
Multimodal Attention for Lip Synthesis Using

Conditional Generative Adversarial Networks

Andrea Vidala, Carlos Bussoa,∗

aDepartment of Electrical and Computer Engineering, The University of Texas at
Dallas, 800 W. Campbell Road, Richardson, 75080, TX, USA

Abstract

The synthesis of lip movements is an important problem for a socially in-
teractive agent (SIA). It is important to generate lip movements that are
synchronized with speech and have realistic co-articulation. We hypothesize
that combining lexical information (i.e., sequence of phonemes) and acoustic
features can lead not only to models that generate the correct lip movements
matching the articulatory movements, but also to trajectories that are well
synchronized with the speech emphasis and emotional content. This work
presents attention-based frameworks that use acoustic and lexical informa-
tion to enhance the synthesis of lip movements. The lexical information is
obtained from automatic speech recognition (ASR) transcriptions, broadening
the range of applications of the proposed solution. We propose models based
on conditional generative adversarial networks (CGAN) with self-modality
attention and cross-modalities attention mechanisms. These models allow us
to understand which frames are considered more in the generation of lip move-
ments. We animate the synthesized lip movements using blendshapes. These
animations are used to compare our proposed multimodal models with al-
ternative methods, including unimodal models implemented with either text
or acoustic features. We rely on subjective metrics using perceptual evalua-
tions and an objective metric based on the LipSync model. The results show
that our proposed models with attention mechanisms are preferred over the
baselines on the perception of naturalness. The addition of cross-modality at-
tentions and self-modality attentions has a significant positive impact on the
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performance of the generated sequences. We observe that lexical information
provides valuable information even when the transcriptions are not perfect.
The improved performance observed by the multimodal system confirms the
complementary information provided by the speech and text modalities.

Keywords: Speech-driven animations, socially interactive agents,
Conditional GAN, Lip movements, cross-modal attention, attention
mechanism.

1. Introduction

Effective modeling of socially interactive agents (SIAs) require an au-
thentic display of human-like behaviors to ensure strong user engagement.
Advances in generating realistic behaviors can impact applications for movie
productions, video games, and human-computer interaction (HCI) systems.
Gestures, postures, and facial movements are key to create convincing an-
imations that mimic human behaviors (Pelachaud et al., 2021). A method
used to generate animations requires the mapping of movements performed
by actors, which are transferred to the animated characters (Stone et al.,
2004; Williams, 1990; Rizzo et al., 2004; Kipp et al., 2007; Neff et al., 2008).
Another way to produce animations is with artists, who manually create
the required movements. Although effective, these animation methods are
time-consuming. An important research topic is to explore methods that can
generate human-like animations with ease to alleviate this problem. Several
studies have proposed to generate gestures using speech and text (Sadoughi
and Busso, 2015; Ferstl and McDonnell, 2018; Zhou et al., 2018a; Ahuja et al.,
2019; Ferstl et al., 2019; Sadoughi and Busso, 2019; Ahuja et al., 2020; Ferstl
et al., 2020; Kucherenko et al., 2020, 2021). In the case of facial anima-
tion, previous studies have focused on the entire face (Lee et al., 1995; Deng
et al., 2006b,a; Cao et al., 2013; Edwards et al., 2016; Karras et al., 2017;
Zhou et al., 2018b; Richard et al., 2021a) or just the orofacial area (Brand,
1999; Luo et al., 2014; Fan et al., 2016; Pham et al., 2017; Suwajanakorn
et al., 2017; Sadoughi and Busso, 2018b). A challenging aspect of generat-
ing facial animations is to model lip movements, since it is not acceptable
to have a talking-head with a mismatch between the audio and lip move-
ments. Therefore, over the years, different methods have been developed to
create lip animations based on a combination of acoustic, text, and facial fea-
tures. Early works used hidden Markov models (HMM) or Gaussian mixture
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models (GMM) to create lip synthesis animation (Brand, 1999; Luo et al.,
2014). Advancements in deep learning have brought a breakthrough in this
research field with methods such as the use of blendshapes for synthesizing
lip movements (Pham et al., 2017, 2018), and the generation of lip synthesis
without phoneme shapes to create articulations (Taylor et al., 2017; Chen
et al., 2018a). Despite these advancements, the creation of convincing lip
movements for facial animations is still a challenge.

This study proposes multimodal models with self-attention and cross-
attention mechanisms that aim to synthesize realistic, natural lip movements
from acoustic and text features. Our approach starts with generative adver-
sarial networks (GANs), which have the ability to generate realistic move-
ments using the adversary-based architecture formed by a generator and a
discriminator. In our formulation, the generator creates the lip movements,
which are judged by the discriminator. The discriminator detects if the move-
ments are real of fake. This formulation is improved by adding a condition
as an input, creating a conditional generative adversarial network (CGAN),
which helps the model to contextualize the generated movements. We pro-
pose to constrain the CGAN architecture with modalities that are relevant
to lip articulation: text and speech. Text defines the sequence of phonemes
to be generated, improving the selection of correct movements. We do not
assume that text is available. Instead, we rely on transcriptions generated
by an automatic speech recognition (ASR) system, making our implementa-
tion feasible for a broader range of SIA applications. Speech conveys the
emphasis in the message, correcting the synchronization problems from the
text selection. It also introduces emotional nuances that make the model
more natural. We propose a CGAN per modality, constrained by either text
or speech. The two CGANs are pretrained by generating lip movements ex-
clusively with the underlying modality. We fuse the unimodal CGANs with
two alternative attention-based solutions: self-attention and cross-attention
mechanisms. Self-attention mechanism determines the relevant temporal in-
formation within a modality, while the cross-attention mechanism assesses
which temporal information is important by considering the two modalities.
Therefore, we can observe the influence of one modality on the other. The
addition of the attention mechanisms not only improves the fusion of the
modalities, but also allows us to study the effect of individual modalities on
the lip movement generation. We visualize the generated movements using
a novel approach based on blendshapes created just with lip landmarks. We
map the facial landmarks of interest to the blendshape meshes. Then, we
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use an affine transformation to project the 3D points of interest into the 2D
space of the facial landmarks. Finally, we compute the contribution of each
blendshape to the lip movements using non-negative least square and princi-
pal component analysis (PCA). We create the animations by combining the
blendshapes.

We assess the performance of our proposed attention-based models by
comparing them with several unimodal baselines trained using only speech
or text features. We implement these unimodal systems with either CGAN
or bidirectional long-short term memory (BLSTM) layers. We also compared
our attention-based approaches with multimodal systems implemented with
CGAN and BLSTM. The multimodal CGAN baseline concatenates the rep-
resentations of pre-trained CGANs conditioned by each modality without
an attention mechanism. The multimodal BLSTM baseline also fuses the
unimodal BLSTM representations combining acoustic and text features. We
measure performance with subjective and objective evaluations, assessing
the naturalness of the animated lip movements using blendshapes. We use
indirect and direct comparisons to determine the best models. The indi-
rect evaluations measure the naturalness of the animations using a 10-point
Likert scale. The proposed CGANs models with attention mechanisms ob-
tain the highest scores (5.79 for self-attention and 5.74 for cross-attention).
These scores are even higher than the score provided for animations gener-
ated with the original lip sequences (5.43). The direct evaluations compare
two videos generated by alternative methods. The results show that our
proposed CGANs with attention mechanisms were preferred over the other
models. Fusing the CGANs with self-attention and cross-attention mecha-
nisms leads to similar performance, indicating that both of these proposed
models are competitive for this task. Overall, the main contributions of this
paper are:

• We propose systematic frameworks based on CGANs and alternative
attention mechanisms that fuses speech and lexical information to syn-
thesize lip movements.

• We train the text and speech-text models using ASR transcripts, which
are not as accurate as human transcriptions. We obtain promising
results, showing the robustness of our method.

• We propose a method to generate an animation based on blendshapes
using only lip landmarks.
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This paper is organized as follows: Section 2 presents previous studies
related to this paper. Section 3 introduces the proposed CGAN models im-
plemented with attention mechanisms. It also provides the methodology used
to create the 3D animations with blendshapes. Section 5 shows the experi-
mental results obtained with our methodology. Finally, Section 6 summarizes
our study, describing future research directions in this area.

2. Related Work

Synthesis of lip movements is an important problem that has been broadly
studied in recent years. Data driven models for the generation of other be-
haviors such as head motion have achieved incredible results (Sadoughi and
Busso, 2019; Sadoughi et al., 2017; Sadoughi and Busso, 2018b; Busso et al.,
2007), suggesting that similar approaches can be used for synthesizing lip
movements. The challenge in generating lip motion is the tight synchroniza-
tion needed between the configuration of the lips and the targeted lexical
content. Even small errors can greatly affect the perception of naturalness
in the animations. Recently, approaches have focused on the synthesis of
lip movements using deep learning solutions. These methods are based on
speech and/or text to synthesize realistic trajectories for lip movements. This
section reviews recent advances in this area.

2.1. Lip Movements Driven by Speech Features

Suwajanakorn et al. (2017) proposed a method for lip synthesis based
on long-short term memory (LSTM) for a single speaker. In this work, the
generation of 18 lip landmarks relies on 25 Mel frequency cepstral coefficients
(MFCCs). Sadoughi and Busso (2017) proposed a system to generate fa-
cial movements, including lip movements using BLSTM layers. The system
takes as inputs MFCCs, which are related to the orofacial area of the face
(Busso and Narayanan, 2007), and low-level descriptors (LLDs) from the
extended Geneva minimalistic acoustic parameter set (eGeMAPS) (Eyben
et al., 2016). The eGeMAPS features are commonly used for emotion-related
recognition problems. These features were expected to provide complemen-
tary information about the underlying emotion in the sentence. Karras et al.
(2017) proposed an end-to-end system, which generates a 3D facial mesh
from raw audio. The end-to-end system is composed of convolutional neural
networks (CNNs) and is divided into three parts: feature extraction, co-
articulation parameters, and generation of the vertex position for the 3D
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mesh. This approach not only generates lip motion but also adds an emo-
tional component to the animated mesh. Other approaches have focused
on generating a more realistic talking-head with the inclusion of emotions.
Pham et al. (2018) proposed a new end-to-end system trained using a spec-
trogram. This approach is based on CNNs, adding the temporal modeling
with a recurrent neural network (RNN). The output of this system corre-
sponds to the weights of the shapes to synthesize the animations. Sadoughi
and Busso (2018a) hypothesized that emotion and co-articulation are re-
lated. For this reason, they proposed two multitask models, which have as
a primary task the prediction of lip movements. The first model received as
input MFCCs and eGeMAPS features, which were fused and used to predict
lip movements, triviseme, and emotion. The second model received as in-
put MFCC features, which are conditioned by the emotion prediction from
a separate model using as input the eGeMAPS features. The second model
predicted lip movements and triviseme. Sadoughi and Busso (2021) proposed
an expressive lip synthesis method using a conditional sequential GAN. The
generator and discriminator of this network are composed of BLSTM lay-
ers, capturing past and future information. In this work, the input noise is
not only constrained by the speech features related to orofacial movements
(MFCCs) but also emotional speech features such as LLDs and eGeMAPS,
adding emotional information to the generated trajectories.

Lip movements have also been modeled by generating a complete facial
animation that includes lip movements. Some studies rely on speech features
extracted from an architecture trained for ASR tasks, hence having implicit
lexical information. Cudeiro et al. (2019) presented VOCASET, which is a
new dataset of 4D face scans. They proposed a new model based on convolu-
tional layers to generate 3D facial animation in a speaker-independent fash-
ion, which helps with the generalization of the created animation. Richard
et al. (2021b) proposed a method for generating 3D facial animations, where
the speech-driven facial animation is done by distinguishing which part of
the audio contributes more to the movements of the upper or lower part of
the face. They created two networks for this purpose. One of them com-
bines the information of the expression and the speech. The second one is an
UNet decoder that passes that information to the latent space of a particular
speaker, generating the animation. Despite the promising results, one of the
disadvantages of the method is the amount of data required to generate the
facial animation. Chai et al. (2022) presents a network architecture based on
CNNs used to extract features from Mel-spectrogram, which are followed by
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RNNs to extract temporal information. This temporal information is the in-
put of a temporal attention mechanism, which helps to emphasize important
frames to generate facial animation. Fan et al. (2022) presents FaceFormer,
which is based on the transformer architecture where one of the attention
mechanisms is performed over the extracted speech features and the facial
animation. This architecture helps the alignment between facial movements
and speech. In the studies of Chai et al. (2022) and Fan et al. (2022), the
model was aware of the speaker’s identity. The incorporation of an attention
mechanism for a 3D facial animation has been done, to our knowledge, only
for speech-driven approaches.

2.2. Lip Movements Driven by Text Features

Text has also been used to synthesize lip motion. Sako et al. (2000)
proposed an HMM-based text-to-audio-visual system for speech synthesis.
The proposed model had two parts: auditory HMM and visual HMM. The
auditory HMM received as input the text and synthesized the speech sig-
nal. The visual HMM received as input the text, but also the duration state
of each phoneme to reconstruct the correct lip configuration. Minnis and
Breen (2000) proposed a framework for modeling phoneme coarticulation.
The approach takes a sequence of phonemes, which are concatenated. They
animated the lip movements by using the trajectories generated by these con-
catenations. Tang et al. (2008) presented a novel framework to synthesize lip
movements using text. The approach synthesizes an emotional speech signal
using diphones, obtaining the duration of the phonemes. Then, the phonemes
and their duration are mapped into visemes, creating the animations. Stef
et al. (2018) proposed a speech animation method based on text, which was
converted into international phonetic alphabet (IPA) symbols. The anima-
tion was realized using blenshapes created for the IPA symbols. Taylor et al.
(2017) proposed a speaker independent method for synthesizing lip move-
ments based on a deep neural network (DNN). The DNN received as input
a sliding window of phonemes to predict the coarticulation curve. Because
of the overlapping of the sliding windows, they interpolated the coarticula-
tion curve by taking the mean. Chen et al. (2018b) proposed a lip synthesis
method based on blendshapes with phoneme shapes. They built an ASR
to generate the phoneme sequence, which was used to create an animation
using the shapes that represent each phoneme.
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2.3. Lip Movements Driven by Speech and Text Features

Edwards et al. (2016) proposed JALI, which is a system that uses speech
and text to generate lip-synchronized facial animation. Speech was used to
align the phonemes with the audio. Then, the system generated the anima-
tion mapping the phonemes to visemes. The sequence of visemes depends on
the jaw and lip movements of each phoneme. Fan et al. (2016) proposed a
method for generating lip motions based on speech and text using a BLSTM
model. They use MFCCs as speech features and triphones as text features.
They synthesize a video using 48 facial landmarks. Liu et al. (2020) pro-
posed an autoencoder and a regressor based on CNNs to generate talking
faces using speech and lexical information. The autoencoder generates rep-
resentations for the upper right, upper left, and lower parts of the face. These
representations are used as a ground truth by the regressor, which takes as
input the phoneme representation, which is aligned with the speech.

2.4. Relation to Previous Studies

This work introduces a methodological framework for synthesizing lip
movements using audio and lexical information. We propose two CGAN-
based architectures with self-attention and cross-attentions to capture the
relation between acoustic and lexical features while creating the lip move-
ment trajectories. Unlike previous studies that use speech and text features
(see Sec. 2.3), we train our models using transcriptions from an ASR sys-
tem, which are less accurate compared to human transcriptions. Even with
noisy transcriptions, the models achieve strong performance. We use 3D
blendshapes to perform the animation, which simplifies the animation pro-
cess because the animation is done only using the lip landmarks generated
by the models.

The most similar study to this paper is the work of Sadoughi and Busso
(2021), which proposed a CGAN-based architecture, constraining the lip
movements by the acoustic features. We build our model starting from this
architecture, proposing major changes to improve its performance. The main
contributions of this study with respect to Sadoughi and Busso (2021) are
(1) the use of lexical information, in addition to speech, to constrain the gen-
erated lip movements, and (2) the use of self-attention and cross-attention
to fuse the lexical and acoustic information. These contributions greatly im-
prove the performance of the system by explicitly indicating the predicted
sequence of phonemes, which is tightly synchronized with the acoustic fea-
tures using the proposed fusion approaches. Furthermore, we render the
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animation using blendshapes, which is an important improvement over the
study of Sadoughi and Busso (2021), which was limited by using facial action
parameters (FAPs).
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Figure 1: Proposed network architectures based on conditional generative adversarial net-
works (CGANs). The text and speech modalities are fused in the generator using the
attention-based models described in Section 3.3. The symbol ⊕ represents the concatena-
tion operation.

3. Proposed Approach

We propose attention-based fusion methods of unimodal CGANs trained
with acoustic and lexical features to generate realistic lip movements. Fig-
ure 1 shows the proposed architecture. This section describes the proposed
methods, including a general description of the proposed CGAN (Sec. 3.1),
the unimodal blocks (Sec. 3.2), and the proposed attention-based fusion
method of the modalities (Sec. 3.3). The lip trajectories are animated with
our proposed blendshape approach that takes as input the facial landmarks
created by our method (Sec. 3.4).

3.1. Generative Adversarial Networks
Generative adversarial networks (GANs) were presented by Goodfellow

et al. (2014). This framework consists of two networks trained with an ad-
versarial loss: a generator G(·) and a discriminator D(·). The idea behind
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GAN is to solve a minimax problem. The generator tries to create sam-
ples that resemble the training data distribution to fool the discriminator.
The input of the generator is a noise signal, and its output is the generated
sample following the distribution of the real data. The discriminator has to
decide whether a sample comes from real data or from data created by the
generator. The formulation for GAN is:

min
G

max
D

Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] , (1)

where x is the sample with probability distribution pdata, and z represents
a noise signal with probability distribution pz. This adversarial method has
been used in multiple tasks, such as generating images (Reed et al., 2016),
learning feature representations (Chang and Scherer, 2017), and detecting
data anomalies (Qiu et al., 2019, 2022). The success of this methodology
on several fields has led to the creation of several methods derived from the
GAN framework. One of them is called Conditional GANs. Mirza and Osin-
dero (2014) proposed a variation of this framework creating the conditional
Generative adversarial network (CGAN). Unlike GANs, CGANs take an ex-
tra input as a condition to constrain the model, adding more information to
improve the sample generated by the generator. The cost function is defined
as

min
G

max
D

Ex∼pdata(x) [logD(x|y)] + Ez∼pz(z) [log(1−D(G(z|y)))] , (2)

where y represents the extra information fed to the CGAN network. For our
task, the CGAN framework offers the advantage of constraining the genera-
tion of the samples with acoustic or lexical features (or both).

3.2. CGAN-Based Models for Speech and Text

As shown in Figure 1, we build two separate CGANs with the same
architecture. One was constrained with lexical features and the other with
acoustic features. The generator concatenates the noise and the features
from the modality that constrains the model. We build the CGANs with two
BLSTM layers, each of them implemented with 128 nodes. The discriminator
follows the same architecture of the generator with two BLSTM layers, each
of them implemented with 64 nodes. The BLSTM layers provide temporal
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modeling to capture the dynamic relationship between the modalities and
the lip trajectories. For the text modality, the model is conditioned by the
underlying sequence of phonemes. We represent the aligned sequence of
phonemes by a one-hot-encoding as input to the model. For the speech
modality, the noise is conditioned by the MFCCs features extracted from
the speech. The acoustic information not only synchronizes speech with the
phonetical units, but also introduces emphasis and emotional nuances that
are important during natural human interactions. As a result, we expect
better results by combining both modalities.
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Figure 2: Proposed fusion approaches using self-attention (Fig. 2(a)) and cross-attention
(Fig. 2(b)). The symbol ⊕ represents the concatenation operation.

Figure 1 shows the architecture of the generator and discriminator of the
CGAN used for this study. The proposed models use the same configuration
for the generator and discriminator, but they differ in the fusion method,
which is only implemented on the generator (Sec. 3.3). Figure 1(b) shows
the discriminator model, which fuses the pretrained discriminator of each
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modality. We freeze the parameters of the discriminator for each modality
and extract features from the second BLSTM layer, which are concatenated.
Then, they are passed through two dense layers implemented with 128 and
64 units, followed by the output layer. Figure 1(a) illustrates the generator
model, which comprises the pretrained CGAN models for the acoustic and
lexical features. We freeze the generators of each modality and extract the
features of the second BLSTM layer as our feature representation. These
features are normalized by dividing them by its 98% percentile value. The
normalized features are processed by the fusion module. Then, the processed
features pass through two dense layers, each of them implemented with 256
and 128 units, respectively. The output is the 2D coordinates of the 20 facial
landmarks used for the animation (Fig. 5).

3.3. CGAN Attention-Based Fusion Models

We propose two alternative attention-based fusion methods, which are
shown in Figures 2(a) and 2(b). After the normalization block (Fig. 2(b)),
the feature representations for both modalities pass through an attention-
based model. We use two alternative attention mechanisms: self-attention
and cross-attention. We use the multi-head attention presented by Vaswani
et al. (2017),

MultiHeadAttention (Q,K, V ) = Concat (head1, . . . , headH)WO, (3)

where Q, K, and V represent the query, key, and value matrices respectively.
These matrices are N × dk, where N is the number of frames and dk is
the feature dimension. WO is the projection matrix of the output, headi =

Attention
(
QWQ

i , KW
K
i , V W

V
i

)
where Attention is the scaled dot-product

attention (Vaswani et al., 2017). WQ
i , W

K
i , W

V
i represent the projection

matrices for query, key, and value matrices respectively with i ∈ {1, . . . , H}
the number of heads. We set the number of heads to one.

3.3.1. Self-Attention Fusion Method

Our first fusion approach is the self-attention mechanism, which is inde-
pendently implemented for each modality. Figure 2(a) illustrates the gen-
erator model with self-attention as a fusion method. The query, key, and
value features from Equation (3) come from the same modality, as shown in
Equations (4) and (5).
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MultiHeadAttention (Qtext, Ktext, Vtext) , (4)

MultiHeadAttention
(
Qspeech, Kspeech, Vspeech

)
. (5)

This fusion method determines which temporal information is relevant
within a modality for the synthesis of lip movements. It also provides insights
to increase the interpretability of the models by showing which frames are
important for the fusion. We refer to this method as CGAN speech-text with
self-attention.

3.3.2. Cross-Attention Fusion Method

The second model to fuse the modalities in the generator is the cross-
attention mechanism. Figure 2(b) shows the generator model with this fusion
method. This approach has been successfully used in multimodal fusion
problems (Goncalves and Busso, 2022; Tsai et al., 2019). In contrast to the
self-attention mechanism, cross-attention integrates both modalities while
estimating the attention. The key and value vectors come from one modality,
while the query vector comes from the other modality. Equations (6) and
(7) show this cross modality formulation.

MultiHeadAttention
(
Qspeech, Ktext, Vtext

)
, (6)

MultiHeadAttention
(
Qtext, Kspeech, Vspeech

)
. (7)

In addition to studying which temporal information is relevant while com-
bining the modalities, this fusion method leverages how much a modality
influences the temporal relevance of the other modality. For example, if the
relevant information for the speech modality is in the future and relevant in-
formation for the text modality is in the past, this fusion method can attend
to the past and future for both modalities. However, the level of attention
could be different for each modality. We refer to this method as CGAN
speech-text with cross-attention.

3.4. Facial Animation using Facial Landmarks

In our previous speech-driven animation studies (Mariooryad and Busso,
2012; Sadoughi and Busso, 2017; Busso et al., 2005; Sadoughi and Busso,
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(a) Female animation (b) Male animation

Figure 3: Examples of the female and male models for our animations using blendshapes.
The proposed approach takes facial landmarks and generates the weights of the blend-
shapes to animate the sequence.

2021), we have relied on FAPs (Ostermann, 1998), which were used to syn-
thesize the animation. This approach lacks the flexibility needed to synthe-
size realistic animations. Therefore, we create our own prototype for the
animation where we only specify the value of the predicted facial landmarks.
For this purpose, we use 47 blendshapes with different facial expressions from
the FaceWarehouse database (Cao et al., 2014). We consider orofacial areas
with different shapes. We generate the animation using those blendshapes
using the open-source program Blender. Figure 3 shows examples of the an-
imations in Blender created with our approach. We create a female model
and a male model.

Our models are trained with data from different subjects, who have differ-
ent facial anatomy. Therefore, we normalize the facial landmarks to reduce
the high variability across subjects. The normalization relies on the method
described by Eskimez et al. (2018). This method aligns the facial landmarks
and removes the identity information by obtaining a mean representation
across the faces. This is achieved by selecting a global reference frame with
a neutral facial expression with a frontal pose. We also select a speaker
reference frame with a neutral face for each subject in our dataset. The
speaker reference frames are translated and rotated to match the pose of
the global reference, compensating for different sizes and head orientations
across speaker reference frames. For each frame in the video, we use the
speaker reference frame to align and rotate its facial landmarks. This step
compensates for variations in size of the faces across frames due to the dis-
tance between the subject and the camera. Then, we remove the identity
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of the scaled facial landmarks. For this purpose, we calculate the difference
between the current frame and its speaker reference frame, capturing just the
facial movements. These differences are added to the global reference frame,
removing the speaker differences.

We perform the animation when we have all the facial landmarks nor-
malized. We select the facial landmarks of a neutral face as a reference.
For animation purposes, we map the facial landmarks around the mouth of
the mean representation into the vertices of the neutral-shape mesh. Once
we have this mapping, we project the 3D blendshapes into the 2D facial
landmark space using the camera matrix estimation method used by Huber
et al. (2016), which uses the gold standard algorithm (GSA) (Hartley and
Zisserman, 2004) to compute a normalized version of the camera matrix. For
this purpose, the data is normalized so that the 2D and 3D representations
are translated moving their centroids to the origin of the coordinates. The
2D and 3D coordinates are scaled such that the root mean square distances
between the average location of the facial landmarks and the origins are

√
2

and
√

3, respectively. Finally, it obtains the affine camera matrix, which is
used to project the 3D blendshape mouth landmark into the 2D space. We
can find the blendshapes that represent each frame by using the non-negative
least square method, which is constrained by the Tikhonov’s regularization
(L2-regularization) (Bishop, 1995). The non-negative least squared assigns
a weight per each blendshape. We constrain the sum of the weights to be
between 0 and 1. We implement this constraint to avoid changing the size
of the blendshape or creating an artifact in the animation. One of the is-
sues with this optimization problem is that blendshapes corresponding to
the articulation of phonemes with lip protrusion such as /u/ or /o/ was not
correctly represented. The mouth appears just open for these phonemes.
We address this issue with principal component analysis (PCA) followed by
non-negative least square. We obtain another set of weights by reducing the
dimensionality of our problem from 40 coordinates (i.e., the x and y coor-
dinates for the 20 facial landmarks) to 8 by using PCA. PCA reduces the
dimensionality of the problem by selecting the eigenvectors with the highest
variances (e.g., eigenvectors associated with the highest eigenvalues). We se-
lect the eight eigenvectors that have the highest variance following the work
of Suwajanakorn et al. (2017). PCA emphasizes horizontal movements of the
lips, solving the issue that we originally observed for phonemes such as /u/
or /o/, which are now correctly animated. We obtain the final weights for
the blendshapes to animate the sequence by averaging the two sets of weights

15



generated by the mouth landmarks and PCA method.

4. Experimental Settings

4.1. Database

The proposed models are trained and tested using the MSP-Face database
(Vidal et al., 2020), which was collected at The University of Texas at Dal-
las. The MSP-Face corpus is a collection of online videos of people talking
in front of a camera. They discussed diverse topics such as video games,
feelings, opinions, and experiences during their depression. Each video was
manually segmented, creating speaking turns with a duration between 3 and
10 seconds. The characteristics of those videos are single speaker, frontal
face, clear speech, and no background music. In total, we collected 27, 325
video segments, which approximately correspond to 70 hours of video data.
This database provides a variety of emotional displays from multiple speak-
ers. The number of speakers in this database is 491 speakers. Although our
study does not use emotional labels, the corpus was annotated with emo-
tional descriptors using perceptual evaluations in a crowdsourcing platform.
We manually select a subset of videos with frontal faces. Then, we exclude
videos if we are not able to automatically obtain facial landmarks for 85%
of the frames in a video. Lip landmark detection is not always reliable, re-
gardless of the library used to extract them. Some of the extracted frames
could present some issues, where, for example, landmark on the internal side
of the lips may not be well tracked. Frontal faces are often better. We cu-
rated a sub-set of the MSP-Face for our task for this reason since we need to
minimize the error propagated by the lip landmarks. With this data selec-
tion, we use a set of 6, 994 videos, which correspond to 17.9 hours. The size
of this set is larger than the training set used in many of the studies that
aim to generate human behaviors (Sadoughi and Busso, 2021; Richard et al.,
2021a; Fan et al., 2016). These videos were partitioned into the train (78%),
and development (22%) sets, using speaker independent sets (i.e., no overlap
of speakers in the sets). We re-segment original videos from the MSP-Face
corpus to create the test set used to evaluate our models. These videos are
30 seconds long, and are not included in either the train and development
sets. The longer duration of the test videos allows our evaluators to clearly
perceive the synchronization between the generated lip movements and the
lexical content. For more information about this corpus, the readers are
referred to the work of Vidal et al. (2020).
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The videos selected from the MSP-Face database do not have the same
frame rate. We fixed the frame rate to 29.97 across all the videos for the
extraction of the features. If the video frame rate does not match with
the previously mentioned rate, we interpolated or extrapolated the facial
landmarks depending on the case. We extract three features from the videos:
speech features, facial landmarks, and phonemes. The speech features are
obtained using the Python library Librosa (McFee et al., 2019). We extract
the signal from the videos, formatting the audio into a mono channel with
a sample rate equal to 16 KHz. From the audios, we extract 25 MFCCs
with a window size of 25 ms and a stride of 33.3 ms to match the fixed
frame rate of the videos. From the video, we extract the facial landmarks
using the DLib library (King, 2009), which gives us 68 facial landmarks.
This study only uses 20 landmarks corresponding to the lip area (Fig. 5).
The third set of features is the lexical content, which is represented by the
sequence of phonemes that are aligned with the audio. We do not rely on
manual transcriptions. Instead, we obtain automatic transcriptions using the
ASR included in the Microsoft Indexer solution. The ASR transcriptions are
processed with common modifications such as changing numbers and symbols
into words (e.g., $ into dollar). After these changes, we align the audio and
the ASR transcriptions using the Montreal Forced Aligner (McAuliffe et al.,
2017). We use 77 phonemes plus 4 silence markers, representing the lexical
content with an 81-dimensional one-hot vector.

For training and testing our models, we use a sliding window with 15
frames and a stride of one frame to transform the extracted features per
video into a window sequence. This processing strategy creates overlapping
between the windows. As a result, each frame will be determined by 14 frames
from the past and 14 frames from the future, modeling the co-articulatory
movements.

4.2. Baselines

We use several baselines to evaluate the models. We implement base-
lines using BLSTM layers, which is a common framework in speech-driven
lip movement generation (Fan et al., 2016; Sadoughi and Busso, 2018a). We
use two unimodal baselines and one multimodal baseline implemented with
BLSTMs. The unimodal baselines for speech (BLSTM Speech) and text
(BLSTM Text) follow the same architecture, which includes two BLSTM
layers, each of them implemented with 128 nodes and a 40D output layer
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Figure 4: BLSTM-based baselines for the unimodal and multimodal frameworks. The
symbol ⊕ represents the concatenation operation.

(Fig. 4(a)). The multimodal BLSTM baseline fuses speech and text infor-
mation (BLSTM Speech-Text). It relies on the pretrained BLSTM unimodal
baselines. We extract feature representations for those pretrained models,
which are concatenated, and further processed by two dense layers imple-
mented with 256 and 128 nodes, respectively (Fig. 4(b)). The output layer
creates the 40D vector with the trajectories.

We also implement two unimodal baselines and one multimodal baseline
using the CGAN structure. The unimodal CGAN baselines are implemented
by constraining the model with either speech (CGAN Speech) or text (CGAN
Text). These models demonstrate the benefits of using both modalities. The
multimodal method implements the generator by concatenating the feature
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representations of the CGANs (CGAN Speech-Text). The attention mecha-
nisms are not used, replacing them by concatenating the feature representa-
tion of the modalities. This multimodal baseline demonstrates the benefits
of using the proposed attention-based fusion approach.

4.3. Implementation Details

The baselines that only consist of BLSTM layers are trained for 200
epochs and use Adam (Kingma and Ba, 2015) as the optimizer with a learn-
ing rate of 1e−5. We pretrain the generator and discriminator of the CGAN
models for 10 epochs. Then, the CGANs for each modality are trained for
100 epochs and the fusion models for 120 epochs. The optimizer for these
models is Adam with a learning rate of 1e−5. Finally, the loss function for all
the baselines models and the generators is the addition of the concordance
correlation coefficient (CCC) (Trigeorgis et al., 2016) loss (1−CCC) and the
mean squared error (MSE) of the six inner mouth landmarks (Fig. 5). The
variables y and ŷ are the true and predicted landmarks, respectively. For
the CCC loss (Eq. 8), σ is the standard deviation, µ is the mean, and the
ρ is the Pearson correlation coefficient between the true and the predicted
landmarks.

CCC =
2ρσŷσy

σ2
ŷ + σ2

y + (µŷ − µy)
2 (8)

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (9)

L = (1− CCC) +MSE (10)

The MSE loss (Eq. 9) helps the model to capture when the mouth is
closed or opened, which is particularly useful for phonemes such as /m/,
/p/, /b/, /æ/ and /of/. Meanwhile, the CCC loss helps to increase the cor-
relation between the predicted and true values, while minimizing the distance
between their trajectories (squared difference of the means in the denomina-
tor of Eq. 8). While the CCC loss is bounded, the MSE is not and can take
big values dominating the combined loss. Therefore, we prevent this problem
by dividing the MSE by the highest MSE value of the initial batch. This step
is only implemented in the initial batch. All the models are trained with a
batch size of 128 sequences and a sequence of 15 frames as an input to the
model.
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Figure 5: Illustration with the 20 facial landmarks used in this study to generate lip move-
ments. The landmarks highlighted in red (squares) correspond to inner mouth landmarks
used to estimate the MSE in Equation 9.

5. Experimental Results

This section presents the results obtained by our proposed multimodal
models based on CGANs and the attention mechanisms. We design subjec-
tive and objective evaluations to assess the naturalness of the animations
(Sec. 5.1), and a subjective evaluation to directly compare preference be-
tween alternative methods (Sec. 5.2). Section 5.3 presents an analysis of the
attention weights estimated while fusing the text and speech modalities.

5.1. Perceptual Evaluation of Naturalness

We evaluate our models with subjective and objective evaluations. In
total, we have nine alternative animations per video created with differ-
ent methods. We have two proposed models implemented with alternative
attention-based fusion methods (Sec. 3.3). We have three BLSTM baselines
and three CGANs baselines (Sec. 4.2). As a reference, we also have a model
animated with the original facial landmarks in the recordings. We create
20 videos for each of the nine methods, where 10 videos are rendered with
the female character, and 10 with the male character. These animations are
generated with the methodology described in Section 3.4.

The perceptual evaluation assesses the naturalness of the animation, an-
notating one video at a time. For this evaluation, we hired 10 student workers
at The University of Texas at Dallas. For the proposed methods and the base-
lines, each annotator evaluated 10 videos for each method. For the videos
with the original facial landmarks, each annotator evaluated all the 20 videos
(i.e., each annotator evaluated a total of 100 videos). We ask the annota-
tors to assess “How natural is the animation?” with a 10-point Likert scale
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1 2 3 4 5 6 7 8 9 10

How natural was the animation on the video?  1 (not natural) to 10 (natural) 

Figure 6: Graphical interface presented to the annotators to assess the naturalness level
of the generated animations.

Table 1: Evaluation of the naturalness perceptual of the animations. Our proposed mod-
els are compared with animations generated with the original lip trajectories and with
competitive unimodal and multimodal baselines.

Method Mean Standard deviation

Original 5.4313 2.0851
BLSTM Speech 3.9875 2.2133
BLSTM Text 4.0750 1.8878
BLSTM Speech-Text 4.1625 2.0466
CGAN Speech 4.7875 2.2764
CGAN Text 5.6750 2.0424
CGAN Speech-Text 5.0000 2.0189
CGAN Speech-Text (self-att) 5.7875 2.1447
CGAN Speech-Text (cross-att) 5.7375 2.1093

with extremes values 1 (not natural) and 10 (natural). Figure 6 shows the
interface used for the evaluation. As a post-processing step, we estimate the
inter-agreement of the annotators. Two of the student workers showed low
inter-evaluator agreement and were removed from the annotations, which is
a common post-processing approach when using perceptual evaluations (Cao
et al., 2014; Mower Provost et al., 2015; Kaur et al., 2018; Gupta et al., 2016).

Table 1 shows the results obtained for this evaluation. We measure the
significance of the results by performing multiple t-test. The t-test assumes
normal distributions. We verified the homogeneity of the variance by using
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Bartlett’s test, which returned a p-value = 0.36. This result indicates that
we cannot reject the null hypothesis. The groups are expected to have the
same variance (i.e., homogeneity of the variance in the data). We compare
the scores obtained by our proposed multimodal models and the baselines.
We correct the p-values of the multiple t-tests by applying the Bonferroni
method, and we assert significance when the p-value is less than 0.05. Table
1 shows that the animations generated by the proposed CGAN speech-text
models with the attention mechanisms are perceived as the most natural an-
imations. The CGAN speech-text model with cross-attention achieved an
overall score of 5.7375, while CGAN speech-text model with self-attention
reached even a higher score equal to 5.7875. The proposed CGAN speech-
text models with the attention mechanisms are significantly better than all
the baseline models, with the exception of the CGAN text model, which
achieved an overall score equal to 5.6750. It is remarkable that the lip tra-
jectories created by the proposed methods were perceived more natural than
the animations created with the original facial landmarks, which received an
overall score equal to 5.4313.

The results presented in Table 1 for the CGAN models show that text-only
method performed better that speech-only method. While speech features
help with the synchronization between the lip movements and the audio, and
with the emphasis of the sentence, the lexical content emphasizes the right
coarticulation which is not directly present in the speech. This emphasis
on the right sequence of coarticulation during speech production makes the
animations to be perceived as more natural than the animations generated
from speech features. Any wrong coarticulation generated with speech will
create visible artifacts reducing its naturalness perception.

The results in Table 1 show the contribution of the attention mecha-
nisms to the performance of the methods. The CGAN speech-text approach
achieved an overall score of 5.0. This method concatenates the representa-
tions from the modalities. Concatenation includes features from both modal-
ities, even when one modality (e.g., text) may be better than the other (e.g.,
speech). Since the speech-only model has lower performance than the text-
only model makes the concatenation approach less effective, leading to a
fusion strategy that is not able to outperform the best unimodal system, in
this case, the text-only model. For this reason, the integration of speech and
text features by using attention is relevant to this problem. The attention
mechanism takes the best of each modality, improving the overall perfor-
mance of the model. When we add the attention mechanisms, we observe
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overall scores above 5.7, which represents a relative gain of more than 14%
in the naturalness perception of the animated videos. Table 1 shows that the
performances of the CGAN methods lead to better performance than the
BLSTM baselines. The differences in the results between the corresponding
CGAN and BLSTM methods are statistically significant.

In addition to the subjective evaluation, we aim to include objective met-
rics to assess the quality of the video. MSE and correlation have not been
good metrics for measuring the generation of human behaviors (Kucherenko
et al., 2020; Yoon et al., 2022). The main issue with these objective metrics
is that they do not correlate well with subjective metrics, which is the main
goal in synthesizing naturalistic behaviors. For these reasons, we present the
LipSync metric proposed by Chung and Zisserman (2016) as an objective
metric. LipSync measures the synchrony between the lip movements from a
video and its audio. The output of this metric is a distance, where lower val-
ues indicate higher synchrony between the audio and the video. Notice that
while the LipSync original model was designed for real images, we demon-
strate in this study that this approach can also be useful as an objective
metric to evaluate facial animations.

Figure 7 shows the results that we obtain by using the LipSync metric
on the animations generated with (1) our methods, (2) animations with the
original landmarks, and (3) the true videos. We observe that the true videos
reach the lowest distance, as expected since the audio and the lip movements
are perfectly correlated on the video. Our proposed methods CGAN Speech-
Text (self-att) and CGAN Speech-Text (cross-att) achieve higher synchrony
(lower distance) than the other models, which agrees with the subjective
evaluation presented in Table 1. Figure 7 also shows that generative methods
based on CGAN offer better synchrony than the BLSTM methods. This
result also agrees with the subjective evaluations presented in Table 1.

5.2. Preference Between Alternative Methods

The second perceptual evaluation directly compares the preference be-
tween alternative methods. We present two videos and we ask the annota-
tors which animation is more natural. Figure 8 shows the survey used for
this evaluation. Given the results obtained in Section 5.1 we consider four
comparisons.

• BLSTM speech-text & CGAN speech-text(self-att)
• CGAN speech-text & CGAN speech-text(self-att)
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Figure 7: Results using the LipSync objective metric. Lower distance means better syn-
chrony. BLSTM S: BLSTM Speech; BLSTM T: BLSTM Text; BLSTM ST: BLSTM
Speech-Text; CGAN S: CGAN Speech; CGAN T: CGAN Text; CGAN ST: CGAN Speech-
Text; CGAN ST SA: CGAN Speech-Text (self-att); CGAN ST CA: CGAN Speech-Text
(cross-att); Original: Animations using original lip landmarks; True: Original videos.

• CGAN speech-text & CGAN speech-text(cross-att)
• CGAN speech-text(self-att) & CGAN speech-text(cross-att)

These comparisons include the best BLSTM baseline with the proposed
model that achieved the best results. It also directly compares the benefits of
using the attention mechanics as an alternative to concatenating the feature
representations of the individual CGANs. It also directly compares our pro-
posed approaches. For this evaluation, we use the 20 animations (10 females
and 10 males) per each method. We recruited six additional student workers
who did not participate in the evaluation presented in Section 5.1. Each
comparison has six evaluations. The order of the videos was randomized,
appearing as either “video 1” or “video 2”. We transform the alternatives
provided in Figure 8 into percentages to quantify the results using the map-
ping in Table 2.

Figure 9 presents the results of this evaluation. We perform a statistical
analysis (t-test) on each comparison taking 50% as the null hypothesis. We
assert significance if the p-value< 0.05. We observe that CGAN speech-text
self-attention approach is preferred over the BLSTM speech-text approach,
where the preference is statistically significant. The second comparison be-
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Video 1 Video 2

Which animation looks more natural?
Definitely Video 1
Video 1
Moderately Video 1
Slightly Video 1

Definitely Video 2
Video 2
Moderately Video 2
Slightly Video 2
Both look similar

Figure 8: Graphical interface presented to the annotators to compare animations generated
by two different methods.

Table 2: Mapping of preference between alternative methods into percentages. This map-
ping is used to quantify if one method is preferred over the other.

Option Video 1 Video 2

Definitely Video 1 100% 0%
Video 1 90% 10%
Moderately Video 1 75% 25%
Slightly Video 1 60% 40%
Both look similar 50% 50%
Slightly Video 2 40% 60%
Moderately Video 2 25% 75%
Video 1 10% 90%
Definitely Video 2 0% 100%

tween our proposed CGAN speech-text self-attention method and the CGAN
speech-text approach shows that using self attention leads to a 60% prefer-
ence, which is a statistically significant difference. The comparison between
the CGAN speech-text and GAN speech-text cross-attention suggest that
there is no clear preference (p-value= 0.08). Finally, the figure shows similar
preference for our two proposed models, where the difference is not statisti-
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Figure 9: Plot that represents the preferences of the methods evaluated (BLSTM ST:
BLSTM Speech-Text; CGAN ST: CGAN Speech-Text; CGAN ST SA: CGAN Speech-
Text Self-att, and CGAN ST CA: CGAN Speech-Text Cross-att). The extremes of the
box represent the 25th and 75th percentile values, the red line corresponds to the median
of the evaluations, the circles represent outliers, and the dashed vertical blue line indicates
the 50% of the preferences.

cally significant (p-value= 0.3). These results are consistent with the percep-
tual evaluation presented in Section 5.1 (Table 1), where the performance of
the CGAN speech-text self-attention and CGAN speech-text cross-attention
models are very similar. Collectively, these results show that our proposed
methods with attention mechanisms outperform and improve competitive
baselines on the synthesis of lip movements using only facial landmarks.

5.3. Weight Analysis of the Fusion Approaches

The proposed models use the attention mechanism (Figs. 2(a) and 2(b)).
The weights estimated by these models provide insights to determine the
temporal information considered by each modality in the generation of the
lip trajectories. For the analysis, we extract the attention weights for the
self-attention and cross-attention and analyze their patterns across different
scenarios. Given the segmentation of the sequence into windows (Sec. 4.1),
the context contribution for the attention weights is limited to a diagonal

26



0 50 100 150 200 250

0

50

100

150

200

250

Speech modality

0 50 100 150 200 250

0

50

100

150

200

250

Text modality

0.00

0.05

0.10

0.15

0.20

(a) Self-attention weights

0 50 100 150 200 250

0

50

100

150

200

250

Speech modality

0 50 100 150 200 250

0

50

100

150

200

250

Text modality

0.00

0.05

0.10

0.15

0.20

(b) Cross-attention weights

Figure 10: Attention weights values for the frameworks based on self-attention and cross-
attention mechanisms. The horizontal and vertical axes represent the number of frames
in a sentence. The horizontal axis corresponds to the frames from the key modality and
the vertical axis correspond to the frames of the query modality.

block structure that includes the main diagonal, 14 past frames, and 14
future frames. Figure 10 shows the average values of the attention weights
for the 20 videos in the test set. The colors assigned to a row represent the
weight values assigned to the frames at that particular time. The values
above the diagonal correspond to the weights assigned to future frames. The
values below the diagonal correspond to the attention weights assigned to
past frames. We only provide the results for the first 10 seconds for better
resolution. In addition to the figures, we quantify the results in Table 3, which
lists the average weights of the previous 14 frames, the current frame, and
the future 14 frames. A higher value in a region indicates that we pay more
attention to that region. Table 3 also shows their corresponding contribution
in percentage.

Figures 10(a) and 10(b) show the attention weights for each modality for
the self-attention and cross-attention methods, respectively. We observe that
in the self-attention mechanism, the speech modality pays more attention to
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Table 3: Average weight values for the self-attention and cross-attention based models.
The table provides the results for the past, current, future frames. It also includes the
contribution in percentage for each condition. The table shows the impact that noise in
the features has on the weights. Higher values indicate higher attentions.

Approach Modality
Past frames Current frame Future frames

Value [%] Value [%] Value [%]

Self-attention
Speech 0.0006 0.22 0.0657 23.21 0.2168 76.56
Text 0.0386 22.60 0.0627 36.68 0.0696 40.71

Cross-attention
Speech 0.0925 37.53 0.0514 20.85 0.1026 41.60
Text 0.0470 24.31 0.0341 17.66 0.1121 58.01

future frames (76.56%), while the text modality distributes the attention
to previous (22.6%), current (36.68%) and futures (40.71%) frames, indicat-
ing that it takes into account the full context. This behavior changes for
the cross-attention mechanism, since the fusion involves a closer interaction
between the modalities (i.e., query matrix is shared with the other modal-
ity). The text modality forces the speech modality to take into account more
context, while the speech modality makes the text modality to consider the
current frame less (17.66%), and pay more attention to the past (24.31%)
and future (58.01%) frames, which is supported by the results in Table 3.

These results indicate that the difference between the multimodal models
using self-attention and cross-attention is how the attention weights are dis-
tributed across time. By observing Table 3, we noticed that the multimodal
model with self-attention as the fusion method has more contribution from
the current and future frames for generating lip movements. Meanwhile,
the multimodal model with cross-attention mechanism pays more attention
to the past and future frames. Therefore, this distribution of the attention
weights plays a key role in the generation of lip movements, creating the
difference that we report in the perceptual evaluation of the naturalness of
the videos.

6. Conclusions and Future Work

This paper presented two alternative methods based on the attention
mechanism for synthesizing lip movements on a 3D shape by using only
transcriptions provided by an ASR and speech. These methods follow a
CGAN architecture implemented for the two modalities considered in the
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study: text and speech. The proposed methods relied on separate pretrained
CGAN for each modality. The modality dependent representations are fused
with the attention mechanism, which provides a powerful framework to quan-
tify the temporal context used by each modality in the generation of lip
movements. The first fusion approach relies on self-attention mechanisms
separately implemented for each modality. The second fusion approach re-
lies on cross-attention mechanism, where the query matrix is shared across
modalities. The proposed methods were evaluated by creating animations
using a formulation that requires only the facial landmarks generated by the
methods, which are projected into a blendshape model. We used this anima-
tion method to evaluate our models using two perceptual evaluation tasks.
The first task assessed the naturalness of the animations generated with the
predicted facial landmarks produced by the proposed methods and compet-
itive baseline approaches. We observed that the fusion of text and speech
with the proposed attention mechanisms was important to achieve good per-
formance. We even observe that the naturalness perception of animations
created by our proposed models was higher than the naturalness perception
of the animations created with the original facial landmarks. The second
task compared two alternative frameworks, establishing preferences between
them. The results for this task reaffirmed the results observed from the first
task, demonstrating the superior performance of our proposed fusion based
approach implemented with either self-attention or cross-attention. The re-
sults showed that our models generate better co-articulation movements than
the baselines. An advantage of the attention-based fusion approaches is the
insights that we obtained from the weights of the attentions. An analysis
of the average attention weights in the self-attention model indicated that
text and speech modalities emphasize different frames. While speech em-
phasizes future frames, the attention weights for text are better distributed
among past, current, and future frames. For the cross-attention model, the
weights for text and speech are more similarly distributed for past, current,
and future frames.

As a future work, we are exploring models that are also constrained by
the emotional content conveyed in the sentence. A straightforward approach
is to introduce emotion as an extra constraint of our CGAN framework.
Another important research direction is to identify objective metrics that
correlate well with subjective measures using perceptual evaluations. We
demonstrate that using the LipSync model (Chung and Zisserman, 2016)
as an objective metric is an appealing approach to assess synthesized lip
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movements. This metric, unlike other approaches, correlates with the results
from the perceptual evaluations. Since perceptual evaluations take time,
defining good objective metrics can lead to more effective approaches to
assess the impact of small changes in the model without having to conduct
an additional subjective evaluation.
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pouzis, K., Pelé, D. (Eds.), International Workshop on Intelligent Virtual
Agents (IVA2007). Springer Berlin Heidelberg, Paris, France. volume 4722
of Lecture Notes in Computer Science, pp. 15–28. doi:10.1007/978-3-540-
74997-4 2.

Kucherenko, T., Hasegawa, D., Kaneko, N., Henter, G., Kjellström,
H., 2021. Moving fast and slow: Analysis of representations and
post-processing in speech-driven automatic gesture generation. In-
ternational Journal of Human-Computer Interaction 37, 1300–1316.
doi:10.1080/10447318.2021.1883883.

Kucherenko, T., Jonell, P., van Waveren, S., Henter, G., Alexandersson, S.,
Leite, I., Kjellström, H., 2020. Gesticulator: A framework for semantically-
aware speech-driven gesture generation, in: ACM International Conference
on Multimodal Interaction (ICMI 2020), Utrecht, The Netherlands. pp.
242–250. doi:10.1145/3382507.3418815.

Lee, Y., Terzopoulos, D., Waters, K., 1995. Realistic modeling for
facial animation, in: Conference on Computer graphics and interac-
tive techniques (SIGGRAPH 1995), Los Angeles, CA, USA. pp. 55–62.
doi:10.1145/218380.218407.

Liu, N., Zhou, T., Ji, Y., Zhao, Z., Wan, L., 2020. Synthesizing
talking faces from text and audio: An autoencoder and sequence-to-
sequence convolutional neural network. Pattern Recognition 102, 107231.
doi:10.1016/j.patcog.2020.107231.

34



Luo, C., Yu, J., Li, X., Wang, Z., 2014. Realtime speech-driven facial anima-
tion using Gaussian mixture models, in: IEEE International Conference
on Multimedia and Expo Workshops (ICMEW 2014), Chengdu, China.
pp. 1–6. doi:10.1109/ICMEW.2014.6890554.

Mariooryad, S., Busso, C., 2012. Generating human-like behaviors us-
ing joint, speech-driven models for conversational agents. IEEE Trans-
actions on Audio, Speech and Language Processing 20, 2329–2340.
doi:10.1109/TASL.2012.2201476.

McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., Sonderegger, M.,
2017. Montreal Forced Aligner: Trainable text-speech alignment us-
ing Kaldi, in: Interspeech 2017, Stockholm, Sweden. pp. 498–502.
doi:10.21437/Interspeech.2017-1386.

McFee, B., Lostanlen, V., McVicar, M., Metsai, A., Balke, S., Thomé, C.,
Raffel, C., Lee, D., Lee, K., Nieto, O., et al., 2019. librosa/librosa: 0.7.0.
doi:10.5281/zenodo.3270922.

Minnis, S., Breen, A., 2000. Modeling visual coarticulation in synthetic
talking heads using a lip motion unit inventory with concatenative synthe-
sis, in: International Conference on Spoken Language Processing (ICSLP
2000), Beijing, China. pp. 759–762.

Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. ArXiv
e-prints (arXiv:1411.1784) arXiv:1411.1784.

Mower Provost, E., Shangguan, Y., Busso, C., 2015. UMEME: University
of Michigan emotional McGurk effect data set. IEEE Transactions on
Affective Computing 6, 395–409. doi:10.1109/TAFFC.2015.2407898.

Neff, M., Kipp, M., Albrecht, I., Seidel, H., 2008. Gesture modeling and an-
imation based on a probabilistic re-creation of speaker style. ACM Trans-
actions on Graphics (TOG) 27, 1–24. doi:10.1145/1330511.1330516.

Ostermann, J., 1998. Animation of synthetic faces in MPEG-4, in:
Proceedings Computer Animation, Philadelphia, PA, USA. pp. 49–55.
doi:10.1109/CA.1998.681907.

Pelachaud, C., Busso, C., Heylen, D., 2021. Multimodal behavior modeling
for socially interactive agents, in: Lugrin, B., Pelachaud, C., Traum, D.

35



(Eds.), The Handbook of Socially Interactive Agents: 20 Years of Research
on Intelligent Virtual Agents, Embodied Conversational Agents, and Social
Robotics. Association for Computing Machinery, Human-Centered Com-
puting, New York, NY, USA, pp. 259–310. doi:10.1145/3477322.3477331.

Pham, H., Wang, Y., Pavlovic, V., 2018. End-to-end learning for 3D
facial animation from speech, in: ACM International Conference on
Multimodal Interaction (ICMI 2018), Boulder, CO, USA. pp. 361–365.
doi:10.1145/3242969.3243017.

Pham, H.X., Cheung, S., Pavlovic, V., 2017. Speech-driven 3D fa-
cial animation with implicit emotional awareness: A deep learning ap-
proach, in: IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW 2017), Honolulu, HI, USA. pp. 2328–2336.
doi:10.1109/CVPRW.2017.287.

Qiu, Y., Misu, T., Busso, C., 2019. Driving anomaly detection with con-
ditional generative adversarial network using physiological and can-bus
data, in: ACM International Conference on Multimodal Interaction (ICMI
2019), Suzhou, Jiangsu, China. pp. 164–173. doi:10.1145/3340555.3353749.

Qiu, Y., Misu, T., Busso, C., 2022. Unsupervised scalable multimodal driving
anomaly detection. IEEE Transactions on Intelligent Vehicles to appear.
doi:10.1109/TIV.2022.3160861.

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H., 2016. Gen-
erative adversarial text to image synthesis, in: International Conference on
Machine Learning (ICML 2016), San Juan, Puerto Rico. pp. 1–10.

Richard, A., Lea, C., Ma, S., Gall, J., de la Torre, F., Sheikh, Y., 2021a.
Audio- and gaze-driven facial animation of codec avatars, in: IEEE Winter
Conference on Applications of Computer Vision (WACV 2021), Waikoloa,
HI, USA. pp. 41–50. doi:10.1109/WACV48630.2021.00009.
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