The **Ordinal** Nature of Emotions

Georgios N. Yannakakis, Roddy Cowie and Carlos Busso
“It seems that a rank-based *FeelTrace* yields higher inter-rater agreement...”

“Indeed, *FeelTrace* should actually be used this way... (!) Go talk to Carlos; see you in two years... bye!...”
This paper

A thesis: emotions are intrinsically ordinal (relative) ...and the benefits of representing them that way are many!

Our thesis is supported by theoretical arguments across disciplines and empirical evidence in Affective Computing

Our wish: reframe the way emotions are viewed, represented and analysed computationally
The Background (Psychology)
Mapping the intensities of responses to particular stimuli

That is basic to affective computing: we call it labelling

Two approaches have a long history

- The older (Fechner) was based on comparing stimuli, and finding ‘just noticeable differences’

- Much later, Stevens introduced ‘magnitude estimation’ – asking people to give a number. Twenty years ago, psychologists tried a magnitude estimation approach to labelling. The data are in, and we know it doesn’t work as straightforwardly as they hoped.
The core finding is simple...

When raters are presented with a piece of data and asked to assign a magnitude describing an emotional response, they tend to disagree quite substantially.

The core finding is simple...

- That is not a criticism of the **constructs** used, like valence and arousal
- Sometimes agreement is quite good
 — But not often enough

...we just did not know how serious they would be...

Reason 1 Data are typically multivalued

- A scene will contain *multiple elements*, which have *different valences*, and there is no self-evident way to reduce them to a *single measure*.
Reason 2 Adaptation level

• Say today is a **grey day** (obviously in Belfast); what feelings will it evoke?
 - **–ve**: if it’s ending a **sunny spell**
 - **+ve**: if we are coming out of a **hurricane**

But labelling is associating a value; So, which should we associate?
The Background (Beyond Psychology)
It seems that societal or ethical values are acquired, internalized and organized in a hierarchical manner. The ranking approach naturally helps respondents to discover, reveal and crystallize that hierarchy.

The empirical evidence is strong: ranks are more effective (than ratings) at reducing response biases in cross-cultural settings.

Each time we are presented with a stimulus, we construct and store an *anchor* (or *somatic marker*)

- We use somatic markers as drivers for making choices
- Affect guides our attention towards preferred options and, in turn, simplifies the decision process for us!

Further evidence (in monkeys and humans) suggests that our brain *encodes* values in a *relative* fashion

Seymour and McClure, “*Anchors, scales and the relative coding of value in the brain,*” *Current opinion in neurobiology,* 2008
“...it is safe to assume that changes are more accessible than absolute values…”

Preference learning is inspired by and built upon humans’ limited ability to express their preferences directly in terms of a specific (subjective) value function.

Our inability is mainly due to the
- subjective nature of a preference
- cognitive load for assigning specific values to each one of the options

It is more natural to express preferences about a number of options; and this is what we end up doing normally.

Summary: relationships matter... not their magnitude
The Evidence
Video Annotation: *AffectRank*

Available at: https://github.com/TAPeri/AffectRank
Speech: Preference Learning For Emotion Recognition

Lotfian and Busso, “Practical considerations on the use of preference learning for ranking emotional speech,” in IEEE ICASSP 2016

- Better use of the corpus:
 - $n(n-1)/2$ potential pairs for training
 - More reliable labels
 - Better performance (precision@K)

![Graphs showing precision vs. K for Arousal and Valence with different methods: RankSVM, SVR, and SVM.](image)
Speech and Games: Classes vs Preferences
Martinez, Yannakakis and Hallam, Don’t classify ratings of affect; Rank them! IEEE Trans. on Affective Computing, 2014.
Speech Annotation: Qualitative Agreement Analysis

- Divide trace into bins
- Look for trends
- Create **preference learning** models based on the trends

Higher accuracy when considering trends
Video Annotation: RankTrace

Lopes, Liapis, and Yannakakis, *RankTrace: Relative and Unbounded Affect Annotation* ACII, 2017

Camilleri, Yannakakis and Liapis, *Towards General Models of Player Affect*, ACII, 2017

• Better predictors of ground truth
• More general affect models across tasks

Available@emotion-research.net
Games: Ratings (Likert) vs Preferences (Ranks)

Yannakakis and Martinez, *Ratings are Overrated!* Frontiers in Human-Media Interaction, 2015
So I have Ranks; What’s Next?
Preference Learning for Affective Computing

- Tutorial: ACII 2009, Amsterdam
- An approach with growing interest since then for affect detection and retrieval through images, videos, music, sounds, speech, games, and text
- Several PL algorithms available.
 - SVM (RankSVM)
 - Shallow and Deep Neural Networks
 - Gaussian Processes
 - ...
 - Some of them in the PL Toolbox (emotion-research.net)
- Domains: healthcare, education, entertainment, art,...

What if Ranks are not Available?
Martinez, Yannakakis and Hallam, *Don’t classify ratings of affect; Rank them!* *IEEE Trans. on Affective Computing*, 2014.

X is more/less challenging than Y

challenging

frustrating

arousing

boring

fearful

...

X was challenging

Strongly Disagree

Strongly Agree

0 1 2 3 4 5
The Criticism
The Criticism and our Response

“More information (i.e. intensity) is always good to have..”
• Less is more! Intensity is actually maintained (it is lying under the preference). More information biases the model.

“More options are required in ranks; one stimulus is not enough...”
• This is their very strength! Our anchor/marker/reference is not retrieved unconsciously or intuitively; it is forced! Our reference is a real option we use during the annotation.

“Analysis is harder with ordinal data...”
• Multiple data visualization and processing techniques are available nowadays: classical correlation analysis to statistical significance tests to modern ML approaches.
Our thesis is not new… but it reframes AC
We are not alone… but we hope more will join the ordinal stance
The evidence keeps coming…
It seems that we best encode subjective values in relative terms
Machine learning should probably do so too!
Preference learning is a way forward!
Benefits: reliability, validity, generality
Thank you!