncoded (O°) versus coded-decoded (O4)

speech signals. The coders correspond to (a) the 8 kbps CS-CELP from the
ITU-T standard G.729 and (b) the 32 kbps ADPCM from the ITU-T standard
G.726 The parameters employed in the figures correspond to static (1, 5, 10),
delta (12, 16, 20) and delta-delta (23, 27, 31) cepstral coefficients. The pairs
(O°,0%) were generated by linearly aligning uncoded with coded-decoded

speech. (é) 8 kbps CS-CELP and (b) 32 kbps ADPCM.

respect to the diagonal axis in the 8 kbps CS-CELP [Fig. 1(a)]
and in the 32 kbps ADPCM [Fig. 1(b)]. This suggests that
the coding-decoding distortion, defined as D,, = O2 — O,‘i s
presents a reasonably constant dispersion around the mean that
seems to be close to zero. As a consequence, the distribution
of the coding-decoding distortion does not show a strong
dependence on O, in those cases. However, the same behavior
is not observed in the 13-kbps GSM coder (Fig. 2) where the
pairs (02, 0%) seems to be symmetrically distributed around
a center near (0, 0).
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Fig. 2. Cepstral coefficients from uncoded ((°) versus coded-decoded (O¢)
speech signals. The coder is the 13 kbps GSM from the ETSI GSM-06.10 Full
Rate Speech Transcoding. The parameters employed in the figures correspond
to static (1, 5, 10), delta (12, 16, 20) and delta-delta (23, 27, 31) cepstral
coefficients. The pairs (O°, O?) were generated by linearly aligning uncoded
with coded-decoded speech.
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Fig. 3. Distribution of coding distortion (O° — Q<) with signals processed by

8 kbps CS-CELP from the ITU-T standard G.729. The parameters employed in
the figures correspond to static (1, 5, 10), delta (12, 16, 20) and delta-delta (23,
27, 31) cepstral coefficients. The histograms were generated with the same data
employed in Fig. 1.

The histograms presented in Fig. 3 (8 kbps CS-CELP) and
Fig. 4 (5.3 kbps G723.1) strongly suggest that the coding-de-
coding distortion could be modeled as a Gaussian p.d.f.,
although the 5.3 kbps G723.1 coder provides (02, O%) patterns
similar to those observed with the 13 kbps GSM coder in Fig. 2.
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Fig. 4. Distribution of coding distortion ((0° — Q%) with signals processed by
5.3 kbps G723-1 from the ITU-T standard G.723.1. The parameters employed
in the figures correspond to static (1, 5, 10), delta (12, 16, 20) and delta-delta
(23,27, 31) cepstral coefficients. The histograms were generated with the same
data employed in Fig. 4.

05 Y _ 05
g B, o
Q  0fees W 0f e s s e e % 0f e o e e
A& teretettitnenene} DS ok
Y os 05 Y o5
1 -1 1
50 0 50 5 0 5 10 5 0 5 10
of of, 055
1 1 1
0.5 . 0.5 . _, 05 .
5 JUTSRRTLLS L . 5 Lo
S Ofece, 00" on 0 . w 0 .
B) uOT .o ol Lt ol .
05 Y o5 Y o5
1 4 1
-50 0 50 -5 0 5 10 -5 0 5
) ]
oF 0, O23
1 1 1
05 _ 05 _, 05
0 & 0 eescccscescscvecse :Qg 0l o o o o o Z;Q Ol o o o o o
o o &
0.5 0.5 0.5
K Kl K
50 0 50 5 0 5 10 5 0 5
o9 %, 0%
Fig. 5. Expected value of the coding-decoding error, E[O2 — O¢] = m?,

versus (O°. The expected value is normalized with respect to the range of
observed O°. The following coders are analyzed: (a) 8 kbps CS-CELP;
(b) 13 kbps GSM; and (c) 32 kbps ADPCM. The cepstral coefficients
correspond to a static (1), a delta (12), and a delta-delta (23).

The expected value, normalized with respect to the range of
the observed O2, of the coding-decoding distortion versus O¢,
is shown in Fig. 5. Notice that the dependence of the expected
value on O;, is weak for the 8 kbps CS-CELP and the 32 kbps
ADPCM. Nevertheless, in the case of the 13 kbps GSM scheme
this dependence is more significant, although the expected
value is low compared to O itself and displays an odd sym-
metry. It is interesting to emphasize that the fuzzy circular-like

40
150 L W 4 ~
= X
= .o [ . .
100f . oo o . . .
A) 0%_ . ettt T 2 . eg;a 207 . . e
S 50 K S 10
0 0 0
50 0 50 5 0 5 10 5 0 5 10
] ] O
01 012 023
3000
2
~ 00 100
— .
5-2000 § 150} ¢
g S .
B 2 LN 100 S gl ¢ - .
S 1000} - * 5 s
. > 50
.
0 0 0
-50 0 50 5 0 5 10 5 0 5
o o o
O1 012 023
40 10 6
g ° e ey ) S
o eee®® o o « o o ° °§ .
c Q9 20 o g 5 ° =
E s S 2
0 0 0
50 [} 50 5 0 5 10 5 0 5
] ] O
o1 o12 O;

Fig. 6. Variance of the coding-decoding error, Var[O2 — O¢4] = v, versus

O¢. The following coders are analyzed: (a) 8 kbps CS-CELP; (b) 13 kbps GSM;
and (c) 32 kbps ADPCM. The cepstral coefficients correspond to a static (1), a
delta (12) and a delta-delta (23).

(08, 0%) patterns observed with the 13 kbps GSM (Fig. 2) and
the 5.3 kbps G723.1 coders are the result of this odd symmetry
presented by the expected value of the distortion. The variance
of the coding-decoding distortion versus O¢, is shown in Fig. 6.
According to Fig. 6, the assumption related to the independence
of the variance with respect Op, does not seem to be unrealistic.
Moreover, this assumption is strengthen by the fact that the
distribution of O tends to be concentrated around Oy, = 0.

From the previous analysis based on empirical observations
and comparisons of the uncoded and coded-decoded speech sig-
nals, it is possible to suggest that the cepstral coefficient n in
frame ¢ of the original signal, O7 . , could be given by

t,n>
— 0!, +D, (1)

where O;l’ » 1s the cepstral coefficient corresponding to the
coded-decoded speech signal; D,, is the distortion caused by the
coding-decoding process with p.d.f. fp_ (D,) = N(ml, v?)
that does not depend on the value of the cepstral coefficient
n, and therefore the phonetic class; N(m?,ve) is a Gaussian
distribution with mean m¢? and variance v?. The assumption
related to the independence of D,, with respect to the value of
a cepstral coefficient or the phonetic class is rather strong but
seems to be a realistic model in several cases, despite the odd
symmetry shown by the expected value of the coding-decoding
distortion with some coders. Notice that this analysis takes
place in the log-cepstral domain that is not linear. Moreover, as
discussed later, this model is able to lead to dramatic improve-
ments in WER with all the coding schemes considered in this
paper.

In a real situation, Ot », 1s the observed cepstral parameter
and Oy , is the hidden information of the original speech signal.
From (1), the expected value of OF,, is given by

E[ N Otn-i-m 2)

according to the model
the distortion caused by
scheme 1is represented by the

discussed in
the coding-de-
mean vector

Concluding,
this section,
coding
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M? = [md,md,md,...md. .. m%] and the variance vector
1,My, M3, n-e oy
Vel = [vi,vd,vf,.. .02, .. v%]. Moreover, this distortion

could be considered independent of the phonetic class and is
consistent with the analysis presented in [5].

III. HMM COMPENSATION

In this section a HMM compensation scheme is proposed.
The training database is composed of clean speech signals that
were not processed by any coding scheme. This compensation
takes place in the Viterbi decoding procedure, and employs the
mean m¢ and variance v¢ that model the distortion due to the
coding-decoding process.

In the ordinary HMM topology the output probability of ob-
serving the frame O, at state s, bs(O;), is computed consid-
ering O; as being a vector of constants. In the experiments re-
ported here the observation vector is composed of static, delta
and delta-delta cepstral coefficients, and according to Section II
the distortion caused by the coding-decoding schemes can be
modeled as (1). As a consequence, the cepstral parameters of the
original signal, which are not available, should be considered as
being random variables with normal distributions. Therefore, to
counteract this incompatibility, this paper proposes to replace, in
the decoding Viterbi algorithm, b5(O;) with E[bs(O,)] that de-
notes the expected value of the output probability, as suggested
in [16] where the problem of speaker verification with additive
noise was addressed.

In most HMM systems, the output probability is modeled
with a mixture of Gaussians with diagonal covariance matrices
[17]

G
bS(Ot) = Zpg .

0% —E 2
t.n s5,9,m

1.
2 Vars.gon

ﬂ 1
e e
n=1 V 2 TT V(l?"s’g’n
3)

where s, g, n are the indices for the states, the Gaussian compo-
nents and the coefficients, respectively; p, is a weighting param-
eter; Oy = [071,07 5,073, ...,07 x| is the parameter vector
composed of N coefficients that corresponds to the original un-
coded signal; and,F; , , and Var 4, are the HMM mean and
variance, respectively. Assuming that the coefficients Oy, are
uncorrelated, which in turn results in the diagonal covariance
matrices, the expected value of bs(O;) is given by

G N 1
B0 =S, [ E [—
; 7 nl;[l Ve2-m-Vars gy

2
1 (07, =Psgm)
.6_5. Vars g,n . (4)

Considering (4), the expected value of bs(O;) can be written as
(16]
N

G
1
Ebs(Od)] = ) _py-

2
(2]07,]-Es.9.n)

e Vtotf,g,,, (5)
where E[Oy,] is given by (2), and
Viot?

5,9,m

W=

=Var, g + vl (6)

The coding-decoding corruption is modeled as an additive
process in the cepstral domain that implies the introduction of
additive correction terms in the mean, M¢, and variance, V¢,
that could be modeled as being independent of the phonetic
class and of the output probability densities bs(O;). Additive
correction in the mean and variance parameters has been
applied in the context of additive/convolutional noise and Lom-
bard effect [18], and speaker adaptation [19]. In those cases the
compensation depends on the phonetic class and requires more
correction parameters, which in turn increases the amount of
adaptation samples. Moreover, considering the original signal
as a random variable to take the expected value of the output
p.d.f. is not always equivalent to estimate the bias mean and
variance in HMMs as in [18] and [19].

IV. ESTIMATION OF CODING DISTORTION

In this section the coding-decoding distortion as modeled
in Section II is evaluated employing the maximum likeli-
hood criteria. Estimating the coding distortion in the HMM
acoustic modeling is equivalent to find the vectors M? and
V4 defined in Section II. In this paper these parameters are
estimated with the Expectation-Maximization (EM) algorithm
using a code-book, where every code-word corresponds to
a multivariate Gaussian, built with uncoded speech signals.
The use of a code-book to represent the pdf of the features
of the clean speech is due to the fact that M? and V¢ are
considered independent of the phonetic class. Inside each
code-word cw; the mean puf = [u$1,43,,-.-,puf x| and
variance (09)* = [(09,)?, (6%4)%, -, (0 5)?] are computed,
and the distribution of frames in the cells is supposed to be
Gaussian

FO3/42) = — L (0rmm) () (05 m)

(2%)% Zj

ol=

(N
where N is the number of cepstral coefficients and also the di-
mension of the code-book; Zj is the N-by-N covariance ma-
trix that is supposed diagonal; and, ¢¢ = (u?, Z:) In this case
the speech model is composed of J code-words. Consequently,
the p.d.f. associated to the frame Of given the uncoded speech
signal model is

<

F(02/2°) =" f(071¢3) - Pr(cw;) ®)
7j=1

where ®° = {¢? [1 < j < J} denotes all the means and vari-
ances of the code-book. Equation (8) is equivalent to modeling
the speech signal with a Gaussian mixture with .J components.
If the coded-decoded distortion is independent of the code-
word or class, it is possible to show that the coded-decoded
speech signal is represented by the model whose parameters are
denoted by ®¢ = {¢ |1 < j < J}, where ¢} = (uij) and

wj =pg — M* ©)
2
(o) = (05.2)" + . (10)
Consequently, the code-book that corresponds to the coded-de-

coded speech signal can be estimated from the original code-
book by means of adding the vectors —M? and V¢, which
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model the compression distortion, to the mean and variance vec-
tors, respectively, within each code-word.

In this paper M? and V¢ are estimated with the maximum
likelihood (ML) criterion using adaptation utterances. Due to
the fact that the maximization of the likelihood does not lead
to analytical solutions, the EM algorithm [17], [20] was em-
ployed. Given an adaptation utterance O? distorted by a coding-
decoding scheme and composed of 71" frames

0" =[0{,03,05,...,0{,...,0%]

04 is also called observable data. In the problem addressed here,
the unobserved data is represented by

Y=yl vs,us,. .yl yh]

where y¢ is the hidden number that refers to the code-word or
density of the observed frame O¢. The function Q(®, ®) is ex-
pressed as

Q®,d) = E [log (f (Od,Yd/é)) |Od,<1>}

where & = {$; |1 < j < J}, where ¢, = (Mf,zj) denotes
the parameters that are estimated in an iteration by maximizing
Q(®, ®). It can be shown that (11) can be decomposed in two
terms

(1)

A= ; JX:; Pr (cwﬂOf, (i)) -log (PAr(cwj)) (12)
and
B=%" ~ pr (cws 0, @;) -1og (1 (Oflew;, &;)) . (13)

t=1 j=1

The probabilities pr(cwj) are estimated by means of maxi-
mizing A with the Lagrange method

T
1 d

Pr(cw;) = ; Pr (cw;|0f, ¢,) - (14)
The distortion parameters defined in (1) could be estimated by
applying to B the gradient operator with respect to M and V¢,
and setting the partial derivatives equal to zero. However, this
procedure does not lead to an analytical solution for V'¢. In order
to overcome this problem, the following algorithm is proposed.

1) Start with @ = ©°, where & = {¢;|1 < j < J} and

bj = (s, 25)-
2) Compute Pr(cw;|O¢, ¢;)

1 (0719 - Pr(cw;)

Pr (cw;|Of, ¢;) = 4
iy £ (Of¢x) - Pr(cwy)
3) Estimate P;r(cwj) with (14).
4) Estimate A, with
T J . .
Appp = == (16)

T J P ). Od.(j)'
Z Z < T(Ctj;ﬂf/ J))

5) Estimate fijn, 1 <j<Jandl <n <N

ﬂj,n = Mjn + Aﬂn 17
6) Estimate 6']2-,” for each code-book
L5 d d A2
> Pr (ij|0t»¢j) : (Ot,n - Mj,n)
Gin =" (18)

T .
t21 Pr (cwj|0f,¢j)

7) Estimate likelihood of the adaptation utterance O? with
the re-estimated parameters

T J
7 (048) =35 £ (0813;) - Pr(cw;).  (19)
t=1 j=1
8) Update parameters
>=0

Pr(cw;) = Pr(cw;)

9) If convergence was reached, stop iteration; otherwise, go
to step 2.
10)Estimate M® and V¢

d

My = — (jn — 15,) (20)

forany 1 < j < J and
I, 9
> [ojyn — (O’;n) } - Pr(cw;)

d _ =1

7 2D
> Pr(cw;j)
=1

where 1 < n < N.Ifv? < 0, ¢ is made equal to 0. It is worth
observing that (16) was derived with (0B)/(0(Auy)) = 0,
where B is defined in (13), fijn = ftjn + Ap, corresponds
to the re-estimated code-word mean in an iteration. Expression
(18) was derived by (9B)/(96%,,) = 0. Moreover, expressions
(20) and (21) assume that the coding-distorting is independent
of the code-word or class, and (21) attempts to weight the infor-
mation provided by code-words according to the a priori prob-
ability Pr(cw;).

The EM algorithm is a maximum likelihood estimation
method based on a gradient ascent algorithm and considers
the parameters M? and V¢ as being fixed but unknown. In
contrast, maximum a posteriori (MAP) estimation [19] would
assume the parameters M ¢ and V¢ to be random vectors with
a given prior distribution. MAP estimation usually requires
less adaptation data, but the results presented here show that
the proposed EM algorithm can lead to dramatic improvements
with as few as one adapting utterance. Nevertheless, the proper
use of an a priori distribution of M and V¢ could lead to
reductions in the computational load required by the coding-de-
coding distortion evaluation. When compared to MLLR [21],
the proposed computation of the coding-decoding distortion
requires fewer parameters to estimate, although it should still
lead to improvements in word accuracy as a speaker adaptation
method.
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Finally, the method proposed here to estimate the coding-
decoding distortion is similar to the techniques employed in
[22]-[24] to compensate additive/convolutional noise and esti-
mate the unobserved clean signal. In those papers the pdf for the
features of clean speech is also modeled as a summation of mul-
tivariate Gaussian distributions, and the EM algorithm is applied
to estimate the mismatch between training and testing condi-
tions. However, this paper proposes a model of the low bit rate
coding-decoding distortion that is different from the model of
the additive and convolutional noise, although they are similar to
some extent. The mean and variance compensation is code-word
dependent in [22]-[24]. In contrast, M and V¢ are considered
independent of the code-word in this paper. This assumption is
very important because it dramatically reduces the number of
parameters to estimate and the amount of adaptation data re-
quired. Despite the fact that (16) to estimate M/ is the same
expression employed to estimate convolutional distortion [22]
if additive noise is not present [25], the methods in [22]-[24] do
not compensate the HMMs. Notice that the effect of the transfer
function that represents a linear channel is supposed to be an
additive constant in the log-cepstral domain. On the other hand,
additive noise corrupts the speech signal according to the local
SNR [16], which leads to a variance compensation that clearly
depends on the phonetic class and code-word.

V. EXPERIMENTS

The estimation and compensation of the coding-decoding
distortion proposed in this paper was tested with SI continuous
speech recognition experiments using the LATINO database
[26]. This database is composed of speech from 40 Latin Amer-
ican native speakers, with each speaker reading 125 sentences
from newspapers in Spanish. The training utterances were 4500
uncoded sentences provided by 36 speakers and context-de-
pendent phoneme HMMs were employed. The vocabulary is
composed of almost 6000 words. The testing database was
composed of 500 utterances provided by 4 testing speakers
(two females and two males). Static, delta and delta-delta
cepstral parameters were estimated as described in Section II.
Each context-dependent phoneme was modeled with a 3-state
left-to-right topology without skip transition, with eight mul-
tivariate Gaussian densities per state and diagonal covariance
matrices. The HMMs were trained by means of the uncoded
signal utterances using HTK and trigram language model was
employed during recognition. Finally, it is worth mentioning
that the speakers have different Latin American accents, which
in turn makes the task more difficult.

The code-book to model the nondistorted speech process was
composed of 256 code-words and was generated with the un-
coded training utterances. The techniques that are proposed here
are indicated as follows: HMM-Comp, with HMM compensa-
tion where M¢ and V¢ are estimated with the training utter-
ances by directly aligning original and coded-decoded speech
signals; and, HMM-Comp-EM, with HMM compensation where
M® and V¢ are estimated according to the EM-based algorithm
proposed in Section IV. Observe that Baseline indicates that no
HMM compensation was applied. The word error rate (WER)
was computed as (S + D + I)/W - 100 where S, D, and I

are the number of substitution, deletion and insertion errors, re-
spectively, and W is the total number of words in the testing
utterances. The results are shown in Tables -V, and Fig. 7. The
baseline system with nondistorted speech and without any com-
pensation gave a WER equal to 5.9%.

VI. DISCUSSIONS

According to Tables I, the ADPCM, GSM, CS-CELP,
G723-1, and FS-1016 coders increased the error rate from 5.9%
(baseline system) to 6.2%, 6.9%, 11.2%, 11.9%, and 15.2%,
respectively. Also in Table I, it is possible to observe that the
HMM compensation led to a reduction as high as 37% or 71%
in the error rate introduced by the coding schemes when the
average coding-decoding distortion was estimated by directly
aligning the training uncoded and coded-decoded speech,
HMM-Comp. This result clearly shows the validity of the
method to model the coding distortion and to compensate the
HMMs. However, it is worth mentioning that in HMM-Comp
all the training speakers were employed to compute the average
M? and V¢, Notice that HMM-Comp gave a WER lower than
the one achieved by the baseline system with uncoded speech
(i.e. 5.9%) in some cases. This result could suggest that the
HMMs are slightly under trained, so V¢ could also tend to
compensate this effect.

According to Fig. 7, the EM algorithm described here can
lead to a reasonable approximation of M? and V¢ when com-
pared to the average coding-decoding distortion computed with
the training database. The difference between the EM estimation
and the average M ? and V¢ (Fig. 7) could be due to fact that
the coding-decoding distortion depends on the speaker. As can
be seen in Table I, the EM estimation of M¢ and V¢ with only
one adaptation utterance dramatically reduced the effect of the
ADPCM, GSM, CS-CELP, G723-1 and FS-1016 coding distor-
tion, and gave a WER lower than HMM-Comp and than the one
achieved by the baseline system with uncoded speech. A rea-
sonable hypothesis could be the fact that the approach proposed
here also provides an adaptation to testing condition beyond the
type of codification because the estimation of the vectors M ¢
and V¢ may also account for a speaker adaptation effect. Ac-
tually, Table II shows that the EM estimation algorithm applied
to uncoded signal reduces in 56% the WER when compared to
the baseline system. In fact, this result would be consistent with
[27] where additive bias compensation in the cepstral domain
for speaker adaptation was studied. Also according to Table II,
it is possible to observe that the reduction in WER compared to
the baseline system is as high as 52% or 78 %, which in turn sug-
gests that the approach proposed here is effective to model, esti-
mate and compensate the coding-decoding distortion. It is worth
emphasizing the fact that the reduction in WER increases when
the bit-rate decreases. Finally, when compared to the baseline
system, HMM-Comp-EM reduces the averaged difference be-
tween WER with distorted speech and clean signal from 4.4%
to 0.4%.

The training database is composed of utterances from just
36 speakers. Consequently, the fact that that the proposed EM
compensation method also introduces a speaker adaptation ef-
fect would be consistent with the size of the database. Most of
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TABLE 1
WER (%) WITH SIGNAL PROCESSED WITH THE FOLLOWING CODERS: 32 kbps
ADPCM, 13 kbps GSM, 8 kbps CS-CELP, 5.3 kbps G723-1 AND 4.8 kbps
FS-1016. THE BASELINE SYSTEM WITHOUT ANY COMPENSATION
GIVES A WER EQUAL TO 5.9% WI1TH UNCODED UTTERANCES

TABLE III
WER (%) WITH SIGNAL PROCESSED WITH THE FOLLOWING CODERS: 32 kbps
ADPCM, 13 kbps GSM AND 8 kbps CS-CELP. THE EM ESTIMATION
METHOD IS APPLIED IN THREE CASES: ADAPTATION OF MEANS
AND VARIANCES AS ORIGINALLY PROPOSED; ADAPTATION OF
MEANS ONLY; AND, ADAPTATION OF VARIANCES ONLY

Coder

Baseline
WER(%)

HMM-Comp-EM
WER(%)

HMM-Comp-EM
Mean adaptation only
WER(%)

HMM-Comp-EM
Variance adaptation only
WER(%).

ADPCM

6.2

2.8

5.8

2.9

GSM

6.9

33

6.9

3.5

CS-CELP

11.2

2.6

9.5

2.7

CLEAN

59

2.6

6.3

23

Coder Bit rate Baseline | HMM-Comp. | HMM-Comp-EM
WER(%) WER(%) WER(%).
ADPCM 32 kbps 6.2 3.9 2.8
GSM 13 kbps 6.9 3.8 33
CS-CELP 8 kbps 11.2 33 2.6
G723-1 5.3 kbps 11.9 5.8 2.6
FS-1016 4.8 kbps 15.2 7.4 3.6
TABLE 1I

WER (%) WITH UNCODED SIGNAL AND SIGNAL PROCESSED WITH THE
FOLLOWING CODERS: 32 kbps ADPCM, 13 kbps GSM, 8 kbps CS-CELP,
5.3 kbps G723-1 AND 4.8 kbps FS-1016. THE CODING-DECODING DISTORTION
1S ESTIMATED WITH THE EM ALGORITHM. THE REDUCTION IN WER
IS ESTIMATED WITH RESPECT TO THE WER PROVIDED BY
THE BASELINE SYSTEM WITHOUT ANY COMPENSATION

HMM-Comp-EM | Reduction(%) in
Coder WER(%) WER
Uncoded 2.6 56%
ADPCM 2.8 55%
GSM 3.3 52%
CS-CELP 2.6 77%
G723-1 2.6 78%
FS-1016 3.6 76%
5 T r .
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Fig. 7. M? (top) and V¢ (bottom) estimated with the EM based algorithm

(— — x — —) and computed with the training database by directly aligning
uncoded and coded-decoded speech samples ( ). The signals were
processed by the 8 kbps CS-CELP from the ITU-T standard G.729.

the compensation methods for HMMs attempt to adapt means
or variances of the observation probability density functions.
Moreover, it is to be expected that a canceling/compensation
technique proposed to address a given distortion also helps to

reduce the error introduced by another type of distortion. For
instance, RASTA filtering was initially proposed to cancel con-
volutional noise but it also reduces the effect of additive noise.
It is also hard to believe that a speaker adaptation scheme could
not compensate or reduce convolutional noise. Finally, as shown
in this paper, a speaker adaptation should also be useful for di-
minishing coding-decoding distortion, although this reduction
would depend on the model adopted to estimate the means and
variances. However, in additional speaker-dependent (SD) ex-
periments with all the coders tested here, HMM-Comp-EM was
able to lead to an average reduction in WER as high as 54%
when compared to the baseline system. Those SD experiments
were done by training the HMMs with both the training and
testing databases. Consequently, the mismatch was restricted
to the coding decoding distortion. This result strongly suggests
that: first, the speaker adaptation effect in HMM-Comp-EM, if
there is any, is not the most important mechanism in the reduc-
tion of WER provided by the proposed technique; and second,
the improvement in word accuracy given by the method pre-
sented here is not due to under trained conditions.

To compare the improvement due to the compensation of
means and variances, the EM estimation algorithm was mod-
ified to operate in two modes: compute M/¢ and make V¢ = 0;
and, compute V¢ and make M? = 0. According to Table III,
the reduction in WER due to the estimation of V¢ only is much
higher than the one achieved with the computation of M/¢ only.
As a consequence, this result suggests that the adaptation of
variances plays a more important role in the compensation of
coding-decoding distortion than the adaptation of means. Actu-
ally, when compared with the baseline system, the estimation
of M¢ only gives no improvement in WER with GSM coding.
This result should be due to the odd symmetry presented by the
expected value of the GSM distortion (Fig. 5), which in turn
would make the assumption related to the independence of M?
with respect O, less realistic than in ADPCM and CS-CELP.
Also in Table III, the estimation of M only slightly degrades
word accuracy with uncoded speech. This must be due to the fact
that the model proposed here for M? does not provide speaker
adaptation and would require more adapting utterances if the
mismatch between training and testing condition is low.

As shown in Table III, the estimation and compensation of
V4 is very stable and leads to large reductions in WER. V¢
tends to flatten the observation density function and to increase
the number of hypotheses within the beam-width [28]. Conse-
quently, the optimal search in the Viterbi decoding becomes
more exhaustive. Actually, significant reductions in WER are



YOMA et al.: MODELING, ESTIMATING, AND COMPENSATING LOW-BIT RATE CODING DISTORTION 253

TABLE IV
WER (%) WITH SIGNAL PROCESSED WITH THE FOLLOWING CODERS: 32 kbps
ADPCM, 13 kbps GSM AND 8 kbps CS-CELP. THE COMPENSATION IS MADE
WITH BLIND RATZ. THE RESULTS ARE COMPARED WITH THE METHOD
PROPOSED HERE. NV 4 DENOTES THE NUMBER OF ADAPTING UTTERANCES

TABLE V
WER (%) WITH SIGNAL PROCESSED WITH THE FOLLOWING CODERS:
32 kbps ADPCM, 13 kbps GSM AND 8 kbps CS-CELP. THE
CODING-DECODING DISTORTION IS COMPUTED WITH SUPERVISED
ML ESTIMATION BASED ON FORCED VITERBI ALIGNMENT. THE
RESULTS ARE COMPARED WITH THE METHOD PROPOSED HERE.

N sy DENOTES THE NUMBER OF ADAPTING UTTERANCE
Coder | Baseline | MM | RaTz | RATZ | RATZ | RATZ RATZ AU OTES THE NU ol GU CES
oder O] o
WER(%) WEm;(%) Ny =1 Ny =4 Ny =10 | Ny =100 | N, =500 VM-
Baseline | Comp- | Superv-ML | Superv-ML | Superv-ML |Superv-ML | Superv-ML
ADPCM 6.2 2.8 14.6 7.4 7.5 75 7.6
Coder \weR©e)| EM | Nyy=1 | Nay=4 | N =10 | Ny =100 | N =500
GSM 6.9 33 18.0 8.0 6.9 73 7.1 WER(%)
CS-CELP 112 26 204 104 9.7 8.6 103 ADPCM | 62 2.8 4.6 3.7 4.2 3.0 32
CLEAN 59 2.6 13.5 7.0 6.5 7.1 7.6 GSM 6.9 3.3 5.8 4.6 4.1 4.2 3.7
CS-CELP| 112 2.6 6.0 45 4.5 3.8 3.8
CLEAN 5.9 2.6 5.5 3.4 3.9 3.1 3.2

observed when v¢ is made equal to a constant, independently
of n. The optimal WER achieved with v¢ = constant is 40%
or 60% higher than HMM-Comp-EM with G.729, G.723 and
FS-1016, and 20% lower than HMM-Comp-EM with GSM,
ADPCM, and uncoded speech. However, 'u;f = constant
employs a computational load 60% or 70% higher than
HMM-Comp-EM to obtain the optimal improvements in word
accuracy.

The proposed EM adaptation method is unsupervised and re-
quires only one adaptation utterance. Table IV presents results
with blind RATZ without variance compensation. According to
[23], blind RATZ jointly compensates for additive and convo-
lutional noise by employing the EM algorithm and a summa-
tion of multivariate Gaussian distributions to model the p.d.f.
for the features of clean speech. The mean and variance com-
pensation is code-word dependent, so the coding distortion is
now represented by the set of mean and variance vectors M ]d
and Vj‘i, respectively, where j denotes the code-word cw; and
1 < j < J as defined in Section IV. First, blind RATZ com-
putes de and Vj‘i. Then, it estimates the cepstral coefficient
n in frame ¢ of the original unobserved signal, Of ,,, by using
M, Pr(cw;|Of, ¢;) and a modified minimum mean square
error (MMSE) method [23]. The number of adapting utterances,
N 4y, was made equal to 1, 4, 10, 100 and 500. The adopted
procedure is described as follows to cover all the testing data:
first, RATZ was applied on N 4y utterances; then, the compen-
sated IV 4¢7 utterances were recognized. Notice that blind RATZ
is an unsupervised method. As can be seen in Table IV, RATZ
without variance compensation was not able to lead to signifi-
cant improvements except with CS-CELP. Word accuracy given
by RATZ strongly depends on the number of adapting utter-
ances employed to compute Oy ,,. When compared to the base-
line system, RATZ could provide an improvement in WER if
the number of adapting utterances is higher than 4 or 10. If
the method employs only one adaptation utterance, it always
gives a WER even higher than the one achieved with the base-
line system. This must be due to the fact that RATZ estimates
2 x J mean and variances vectors M Jd and VJd In contrast, the
proposed method HMM-Comp-EM requires less adaptation data
because it needs to estimate only two vectors: M? and V<. It is
worth highlighting that HMM-Comp-EM provides higher recog-
nition accuracy even when the whole testing data was employed
by RATZ. This must result of the fact that the speaker adapta-
tion effect is less important when the adaptation utterances come
from more than one speaker. Notice that RATZ does not directly
employ the variance vector V]-d to compensate HMMs or esti-

mate the original signal, so it could be considered a special case
of the proposed EM adaptation method. Also, no improvement
was observed when NN 47 increases from 10 or 100 to 500. This
should be a result of the fact that the coding-decoding distortion
is speaker-dependent and all the testing speakers are employed
to estimate M’ ]d and V]-d, which in turn also reduces any speaker
adaptation effect.

Table V presents results with supervised ML estimation,
Superv-ML, based on forced Viterbi alignment to estimate
M¢? and V. This supervised adaptation algorithm is sim-
ilar to the one presented in [18] except for the fact that the
Forward-Backward procedure was replaced with the Viterbi al-
gorithm. Moreover, instead of employing one or more Gaussian
bias per HMM, Superv-ML makes use of the proposed coding
distortion model and estimates only one set of vectors M?
and V¢ per adaptation utterances. The number of adapting
utterances, IV 417, was also made equal to 1, 4, 10, 100, and 500.
The following procedure was applied to cover all the testing
data: first, M4 and V¢ were evaluated with N4y utterances;
then, the next N4y utterances were recognized employing the
previously estimated coding distortion. According to Table V,
the improvement in WER given by Superv-ML also depends
on N4y . The stochastic model employed by the proposed EM
unsupervised algorithm is more robust than the one provided
by the supervised ML method, which in turn is composed
of only the HMMs corresponding to the adapting utterances.
Consequently, the requirement with respect to the amount of
adaptation data to achieve the highest reduction in WER is more
severe in Superv-ML. Finally, as can be seen in Table V, when
Nay = 500 the supervised algorithm could give improve-
ments in WER slightly better than HMM-Comp and worse than
HMM-Comp-EM with GSM and ADPCM, despite the fact that
the proposed EM unsupervised estimation algorithm employed
only one adaptation utterance and Superv-ML made use of the
whole testing database. This should be due to: HMM-Comp
used the training database and Superv-ML employed the testing
utterances to compute the coding-decoding distortion; second,
the coding-decoding distortion should be speaker-dependent.

VII. CONCLUSION

This paper proposes a solution to the problem of speech
recognition with signals distorted by low-bit rate coders. The
solution includes: a model for the coding-decoding distortion;
a HMM compensation method to include this model; and
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an EM-based adaptation algorithm to estimate this distortion
that corresponds to a mean and a variance vector. Medium
vocabulary continuous-speech SI recognition experiments with
ADPCM, GSM, CS-CELP, G723-1 and FS-1016 coders show
that the approach presented here is able to substantially reduce
the effect of the coding distortion without no information about
the coding scheme, and can give a WAC even higher than the
baseline system with uncoded speech. The approach could
also be analyzed in the context of optimally increasing the
hypothesis density within the beam search, which in turn has
not been addressed in the specialized literature. Moreover, the
EM estimation algorithm needs only one adapting utterance and
the approach described here is certainly suitable for dialogue
systems where just a few adapting utterances are available. As
a result, the method could be used where many short calls come
from different coders. The problem of reducing the computa-
tional load of the coding distortion estimation is considered out
of the scope of this paper and is proposed as a future work.
Finally, the HMM compensation strategy employed here could
also be applied as a framework to address the problem of joint
additive/convolutional noise and coding distortion canceling.

ACKNOWLEDGMENT

The authors wish to thank Dr. S. King, CSTR/University of
Edinburgh, Edinburgh, U.K., for having proofread this manu-
script, and S. Ferraz de Campos Neto, International Telecom-
munication Union (ITU), Geneva, Switzerland, for the very pro-
ductive discussions on speech coding technology and standards.

REFERENCES

[1] Y. Gong, “Speech recognition in noise environments: a survey,” Speech
Commun., vol. 16, pp. 261-291, 1995.

[2] M. Berouti et al., “Enhancement of speech corrupted by acoustic noise,”
in Proc. ICASSP, 1979.

[3] S.Furui, “Cepstral analysis technique for automatic speaker verication,”
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-29, no. 2, pp.
254-272, 1981.

[4] H. Hermansky et al., “Compensation for the effect of the communica-
tion chennel in auditory-like analysis of speech (RASTA-PLP),” in Proc.
Eurospeech 91, 1991, pp. 1367-1370.

[5] J. M. Huerta, “Speech recognition in mobile environments,” Ph.D dis-
sertation, Dept. Elect. Comput. Eng., Carnegie Mellon Univ., Pittsburgh,
PA, Apr. 2000.

[6] T. Salonidis and V. Digalakis, “Robust speech recognition for multiple
topological scenarios of the GSM mobile phone system,” in Proc.
ICASSP 98, 1998.

[7]1 B.T.Lilly and K. K. Paliwal, “Effect of speech coders on speech recog-
nition performance,” in Proc. ICSLP 96, 1996.

[8] S. Euler and J. Zinke, “The influence of speech coding algorithms on
automatic speech recognition,” in Proc. ICASSP 94, vol. 1, 1994, pp.
621-624.

[9] M. Naito, S. Kuroiwa, T. Kato, T. Shimizu, and N. Higuchi, “Rapid

CODEC adaptation for cellular phone speech recognition,” in Proc. Eu-

rospeech 2001, Alborg, Denmark, 2001.

C. Peldez, A. Gallardo, and F. Diaz-de-Maria, “Recognizing voice over

IP: a robust front-end for speech recognition on the world wide web,”

IEEE Trans. Multimedia, vol. 3, no. 2, pp. 209-218, 2001.

ITU-T, Recommendation G.729-Coding of Speech at 8 kbit/s Using

Conjugate-Structure Algebraic-Code-Excited ~ Linear-Prediction

(CS-CELP), Mar. 1996.

ETSI, GSM-06.10 Full Rate Speech Transcoding. RPE-LTP (Regular

Pulse Excitation, Long Term Predictor), ETSI, France, Oct. 1992.

ITU-T, Recommendation G.723.1 Dual Rate Speech Coder for Multi-

media Communications Transmitting at 5.3 and 6.3 kbps, Marzo 1996.

[10]

[11]

[12]

[13]

[14] J. P. Campbell, T. E. Tremain, and V. C. Welch, “The federal standard
1016 4800 bps CELP voice coder,” Digital Signal Process., vol. 1, no.
3, pp. 145-155, 1991.

ITU-T, Recommendation G.726, “40-,32-,24-, and 16-Kb/s adaptive dif-
ferential pulse code modulation”, Dec. 1990.

N. B. Yoma and M. Villar, “Speaker Verification in noise using a sto-
chastic version of the weighted Viterbi algorithm,” IEEE Trans. Speech
Audio Processing, vol. 10, no. 3, pp. 158-166, Mar. 2002.

X. D. Huang et al., HMM for Speech Recognition. Edinburgh, UK.
Edinburgh Univ. Press, 1990.

M. Afity, Y. Gong, and J. Haton, “A general joint additive and con-
volutive bias compensation approach applied to noise Lombard speech
recognition,” IEEE Trans. Speech Audio Processing, vol. 6, no. 6, pp.
524-538, Nov. 1998.

J. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for multi-
variate Gaussian mixture observation chains,” IEEE Trans. Speech Audio
Processing, vol. 2, no. 2, pp. 291-298, Apr. 1994.

T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal
Processing Mag., vol. 13, no. 6, pp. 47-60, 1996.

M. J. F. Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition,” Comput. Speech Lang., vol. 12, no. 2, pp.
75-98, 1998.

A. Acero and R. Stern, “Environmental robustness in automatic speech
recognition,” in Proc. ICASSP, 1990.

P.J. Moreno, B. Raj, E. Govea, and R. M. Stern, “Multivariate Gaussian
based cepstral normalization for robust speech recognition,” in Proc.
ICASSP 95, 1995.

R. M. Raj, E. B. Gouvea, P. J. Moreno, and R. M. Stern, “Cepstral com-
pensation by polynomial approximation for environment-independent
speech recognition,” in Proc. ICSLP, 1996.

N. B. Yoma, “Speech recognition in noise using weighted matching al-
gorithms,” Ph.D. dissertation, Univ. Edinburgh, Edinburgh, U.K., 1998.
Linguistic Data Consortium (LDC). (1995) Latino database.
Univ. Pennsylvania, Philadelphia, PA. [Online] Available:
http://www.ldc.upenn.edu/Catalog/LDC95S28.html

Y. Zhao, “An acoustic-phonetic based speaker adaptation technique for
improving speaker independent continuous speech recognition,” IEEE
Trans. Speech Audio Process., vol. 2, no. 3, pp. 380-394, Jul. 1994.

H. Ney and S. Ortmanns, “Dynamic programming search for continuous
speech recognition,” IEEE Signal Process. Mag., pp. 64-81, Sep. 1999.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Néstor Becerra Yoma (S’ 96-A’98-M’04) was born in Santiago, Chile, in 1964.
He received the B.Sc. and M.Sc. degrees from Campinas State University (UNI-
CAMP), Sao Paulo, Brazil, in 1986 and 1993, respectively, and the Ph.D. degree
from the University of Edinburgh, Edinburgh, U.K., in 1998, respectively, all in
electrical engineering.

In 1998 and 1999, he was a Postdoctoral Researcher at UNICAMP and
a full-time Professor at Mackenzie University, Sao Paulo, Brazil. From 2000
to 2002, he was an Assistant Professor with the Department of Electrical
Engineering, Universidad de Chile, Santiago, where he is currently lecturing
on telecommunications and speech processing, and working on robust speech
recognition/speaker verification, dialogue systems, and voice over IP. At the
Universidad de Chile he has set up the Speech Processing and Transmission
Laboratory (LPTV) to study speech technology applications on the Internet and
telephone line. He has been an Associate Professor since 2003 and is the first
author of 12 journal articles and 30 conference papers. His research interests
include speech processing, real-time Internet protocols, QoS, and usability
evaluation of interfaces.

Dr. Yoma is a member of the International Speech Communication
Association.

Carlos Molina was born in Santiago, Chile, in 1980. He received the B.Sc.
degree in engineering sciences from Universidad de Chile in 2003. Since 2004,
he has been a postgraduate student in the Speech Processing and Transmission
Laboratory at the Department of Electrical Engineering, Universidad de Chile,
where he has worked on noise canceling and speaker adaptation techniques for
speech recognition.

He has been a co-author in three journal papers and three conference arti-
cles in the last two years. He has also worked on the implementation of speech
recognition based dialogue systems.

Mr. Molina is a student member of the International Speech Communication
Association.



YOMA et al.: MODELING, ESTIMATING, AND COMPENSATING LOW-BIT RATE CODING DISTORTION 255

Jorge Silva was born in Santiago, Chile, in 1977. He received the B.Sc. and
engineering degree in electrical engineering with highest distinction from the
Universidad de Chile, Santiago, in 2002. He is pursuing the Ph.D. degree in the
Department of Electrical Engineering at the University of Southern California,
Los Angeles.

He holds a faculty position in the Department of Electrical Engineering, Uni-
versidad de Chile. From 2000 to 2003, he was a Research Assistant in the Speech
Processing and Transmission Laboratory (LPTV), Department of Electrical En-
gineering, Universidad de Chile. His general research interests include speech
recognition, statistical signal processing, multiresolution analysis, and informa-
tion theory applied to signal processing.

Carlos Busso was born in Santiago, Chile. He received his M.Sc. degree from
the Department of Electrical Engineering, Universidad de Chile, in 2003, and he
is currently pursuing the Ph.D. degree at the University of Southern California,
Los Angeles.

From 2000 to 2003, he was a Research Assistant in the Speech Processing and
Transmission Laboratory (LPTV) at the Department of Electrical Engineering
where he worked on speech coding, voice over IP, QoS, low bit rate coding
distortion in speech recognition and real-time protocols for the Internet. His
current research interests include digital signal processing, speech and video
signal processing, and multimodal interfaces.



	toc
	Modeling, Estimating, and Compensating Low-Bit Rate Coding Disto
	Néstor Becerra Yoma, Member, IEEE, Carlos Molina, Jorge Silva, a
	I. I NTRODUCTION
	II. M ODELING D ISTORTION D UE TO C ODING

	Fig. 1. Cepstral coefficients from uncoded $(O^{o})$ versus code
	Fig. 2. Cepstral coefficients from uncoded $(O^{o})$ versus code
	Fig. 3. Distribution of coding distortion $(O^{o}-O^{d})$ with s

	Fig. 4. Distribution of coding distortion $(O^{o}-O^{d})$ with s
	Fig. 5. Expected value of the coding-decoding error, $E[O_{n}^{o
	Fig. 6. Variance of the coding-decoding error, $Var[O_{n}^{o}-O_
	III. HMM C OMPENSATION
	IV. E STIMATION OF C ODING D ISTORTION
	V. E XPERIMENTS
	VI. D ISCUSSIONS

	TABLE€I WER (%) W ITH S IGNAL P ROCESSED W ITH THE F OLLOWING C
	TABLE€II WER (%) W ITH U NCODED S IGNAL AND S IGNAL P ROCESSED 
	Fig. 7. $M^{d}$ (top) and $V^{d}$ (bottom) estimated with the EM
	TABLE€III WER (%) W ITH S IGNAL P ROCESSED W ITH THE F OLLOWING
	TABLE€IV WER (%) W ITH S IGNAL P ROCESSED W ITH THE F OLLOWING 
	TABLE€V WER (%) W ITH S IGNAL P ROCESSED W ITH THE F OLLOWING C
	VII. C ONCLUSION
	Y. Gong, Speech recognition in noise environments: a survey, Spe
	M. Berouti et al., Enhancement of speech corrupted by acoustic n
	S. Furui, Cepstral analysis technique for automatic speaker veri
	H. Hermansky et al., Compensation for the effect of the communic
	J. M. Huerta, Speech recognition in mobile environments, Ph.D di
	T. Salonidis and V. Digalakis, Robust speech recognition for mul
	B. T. Lilly and K. K. Paliwal, Effect of speech coders on speech
	S. Euler and J. Zinke, The influence of speech coding algorithms
	M. Naito, S. Kuroiwa, T. Kato, T. Shimizu, and N. Higuchi, Rapid
	C. Peláez, A. Gallardo, and F. Díaz-de-María, Recognizing voice 
	ITU-T, Recommendation G.729-Coding of Speech at 8 kbit/s Using C
	ETSI, GSM-06.10 Full Rate Speech Transcoding. RPE-LTP (Regular P
	ITU-T, Recommendation G.723.1 Dual Rate Speech Coder for Multime
	J. P. Campbell, T. E. Tremain, and V. C. Welch, The federal stan
	ITU-T, Recommendation G.726, 40-,32-,24-, and 16-Kb/s adaptive d
	N. B. Yoma and M. Villar, Speaker Verification in noise using a 
	X. D. Huang et al., HMM for Speech Recognition . Edinburgh, U.K.
	M. Afify, Y. Gong, and J. Haton, A general joint additive and co
	J. Gauvain and C.-H. Lee, Maximum a posteriori estimation for mu
	T. K. Moon, The expectation-maximization algorithm, IEEE Signal 
	M. J. F. Gales, Maximum likelihood linear transformations for HM
	A. Acero and R. Stern, Environmental robustness in automatic spe
	P. J. Moreno, B. Raj, E. Govea, and R. M. Stern, Multivariate Ga
	R. M. Raj, E. B. Gouvea, P. J. Moreno, and R. M. Stern, Cepstral
	N. B. Yoma, Speech recognition in noise using weighted matching 
	Linguistic Data Consortium (LDC) . (1995) Latino database . Univ
	Y. Zhao, An acoustic-phonetic based speaker adaptation technique
	H. Ney and S. Ortmanns, Dynamic programming search for continuou



