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Abstract	

Studying	the	facial	expressions	of	humans	has	been	one	of	the	major	
applications	of	computer	vision.	An	open	question	is	whether	common	machine	
learning	techniques	can	also	be	used	to	track	behaviors	of	animals,	which	is	a	

less	explored	research	problem.	Since	animals	are	not	capable	of	verbal	
communication,	computer	vision	solutions	can	provide	valuable	information	to	
track	the	animal’s	state.	We	are	particularly	interested	in	pain	neurobiology	

research,	where	rodent	models	are	extensively	used	to	investigate	pain	
interventions.	A	grimace	scale	is	used	to	understand	the	suffering	of	a	mouse	in	
the	presence	of	interventions,	which	is	inferred	from	various	facial	features	such	
as	the	shape	of	the	eyes	and	ears.	In	this	work,	we	automate	the	prediction	of	the	

grimace	scale	on	white	furred	mice	using	a	machine	learning	approach,	
following	the	same	principles	used	for	human	facial	expression	recognition:	face	
detection,	landmark	region	extraction,	and	expression	recognition.	We	
demonstrate	the	use	of	the	you	only	look	once	(YOLO)	framework	for	face	

detection	of	the	mice	with	outstanding	results.	For	eye	region	extraction	and	
grimace	pain	prediction,	we	propose	a	novel	structure	based	on	a	dilated	
convolutional	network.	The	experimental	results	are	promising,	showing	that	it	

is	possible	to	differentiate	among	the	pain	scale	of	the	mice.	
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1.	Introduction	

Animals	 have	 been	 useful	 companions	 from	 the	 beginning	 of	 human	

civilization.	Apart	from	emotional	support	as	pets,	animals	have	also	enabled	us	

to	perform	research	in	medicine	and	neuroscience	by	testing	various	procedures	
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before	we	use	them	on	humans.	By	evaluating	candidate	medical	procedures	in	

animals,	we	can	identify	possible	secondary	effects	leading	to	potential	risks	for	

human	 beings.	 Our	 research	 is	 particularly	 interested	 on	 pain	 neurobiology	

research	 aiming	 to	 identify	 interventions	 to	 reduce	 chronic	 pain	 in	 human	

patients.	One	important	aspect	in	these	procedures	is	to	study	the	level	of	pain	in	

animals.	Existing	approaches	manually	estimate	the	pain	level	by	observing	the	

behaviors	 of	 the	 animals.	 Having	 an	 automatic	 system	 for	 pain	 detection	 in	

animals	 can	 serve	 as	 an	 important	 tool	 to	 accelerate	 advances	 in	 these	 fields,	

reducing	the	time	of	medical	testing	procedures.	

A	 white	 mouse	 is	 a	 prime	 example	 of	 an	 animal	 that	 has	 been	 used	 in	

neuroscience	 experiments.	 During	 these	 experiments,	 mice’s	 behaviors	 are	

analyzed	to	estimate	the	nociception	by	observing	“pain-like”	cues	on	mice.	The	

analysis	of	the	mice’s	behaviors	can	be	categorized	into	stimulus-evoke	and	non-

stimulus	evoke.	Stimulus-evoke	methods	consist	of	using	mechanical	or	thermal	

(heat	or	cold)	stimuli,	which	change	the	mice’s	behaviors,	followed	by	studying	

their	 reactions.	 Non-stimulus	 evoke	 methods	 measure	 the	 spontaneous	 or	

background	 pain.	 Because	 of	 the	 inability	 of	 the	 animals	 to	 communicate,	 the	

suffering	of	the	animals	is	challenging	to	observe.	Therefore,	pain	measurement	

can	 be	 estimated	 using	 several	 methods	 including	 burrowing	 tests,	 weight	

bearing,	and	grimace	scales	(Deuis	et	al.,	2017).	The	grimace	scale	(Langford	et	

al.,	2010)	captures	the	pain	level	of	the	mice	by	observing	various	characteristics	

of	the	facial	features	of	the	animal.	The	approach	consists	of	observing	the	orbital	

tightening,	ears,	nose,	cheeks	and	whiskers.	The	cues	are	used	to	define	whether	

the	animal	does	not	suffer	pain	(value	0),	feels	moderate	pain	(or	feels	pain	with	

uncertainty,	 value	 1),	 or	 definitely	 suffers	 pain	 (value	 2).	 However,	 manually	

performing	 these	 annotations	 is	 very	 time-consuming	 and	unreliable.	 First,	 an	

experienced	annotator	has	to	identify	clear	frames	with	frontal	views	where	the	

face	of	the	mouse	is	visible.	This	is	a	time-consuming	task	since	a	mouse	face	is	

not	 clearly	 visible	 in	most	 frames	 given	 the	 sudden	movements	 of	 the	mouse.	

However,	the	annotator	has	to	identify	the	pain	cues	from	the	mouse’s	face.	In	this	

work,	we	propose	a	system	that	can	automatically	detect	the	level	of	pain	in	the	
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mice	 using	 solutions	 from	 machine	 learning	 and	 computer	 vision.	 For	 this	

purpose,	we	present	a	 system	based	on	deep	 learning	capable	of	 (1)	detecting	

frontal	faces	of	white	furred	mice,	and	(2)	estimating	the	pain	level	using	the	eye	

cues	of	white	furred	mice.	

We	propose	a	system	that	predicts	the	grimace	level	in	a	mouse	based	on	the	

orbital	 tightening.	 We	 use	 a	 database	 collected	 by	 the	 Brain	 and	 Behavioral	

Science	Department	at	the	University	of	Texas	at	Dallas.	This	database	includes	

data	 from	 eight	 white	 furred	 mice,	 subjected	 to	 induced	 pain.	 The	 proposed	

system	solves	two	important	problems:	face	detection	and	pain	estimation.	The	

first	part	corresponds	to	a	face	detection	system	based	on	the	you	only	look	once	

(YOLO)	network	(Redmon	&	Farhadi,	2018),	which	helps	us	identify	the	frames	

with	a	clear	 frontal	 face,	saving	these	 frames	 for	 further	analysis.	The	network	

shows	high	accuracy	in	predicting	a	bounding	box	for	the	mouse	face	with	a	mean	

intersection	over	union	(IoU)	score	of	0.87.	The	second	part	corresponds	to	the	

grimace	scale	prediction,	where	we	predict	the	grimace	scale	of	the	mouse	from	

the	orbital	tightening	by	localizing	the	eye	region	in	a	mouse	face	image.	We	use	

the	detected	frontal	face	to	obtain	a	region	around	the	eyes	of	a	white	mouse	using	

a	dilated	convolutional	neural	network	(CNN).	The	eye	patch	is	the	input	for	our	

classification	 model	 that	 predicts	 the	 grimace	 scale	 in	 the	 mouse.	 The	 model	

reaches	a	high	accuracy	especially	in	predicting	between	no	pain	(value	0)	and	

high	pain	 (value	2),	 achieving	an	accuracy	of	97.2%.	While	 the	accuracy	drops	

when	we	consider	 the	class	 “mild	pain”	 (value	1)	 in	a	 three-class	problem,	 the	

results	are	still	higher	than	the	baselines.	We	compare	our	mouse	grimace	scale	

prediction	model	with	 the	 approach	proposed	by	Tuttle	 et	 al.	 (2018)	 and	 two	

baselines	 based	 on	 neural	 network	 and	 support	 vector	machine	 (SVM)	 trained	

with	histogram	of	gradient	(H0G)	features.	The	results	show	that	our	proposed	

model	clearly	outperforms	all	the	baseline	models.	The	contributions	of	this	study	

are:	

• We	 collect	 the	 infrastructure	 and	 resources	 to	 leverage	 machine	 learning	

solutions	 in	 a	 novel	 problem	of	 face	 detection	 and	 pain	 estimation	 of	white	

furred	mice	
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• We	repurpose	a	YOLO	network	to	perform	face	detection	of	white	furred	mice	

• We	propose	a	deep	neural	network	(DNN)	 for	pain	detection	of	white	 furred	

mice	

2.	Related	Work	

2.1.	Face	Analysis	in	Animals	

Facial	expression	analysis	is	a	widely	studied	research	topic	in	humans.	Over	

the	years	features	such	as	facial	action	units	(AU)	(Tian	et	al.,	2001;	Zhao	et	al.,	

2016)	and	facial	landmarks	(Baltrušaitis	et	al.,	2013;	King,	2009)	have	been	used	

to	 study	 the	 emotional	 state	 of	 a	 person.	With	 the	 success	 of	 computer	 vision	

algorithms	 in	 detecting	 human	 facial	 expressions,	 the	 community	 has	 recently	

explored	the	idea	of	using	similar	tools	to	study	animal	behaviors.	However,	the	

progress	on	facial	expression	analysis	in	animals	is	still	limited	(Descovich	et	al.).	

Studies	in	this	area	have	explored	pain	detection	algorithms	in	animals	based	on	

facial	landmarks	(McLennan	&	Mahmoud,	2019;	McLennan	et	al.,	2016),	the	entire	

face	(Tuttle	et	al.,	2018),	or	parts	of	the	face	(Kopaczka	et	al.,	2018).	Descovich	et	

al.	 discussed	 the	 use	 of	 landmarks	 on	 an	 animal	 face	 to	 identify	 different	

emotional	states	related	to	the	wellbeing	of	the	animal.	They	discussed	various	

emerging	initiatives	in	the	field	of	animal	behavior	analysis	using	computer	vision	

solutions.	 Similarly,	 Burghardt	 &	 Ćalić	 (2006)	 proposed	 methods	 similar	 to	

human	tracking	to	study	the	locomotive	behaviors	of	animals	in	the	wild.	They	

used	this	method	to	track	the	movement	of	lions	and	classify	them	into	multiple	

semantic	 categories	 such	 as	 stalking,	 standing	 and	 trotting.	 McLennan	 et	 al.	

(2016)	created	a	tool	defined	as	the	sheep	pain	facial	expression	scale	(SPFES)	to	

determine	 the	 pain	 of	 sheep	 using	 action	 units.	 Subsequently,	 McLennan	 &	

Mahmoud	 (2019)	 designed	 a	 system	 with	 this	 tool	 to	 extract	 features	 from	

relevant	 regions	of	 the	 face,	 such	as	 eyes,	 nose,	 and	mouth	using	histogram	of	

oriented	gradients	(HoG).	They	estimated	the	action	units	using	a	support	vector	

machine	(SVM)	trained	with	these	HoG	features.	Lu	et	al.	(2017)	also	proposed	

predicting	the	pain	level	of	sheep	by	training	a	SVM	with	HoG	features	on	localized	

parts	 of	 the	 face	 such	 as	 the	 nose,	 ears,	 and	 eyes.	 Hewitt	&	Mahmoud	 (2019)	
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proposed	 a	 pose	 aware	 landmark	 localization	 approach	 in	 animals	 following	

similar	approaches	used	in	head	pose	estimation	and	landmark	localizations	in	

humans.	They	also	introduced	a	sheep	database	with	850	facial	images	annotated	

with	25	facial	landmarks.	Van	Loon	&	Van	Dierendonck	(2018)	provided	a	survey	

in	the	field	of	pain	detection	in	horses,	describing	two	main	types	of	pain	scales.	

The	 first	 one	 is	 singular	 and	 composite	 pain	 scales.	 The	 second	 is	 the	 facial	

expression-based	 pain	 scales,	 which	 is	 based	 on	 action	 units	 that	 result	 from	

contractions	of	certain	facial	muscles	when	the	horse	is	in	pain.	The	scale	allows	

a	veterinarian	to	determine	the	type	of	pain	that	the	horse	is	suffering.	

	

2.2.	Mouse	Grimace	Scale		

									White	furred	mice	are	one	of	the	most	common	animals	used	in	laboratory	

experiments.	 They	 are	 widely	 used	 in	 testing	 drugs	 for	 diabetes,	 cancer	 and	

chronic	pain.	A	major	factor	when	performing	experiments	with	animals	 is	the	

ability	to	quickly	and	efficiently	detect	when	the	animal	is	suffering.	Langford	et	

al.	(2010)	first	introduced	a	facial	action	coding	system	for	mice	referred	to	as	the	

mouse	grimace	scale	(MGS).	The	grimace	scale	in	mice	depends	on	five	features	

from	 the	 face:	 orbital	 tightening,	 nose	 bulge,	 cheek	 bulge,	 ear	 position	 and	

whisker	change.	These	facial	action	units	take	the	values	0	(no	pain),	1	(mild	pain	

or	pain	probably	present)	and	2	(high	pain	or	pain	definitely	present).	Figure	1	

shows	examples	of	 this	scale	on	mice.	 In	our	study,	we	design	a	 framework	 to	

detect	 the	 grimace	 scale	 of	 mice	 from	 the	 orbital	 tightening	 using	 automatic	

computer	vision	algorithms.	

	

	

 (a)	Grimace	level	0	 (b)	Grimace	level	1	 (c)	Grimace	level	2	

Figure	1:	Examples	of	frames	from	the	database	with	their	grimace	label.	
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2.3.	Relation	to	Prior	Work	

The	closest	studies	to	our	paper	are	the	studies	of	Kopaczka	et	al.	(2018),	and	

Tuttle	et	 al.	 (2018).	Kopaczka	et	 al.	 (2018)	proposed	an	eye	detection	method	

based	on	deep	learning	using	CNNs	to	detect	the	eye	region	for	black	mice.	The	

mice	were	 recorded	 using	 a	 red	 background	 to	 simplify	 the	 task.	 Tuttle	 et	 al.	

(2018)	used	deep	learning	for	the	binary	detection	of	pain	in	white	furred	mice	

(e.g.,	 pain	 versus	 no	 pain).	 They	 used	 an	 end-to-end	 framework	 based	 on	 the	

Inception	V3	 architecture	 (Szegedy	 et	 al.,	 2016).	They	 tested	 their	model	with	

images	of	mice	during	a	laparatomy	surgery	and	obtained	high	confidence	in	pain	

detection,	which	was	comparable	to	human	annotators.	

We	focus	our	work	on	two	key	aspects	of	automatic	detection	of	the	grimace	

scale.	The	 first	contribution	 focuses	on	obtaining	key	 frames	with	clear	 frontal	

faces	from	continuous	video	that	can	be	helpful	in	effectively	estimating	the	pain	

levels	of	mice.	This	is	an	important	task	because	the	manual	identification	of	clear	

frames	is	time-consuming.	The	previous	work	of	Kopaczka	et	al.	(2018)	proposed	

a	method	for	detecting	clear	frames	based	on	eye	segmentation.	Unlike	that	work,	

we	 propose	 the	 use	 of	 a	 pretrained	 neural	 network	 on	 the	 field	 of	 object	

recognition	 and	 adapt	 it	 to	mouse	 face	detection	obtaining	high	 accuracy.	 The	

second	contribution	focuses	on	using	these	key	frames	to	detect	the	grimace	scale	

based	on	orbital	tightening.	In	contrast	with	the	work	of	Tuttle	et	al.	(2018)	that	

predicts	the	presence	of	pain	or	no-pain	on	the	mouse,	we	predict	the	pain	level	

on	the	grimace	scale	(0,	1,	and	2).	This	is	a	difficult	task,	because	we	are	not	only	

predicting	if	the	mouse	is	in	pain,	but	also	predicting	the	pain	intensity,	resulting	

is	an	F1-score	of	0.718.	

3.	Database	

This	section	discusses	the	database	used	in	our	study.	The	database	contains	

videos	of	eight	different	white	furred	mice	collected	in	multiple	sessions	across	

different	days	(Institute	of	Cancer	Research	(ICR)	mouse	strain).	The	mice	are	part	

of	 a	 neurobiology	 research	 study	 aiming	 to	 identify	 interventions	 to	 reduce	

chronic	pain	conducted	by	the	Brain	and	Behavioral	Science	Department	at	the	
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University	of	Texas	at	Dallas	(UT	Dallas).	The	mouse	procedures	were	approved	

by	the	Institutional	Animal	Care	and	Use	Committee	(IACUC)	at	UT	Dallas.	The	mice	

were	administered	compound	48/80	onto	the	outermost	membrane	enveloping	

the	 brain	 and	 spinal	 cord	 (dura	 mater).	 The	 injection	 of	 this	 component	 is	

performed	 using	 internal	 cannulas,	 where	 the	 projection	 is	 determined	

individually	for	each	mouse	so	that	there	is	no	damage	to	the	dura.	The	supradural	

administration	of	the	component	was	placed	on	the	junction	of	the	sagittal	and	

lambdoidal	 sutures.	 Once	 the	 component	 is	 injected	 each	mouse	 recovers	 and	

returns	to	its	individual	home	cage.	Hassler	et	al.	(2019)	discussed	the	protocol	in	

detail.	The	behaviors	of	these	mice	are	recorded	using	high	resolution	cameras	

(Samsung	HMX-QF20	Full	HD	1920	×	1080).	The	cameras	are	placed	at	the	front	

of	the	cage	to	make	sure	each	camera	only	records	data	from	a	single	mouse.	

We	manually	selected	2,222	frames	from	these	videos	to	be	annotated	for	the	

face	detection	task.	The	frames	contain	clear	frontal	view	of	the	mouse	face.	We	

annotate	bounding	boxes	around	the	mouse	face,	creating	the	resource	to	train	

automatic	algorithms	 for	 face	detection.	We	use	data	 from	five	animals	 for	 the	

train	set	(1,361	frames),	one	animal	for	the	development	set	(453	frames),	and	

two	animals	for	the	test	set	(408	frames).	We	refer	to	this	part	of	the	dataset	as	

Sub-dataset	1.	

We	also	create	annotations	for	the	pain	estimation	task	using	eight	mice.	

Images	of	frontal	faces	of	the	animals	are	used	to	annotate	the	MGS	of	the	mice.	

Each	 image	 is	 annotated	with	 a	 value	 for	 orbital	 tightening,	 nose	bulge,	 cheek	

bulge,	 ear	 position	 and	 whisker	 change.	 The	 annotations	 are	 performed	 by	

experts,	who	rated	the	pain	level	as	0,	1	or	2	for	each	facial	cue,	following	the	scale	

discussed	 in	Section	2.2.	We	annotate	a	 total	of	1,087	 images.	We	refer	 to	 this	

subset	 as	 Sub-dataset	 2.	 Since,	 our	 experiment	 focuses	 on	 the	 grimace	 scale	

prediction	from	the	orbital	tightening,	we	annotate	each	image	with	the	bounding	

box	around	the	eyes,	so	that	we	can	train	models	that	give	high	attention	to	the	

eye	region.	For	experiments	related	to	grimace	prediction,	we	follow	a	leave-one-

out	cross-validation	scheme.	We	select	data	from	one	animal	as	the	test	set.	Of	the	

remaining	seven	animals,	data	from	one	are	randomly	chosen	to	be	used	as	the	
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development	 set.	 Data	 from	 the	 remaining	 six	mice	 are	 used	 for	 training.	We	

repeat	this	procedure	eight	times,	each	time	using	a	different	animal	for	the	test	

set.	The	results	reported	 in	 this	study	are	compiled	using	all	 the	 frames	 in	 the	

corpus,	aggregating	the	results	across	folds.	

4.	Proposed	approach	

We	present	a	framework	to	detect	the	mouse	face	and	predict	its	pain	level	

(grimace	scale).	Both	tasks	are	important	in	neuroscience	research	dealing	with	

rodent	models.	Tracking	a	mouse	in	a	continuous	video	is	more	challenging	than	

tracking	humans,	because	the	behavior	of	the	mice	is	more	erratic	and	they	tend	

to	move	around	faster,	especially	when	they	are	distressed.	Mice	do	not	look	at	

the	camera	most	of	the	time.	Therefore,	most	frames	either	are	blurred	or	contain	

non-frontal	faces.	Researchers	have	to	manually	identify	frontal	views	of	the	mice	

to	 annotate	 visible	 cues	 (e.g.,	 orbital	 tightening,	 nose	 bulge,	 cheek	 bulge,	 ear	

position	and	whisker	change).	Building	a	machine	learning	solution	to	automatize	

this	process	can	greatly	facilitate	the	work	of	neuroscientists,	reducing	the	cost	

and	effort	for	their	study.	Face	detection	is	also	a	pre-processing	step	for	our	pain	

detection,	since	we	only	consider	frontal	views	in	our	model.	Likewise,	having	a	

solution	 for	 pain	 detection	 can	 be	 instrumental	 for	 longitudinal	 chronic	 pain	

analysis.	The	algorithm	can	be	used	to	track	frame-by-frame	the	pain	level	in	the	

mice,	 creating	 data	 to	 study	 the	 temporal	 response	 associated	 with	 pain	

treatments.	

4.1.	Face	detection	

Face	detection	is	the	first	step	that	needs	to	be	applied	before	any	mouse	face	

analysis.	Hence,	our	first	task	is	to	detect	frames	that	provide	a	stable	frontal	face	

of	the	mouse.	Face	detection	can	help	get	rid	of	any	background	pixels	that	might	

confuse	the	model.	Dalvi	et	al.	(2021)	presented	several	methods	developed	over	

the	years	for	human	face	detection	such	as	Viola-Jones	algorithm,	Haar-cascade	

classifier,	and	Multi-task	Cascaded	Convolutional	Networks	(MTCNN).	The	Viola-

Jones	 algorithm	 (Viola	 &	 Jones,	 2001)	 was	 the	 standard	 algorithm	 for	 object	
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detection	applications.	In	recent	times,	CNN	based	techniques	such	as	regions	with	

CNN	features	(R-CNN)	(Girshick	et	al.,	2014),	single	shot	multiBox	detector	(SSD)	

(Liu	 et	 al.,	 2016)	 and	 you	 only	 look	 once	 (YOLO)	 (Redmon	 et	 al.,	 2016)	 have	

improved	 performance,	 providing	 more	 efficient	 methods	 to	 perform	 object	

detection.	 The	 YOLO	 architecture	 has	 been	 successfully	 used	 to	 detect	 human	

faces	(Batista	et	al.,	2019;	Chen	et	al.,	2021,	Garg	et	al.,	2018).	Therefore,	this	study	

repurposes	the	YOLO	architecture	for	mice	face	detection.	

YOLO	is	a	deep	neural	network	capable	of	detecting	several	objects,	people,	

and	 animals	 in	 one	 frame	 independent	 of	 the	 size	 of	 the	 object.	 We	 use	 a	

pretrained	version	of	YOLO	v3	(Redmon	&	Farhadi,	2018)	trained	on	the	Open	

Images	 dataset	 (Krasin	 et	 al.,	 2017).	 A	 common	 approach	 with	 the	 YOLO	

architecture	is	to	fine-tune	the	pretrained	model	to	the	mainstream	task	(Zheng	

&	Amen,	2021;	Zheng	2022).	We	following	this	approach,	adapting	the	pretrained	

YOLO	model	to	predict	mouse	faces.	For	this	purpose,	we	only	modify	the	output	

layer	to	predict	a	single	class	associated	with	the	frontal	 faces	of	mice	(i.e.,	 the	

output	layer	consists	of	a	single	node).	This	modified	YOLO	model	is	trained	for	

100	epochs	on	our	corpus.	For	the	first	50	epochs,	the	entire	model	is	frozen	with	

the	exception	of	 the	output	 layer.	Then,	we	unfreeze	all	 the	parameters	 in	 the	

model,	training	the	model	for	another	50	epochs.	

4.2.	Grimace	Detection	

						The	second	goal	of	our	study	is	to	use	key	frames	showing	the	mouse	to	predict	

the	grimace	level.	We	use	the	level	of	orbital	tightening	to	estimate	the	grimace	

level.	 We	 focus	 on	 the	 eyes,	 since	 other	 cues	 used	 to	 annotate	 pain,	 such	 as	

whiskers,	are	less	visible	on	regular	cameras.	Figure	2	gives	an	overview	of	the	

scheme	used	 in	our	experiment.	First,	we	generate	a	mask	to	highlight	the	eye	

region	in	the	image	using	a	dilated	convolutional	network.	Subsequently,	we	use	

a	 neural	 network	 to	 perform	 classification	 to	 predict	 the	 grimace	 level	
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Figure	2:	Scheme	of	our	two-stage	approach	to	predict	grimace	scale	in	mice.	
	

from	the	masked	image.	

Dilated	convolutional	neural	networks	were	proposed	by	Yu	&	Koltun	(2016)	

as	effective	tools	to	perform	semantic	segmentation.	This	model	can	help	increase	

the	receptive	field	without	 loss	of	resolution.	For	the	purpose	of	this	work,	the	

dilated	convolutional	neural	network	framework	suits	our	problem	of	predicting	

the	mice’s	eye	region.	The	eye	region	detection	is	performed	using	the	network	

architecture	shown	in	Table	1.	To	train	this	model,	we	use	the	annotated	bounding	

box	for	the	eye	region	of	the	image	creating	a	binary	mask	with	1	for	the	eye	part,	

and	0	for	the	rest	of	the	pixels.	The	trained	model	returns	a	mask	with	values	from	

0	to	1,	providing	a	confidence	score	of	how	likely	each	pixel	belongs	to	the	eye	

region.	By	multiplying	the	resulting	mask	with	the	original	image,	we	obtain	the	

region	of	the	mouse’s	eyes.	Figure	2	shows	an	example	of	the	eye	patch.	We	use	

the	eye	region	images	for	training	the	grimace	scale	prediction	network	to	assess	

the	level	of	pain	(0,	1,	or	2)	following	the	MGS.	Table	2	shows	the	architecture	of	

the	 grimace	 scale	 prediction	 network,	 which	 consists	 of	 five	 blocks	 of	 2D	

convolutional	networks,	each	of	them	implemented	with	a	kernel	size	of	(3	×	3)	

and	16	channels.	We	use	rectified	linear	unit	(ReLU)	activation	followed	by	batch	

normalization	and	max	pooling	layers.	The	output	of	the	final	convolution	layer	is	

flattened	 and	 connected	 to	 a	 fully	 connected	 layer	 of	 size	 32	 followed	 by	 the	

output	 layer.	 The	 dimension	 of	 the	 output	 layer	 depends	 on	 the	 number	 of	

predicted	classes.	We	explore	two	problems:	a	binary	classification	(0	versus	2),	

Eyes Region 	
Detection	

(	Dilated CNN	)	

Grimace Scale 	
Prediction 	
Network	

0	 1	 2	
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and	a	3-class	problem	(0,	1,	and	2).	We	use	softmax	as	the	final	activation	layer	to	

obtain	scores	that	sum	up	to	1.	
Table	1:	Deep	learning	architecture	for	eye	region	detection	using	dilated	CNN.	

Layer	 Spec	 Dilatation	 Activation	 Dropout	

Conv2D	 3,	3x3	 0x0	 ReLU	 -	

Conv2D	 3,	3x3	 0x0	 ReLU	 -	

Conv2D	 3,	3x3	 0x0	 ReLU	 0.5	

Conv2D	 3,	3x3	 2x2	 ReLU	 -	

Conv2D	 3,	3x3	 2x2	 ReLU	 -	

Conv2D	 3,	3x3	 2x2	 ReLU	 0.5	

Conv2D	 3,	3x3	 4x4	 ReLU	 -	

Conv2D	 3,	3x3	 4x4	 ReLU	 -	

Conv2D	 3,	3x3	 4x4	 ReLU	 0.5	

Conv2D	 3,	3x3	 8x8	 ReLU	 -	

Conv2D	 3,	3x3	 8x8	 ReLU	 -	

Conv2D	 3,	3x3	 8x8	 ReLU	 0.5	

Conv2D	 3,	3x3	 16x16	 ReLU	 -	

Conv2D	 3,	3x3	 16x16	 ReLU	 -	

Conv2D	 3,	3x3	 16x16	 ReLU	 0.5	

Conv2D	 3,	3x3	 32x32	 ReLU	 -	

Conv2D	 3,	3x3	 32x32	 ReLU	 0.5	

Conv2D	 3,	3x3	 -	 ReLU	 -	

Conv2D	 1,	3x3	 -	 Sigmoid	 0.5	
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Table	2:	Deep	learning	architecture	for	Grimace	scale	prediction.	

Layer	 Spec	 Activation	 Dropout	

Conv2D	 16,	3x3	 ReLU	 -	

Batch	Norm	 -	 -	 -	

Max	Pooling	 2x2	 -	 -	

Conv2D	 16,	3x3	 ReLU	 -	

Batch	Norm	 -	 -	 -	

Max	Pooling	 2x2	 -	 -	

Conv2D	 16,	3x3	 ReLU	 -	

Batch	Norm	 -	 -	 -	

Max	Pooling	 2x2	 -	 -	

Conv2D	 16,	3x3	 ReLU	 -	

Batch	Norm	 -	 -	 -	

Max	Pooling	 2x2	 -	 -	

Conv2D	 16,	3x3	 ReLU	 -	

Batch	Norm	 -	 -	 -	

Max	Pooling	 2x2	 -	 -	

Flatten	 -	 -	 -	

Dense	 32	 ReLU	 0.5	

Batch	Norm	 -	 -	 -	

Dense	 #	classes	 Softmax	 -	
	

5.	Experimental	Results	

In	this	section,	we	present	and	discuss	the	results	for	mouse	face	detection	and	

grimace	scale	prediction,	which	are	the	two	tasks	addressed	in	our	study.	All	the	

deep	learning	models	are	implemented	in	Python	using	Keras	(Chollet,	2017)	with	

Tensorflow	(Abadi	et	al.,	2016)	as	backend.	
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Table	3:	Number	of	true	positive,	false	positive	and	false	negative	detections	for	the	proposed	and	

baseline	models.	

	
Haar	Cascade	 122	 286	 1065	

CNN-based	baseline	 265	 140	 143	

Proposed	YOLO-based	model	 408	 0	 0	
	

5.1.	Face	detection	results	

As	described	in	Section	4.1,	we	tune	a	pre-trained	YOLO	network	with	the	face	

annotations	 of	 mice	 for	 100	 epochs.	We	 use	 the	 eight	 animals	 from	 our	 Sub-

dataset	1	using	the	partitions	described	in	Section	3.	We	compare	our	proposed	

YOLO-based	 method	 with	 a	 Viola-Jones	 object	 detection	 method	 trained	 with	

Haar	 features.	We	 refer	 to	 this	 baseline	 as	 the	 Haar	 Cascade	model.	 Also,	 we	

compare	 our	 proposed	 model	 with	 the	 method	 presented	 by	 Kopaczka	 et	 al.	

(2018),	which	is	a	CNN-based	model	for	image	segmentation.	We	adapt	this	model	

to	detect	the	mouse’s	face.	We	refer	to	this	baseline	as	the	CNN-based	model.	We	

quantify	 the	results	of	 the	 face	detection	algorithms	using	the	 intersection	over	

union	(IoU),	precision,	and	recall	metrics.	The	IoU	between	two	regions	is	a	ratio	

between	the	area	of	the	overlap	between	the	two	regions	and	the	area	covered	by	

the	union	of	the	regions.	We	use	the	IoU	scores	to	compute	true	positive	(TP),	false	

positive	(FP),	and	false	negative	(FN)	rates.	We	set	an	IoU	threshold	of	0.5,	making	

the	following	rules:	For	each	image,	if	at	least	one	of	the	predictions	have	an	IoU	

greater	 than	 0.5,	 we	 define	 this	 prediction	 as	 a	 true	 positive;	 if	 there	 are	 no	

predictions	 in	 an	 image	with	 IoU	 greater	 than	 0.5,	 this	 image	 data	 has	 a	 false	

negative.	All	the	remaining	predictions	in	the	image	are	classified	as	false	positive.	

With	these	rules,	we	compute	precision	and	recall	metrics	as	follows,	

 Precision	= 	 (1)	
	

	

Method	 True	Positives	 False	Positives	 False	Negatives	



16	

Table	4:	Face	detection	performance	for	the	proposed	and	baseline	models,	measured	with	the	mean	

IoU,	and	precision	and	recall	rates.	

	

Haar	Cascade	 0.39	 0.103	 0.299	

CNN-based	baseline	 0.513	 0.654	 0.649	

Proposed	YOLO-based	model	 0.87	 1.00	 1.00	

  

 Recall	= 	 (2)	

	

Table	3	shows	the	TP,	FP	and	FN	rates	for	the	proposed	YOLO-based	method,	

the	Haar	Cascade	baseline	and	CNN-based	baseline.	The	number	of	false	positives	

for	the	baseline	models	is	high,	and	the	number	of	false	negatives	is	even	higher.	

The	direct	impact	of	these	results	is	shown	in	Table	4,	which	indicates	that	the	

Haar	Cascade	and	CNN-based	baselines	obtain	 lower	precision	and	recall	rates	

than	 the	 proposed	 YOLO-based	 approach.	 Hence,	 these	 predictions	 are	 not	

reliable	to	use	for	grimace	scale	prediction.	 In	contrast,	 the	YOLO-based	model	

yields	a	very	high	performance.	The	model	is	able	to	detect	the	face	of	the	mice	

without	any	FP	or	FN	case.	Our	recall	and	precision	rates	are	100%.	

Figure	 3	 shows	 the	 histograms	 of	 the	 IoU	 scores	 in	 the	 test	 set	 using	 the	

proposed	YOLO-based	method,	comparing	the	results	with	the	Haar	Cascade	and	

CNN-based	baselines.	The	baseline	methods	have	a	high	number	of	false	negatives	

with	 zero	 IoU	 (Table	 3),	 which	 do	 not	 overlap	 with	 the	 true	 bounding	 boxes	

(Figure	 4(a)).	 For	 the	 CNN-based	 baseline	 (Figure	 4(b)),	 we	 observe	 that	 the	

region	of	the	face	is	not	completely	detected,	which	can	explain	the	high	number	

of	false	positives.	This	method	also	detects	some	artifacts.	Therefore,	we	show	the	

histogram	only	considering	the	non-zero	IoUs,	where	the	prediction	and	the	true	

bounding	box	had	some	overlap.	This	 simplification	does	not	affect	our	YOLO-

based	 approach,	 since	 we	 do	 not	 have	 false	 negatives.	 For	 the	 Haar	 Cascade	

baseline,	 we	 observe	 many	 predictions	 with	 small	 overlaps	 with	 the	 true	

bounding	box.	There	are	no	predictions	with	an	overlap	higher	than	0.7.	Hence,	

Method	 mean	IoU	 Precision	 Recall	
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 (a)	Haar	Cascade	baseline	 (b)	CNN-based	baseline	

	

(c)	Proposed	YOLO-based	Approach	

Figure	3:	Histogram	of	IoU	scores	for	mouse	face	detection	using	the	proposed	YOLO-based	method,	

and	the	Haar	cascade	baseline.	

the	model	has	a	very	low	recall	score.	For	the	CNN-based	baseline,	there	is	no	IoU	

score	 higher	 than	 0.76,	 which	 explains	 the	 low	 precision	 and	 recall	 rates.	 In	

contrast,	most	of	the	IoU	scores	are	higher	than	0.7	for	our	YOLO-based	approach,	

indicating	 that	 our	 predictions	 can	 accurately	 detect	 the	 true	mouse	 face.	 The	

mean	IoU	value	is	0.87	with	a	standard	deviation	of	0.05.	Figure	4(c)	shows	an	

example	of	the	estimated	face	of	the	mouse	compared	with	the	ground	truth.	We	

observe	high	accuracy	with	high	confidence	in	the	estimation.	We	also	observe	

that	the	detection	is	highly	robust	to	pose	variation	and	occlusion.	Figure	5	shows	

various	 frames	 from	 a	 video,	 demonstrating	 that	 the	 YOLO-based	 algorithm	

efficiently	detects	frontal	faces	from	a	mouse	even	in	challenging	situations.	These	

results	 show	 that	 the	 model	 can	 be	 used	 for	 extracting	 key	 frames	 from	

continuous	 videos,	 which	 can	 then	 be	 used	 to	 either	 automatically	 detect	 or	
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annotate	the	pain	level	 in	mice.	The	reliable	face	detection	results	enable	us	to	

predict	the	grimace	scale	relying	on	this	automatic	face	segmentation	algorithm.	

	

	

 (a)	Haar	Cascade	baseline	 (b)	CNN-based	baseline	

	

(c)	Proposed	YOLO-based	Approach	

Figure	4:	Example	of	face	detection	performance	using	the	proposed	YOLO-based	method,	and	the	

Haar	cascade	baseline.	Green	and	red	boxes	represent	the	ground	truth	and	the	
predicted	boxes,	respectively.	

	

	

Figure	5:	Performance	of	the	YOLO-based	approach	over	video	frames.	The	approach	can	be	useful	

in	extracting	key	frames	from	the	video	with	clear	frontal	faces.	

5.2.	Grimace	scale	prediction	results	

This	 section	 discusses	 the	 performance	 in	 pain	 detection	 using	 the	 orbital	

tightening.	The	first	stage	of	this	task	is	the	detection	of	the	eye	region.	For	this	

purpose,	we	train	the	dilated	CNN	described	 in	Table	1	 for	1,000	epochs	using	
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Adam	(Kingma	&	Ba,	2015)	as	 an	optimizer	with	a	 learning	 rate	10−4,	 and	 the	

binary	cross-entropy	as	the	loss	function.	Since	our	model	predicts	a	soft	region,	

we	 use	 an	 approximation	 of	 the	 IoU	 to	 quantify	 the	 difference	 between	 the	

ground-truth	 bounding	 box	 and	 the	 predicted	 area.	 This	 approximation	 is	

calculated	as:	

                                                  (3)	

	

	

(a)	True	mask	 (b)	Predicted	mask	

	

(c)	Intersection	of	masks	 (d)	Union	of	masks	

	

This	metric	returns	a	number	between	0	and	1	and	provides	a	good	idea	about	

the	overlap	between	predictions	and	the	true	bounding	boxes.	Figure	6	shows	an	

example	 of	 the	 IoU	 calculation,	 exemplifying	 the	 true	 mask,	 predicted	 mask,	

intersection	of	masks	and	the	union	of	masks.	For	that	example,	the	IoU	is	0.48.	

Figure	7	 shows	 the	histogram	of	 IoU	occurrence	 for	 all	 the	data	 from	 the	 test	

dataset	with	annotated	mouse	grimace	level.	The	mean	value	is	0.67.	We	observe	

that	most	values	have	an	IoU	score	of	0.55	or	higher,	which	means	that	our	eye	

detection	method	is	capable	of	capturing	a	large	part	of	the	eye	region.	This	patch	

is	then	used	to	predict	the	grimace	scale.	Figure	8	shows	three	cases	of	predicted	

masks	compared	to	the	ground	truth	bounding	box.	

The	second	stage	consists	of	using	the	eye	patch	to	predict	the	grimace	scale.	

We	use	the	neural	network	described	in	Section	4.2	(Table	2).	The	network	takes	

a	square	image	with	the	masked	eyes	as	input	and	provides	a	value	for	the	grimace	

Figure	6:	Illustration	of	the	IoU	calculation.	IoU	score	for	this	example	is	0.48	using		the	approximation		
in	Equation	3.	
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scale.	We	 learn	 a	 classification	model	with	one-hot	 encoded	 labels.	 The	model	

uses	the	AdaDelta	optimizer	(Zeiler,	2012)	with	a	learning	rate	of	1.0.	We	compare	

	

Figure	7:	Histogram	of	IoU	scores	for	eye	region	detection	using	the	proposed	dilated	CNN.	

	

	

 (a)	Grimace	level	1	 (b)	Grimace	level	1	

	

(c)	Grimace	level	2	

Figure	8:	Three	frame	pictures	from	the	test	set	with	their	corresponding	ground-truth	(squared	

bounding	boxes)	and	our	proposed	method	for	eye	region	detection.	

our	 proposed	 model	 with	 three	 baselines.	 The	 first	 baseline	 is	 a	 SVM	 model	

trained	with	 HoG	 features,	 referred	 to	 as	 HOG-SVM.	 The	 second	 baseline	 is	 a	

neural	network	trained	with	HoG	features	with	two	hidden	layers	implemented	

with	ReLU,	and	an	output	layer	implemented	with	a	softmax	function.	We	refer	to	

this	baseline	as	HOG-NN.	The	third	baseline	is	our	implementation	of	the	method	
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presented	by	Tuttle	et	al.	 (2018),	which	 takes	as	 input	 the	entire	 image	of	 the	

mouse’s	face	to	predict	the	grimace	score.	To	study	the	influence	of	our	eye	region	

detection	algorithm	on	the	final	grimace	scale	prediction,	we	train	our	grimace	

prediction	 model	 on	 both	 the	 groundtruth	 (GT)	 bounding	 box	 and	 the	 mask	

learned	using	our	eye	region	detection	algorithm.	We	add	“GT”	to	the	name	of	the	

models	for	the	condition	with	manually	annotated	eye	patches.	We	evaluate	the	

proposed	model	and	the	first	two	baselines	using	the	detected	eye	region	patch	

and	GT	bounding	box.	The	third	baseline	uses	the	entire	face	of	the	mouse,	so	we	

only	use	the	true	bounding	box	with	the	face	region.	

The	grimace	scale	prediction	networks	are	trained	in	two	stages,	following	the	

idea	 of	 curriculum	 learning,	 which	 starts	 by	 training	 the	 network	with	 easier	

samples,	 introducing	harder	 samples	 in	 later	 epochs	 (Bengio,	 2009).	 Since	 the	

samples	with	grimace	level	of	1	are	more	ambiguous,	we	start	by	training	a	binary	

classifier	 that	 recognizes	no	pain	 (value	0)	versus	pain	 (value	2).	We	 train	 the	

binary	 model	 for	 1,000	 epochs	 using	 the	 binary	 cross-entropy	 loss	 function.	

Subsequently,	we	add	the	samples	with	label	1,	adapting	the	output	layer	for	three	

classes	using	the	categorical	cross-entropy	loss	function.	We	train	the	model	for	

500	more	epochs.	For	consistency,	we	follow	the	same	training	procedure	for	the	

HOG-NN	baseline	and	for	the	approach	proposed	by	Tuttle	et	al.	(2018).	For	the	

HOG-SVM,	we	separately	train	binary	class	and	a	multi-class	classifiers.	

Tables	5	and	6	show	the	weighted	accuracy	and	the	weighted	F1-score	for	the	

predicted	 labels	 for	 the	 two	 and	 three	 class	 problems.	 The	 tables	 report	 the	

performance	for	our	proposed	method	and	the	baselines.	Our	approach	achieves	

a	weighted	F1-score	of	0.976	for	the	two-class	problem,	which	is	an	impressive	

result.	 The	 prediction	 of	 the	 grimace	 scale	 for	 the	 three-class	 problem	 also	

presents	competitive	results,	achieving	a	weighted	F1-score	of	0.718.	This	result	

is	promising,	given	the	similarity	in	eye	appearance	between	grimace	level	0	and	

1.	We	observe	 that	 deep	 learning	methods	 obtain	 better	 results	 than	 the	 SVM	

method	 for	 both	 classification	 tasks.	 Between	 the	 deep	 learning	 methods,	 we	

observe	 that	 our	 proposed	method	 outperforms	 the	 HOG-NN	method	 and	 the	

approach	proposed	by	Tuttle	et	al.	 (2018)	 for	both	classification	problems.	An	
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interesting	result	is	that	our	approach	is	more	robust	to	the	use	of	predicted	eye	

regions.	Missed	or	partial	detections	of	the	eyes	clearly	affect	the	performance.		

	
Table	5:	Grimace	scale	prediction	for	the	two-class	problem.	We	report	results	using	the	predicted	and	

GT	bounding	boxes.	

	

Our	method	 0.972	 0.976	

HOG-NN	 0.836	 0.893	

HOG-SVM	 0.832	 0.890	

Tuttle	et	al.	(2018)	 0.848	 0.895	

Our	method	GT	 0.963	 0.974	

HOG-NN	GT	 0.928	 0.950	

HOG-SVM	GT	 0.901	 0.916	
	

Table	6:	Grimace	scale	prediction	for	the	three-class	problem.	We	report	results	using	the	predicted	

and	GT	bounding	boxes	

	

Our	method	 0.650	 0.718	

HOG-NN	 0.526	 0.604	

HOG-SVM	 0.464	 0.527	

Tuttle	et	al.	(2018)	 0.632	 0.637	

Our	method	GT	 0.693	 0.740	

HOG-NN	GT	 0.621	 0.677	

HOG-SVM	GT	 0.588	 0.646	
	

For	example,	Figure	8(a)	shows	an	example,	where	we	barely	detect	the	left	eye	

of	the	mouse.	The	label	for	this	case	is	1.	The	proposed	model	predicts	the	value	

0	when	using	 the	predicted	eye	 region.	However,	 the	model	predicts	 the	 right	

class	when	 using	 the	 ground	 truth	 bounding	 box.	 However,	 the	 global	 results	

Weighted	Accuracy	 Weighted	F1	

Weighted	Accuracy	 Weighted	F1	
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when	using	either	the	GT	bounding	boxes	or	the	predicted	eye	regions	are	very	

similar	 in	 spite	 of	 the	 eye	 detection	 errors.	 For	 the	 two-class	 problem,	 the	

differences	in	weighted	accuracy	and	weighted	F1-score	are	1.27%	and	0.16%,	

respectively.	For	 the	three-class	problem,	 the	differences	 in	weighted	accuracy	

and	weighted	F1-score	are	4.24%	and	2.13%,	respectively.	The	differences	for	the	

baseline	methods	are	much	higher	reaching	differences	up	to	12.5%.	

Tables	7	and	8	show	the	confusion	matrices	for	the	experiments	performed	

using	the	predicted	eye	patches	and	GT	bounding	boxes	using	the	proposed	neural	

network.	 The	 left	 sides	 of	 the	 tables	 show	 the	 confusion	matrices	 of	 the	 pain	

prediction	for	two	classes.	We	observe	that	most	of	the	samples	are	well	classified.	

Out	of	745	frames,	only	18	(predicted	eye	patches)	and	19	(GT	bounding	boxes)	

samples	 were	 not	 correctly	 predicted.	 The	 right	 sides	 of	 the	 aforementioned	

tables	show	the	confusion	matrices	of	the	pain	prediction	for	three	classes.	This	

is	a	more	difficult	task,	where	most	of	the	errors	are	between	classes	0	and	1,	and	

between	 classes	 1	 and	 2.	 The	 differences	 are	 difficult	 to	 distinguish	 even	 for	

experienced	human	annotators.	For	example,	the	cases	in	Figures	8(b)	and	8(c)	

are	 predicted	 with	 grimace	 labels	 2	 and	 1,	 respectively.	 However,	 their	

corresponding	ground-truth	are	1	and	2.	Visual	inspection	of	these	frames	shows	

that	both	images	are	very	similar.	
	

Table	7:	Confusion	matrices	of	the	grimace	detection	model	using	the	predicted	bounding	boxes	for	

the	eyes.	
Predicted	labels	

Predicted	labels	
 0	 1	 2	

 0	 2																
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Table	8:	Confusion	matrices	of	the	grimace	detection	model	using	the	ground	truth	bounding	boxes	

for	the	eyes.	
Predicted	labels	

Predicted	labels	
 0	 1	 2	

 0	 2	

	
6.	Conclusions	and	Future	Work	

This	 work	 presented	 machine	 learning	 solutions	 to	 automatically	 detect	

frontal	faces	of	mice,	and	estimate	the	pain	level.	We	demonstrated	that	systems	

that	have	been	successfully	used	for	face	analysis	in	humans	can	be	adapted	to	

animals.	 Our	 face	 detection	model	 reached	 an	 IoU	 of	 0.87.	Our	 pain	 detection	

algorithm	 trained	 on	 these	 eye	 patches	 is	 also	 effective,	 providing	 promising	

results	that	are	clearly	better	than	baseline	methods.	We	are	able	to	discriminate	

between	no	pain	(value	0)	and	pain	(value	2)	using	predicted	and	actual	bounding	

boxes	 for	 the	 mice’s	 eyes.	 The	 proposed	 approach	 for	 this	 task	 achieves	 a	

performance	of	97.2%	in	terms	of	accuracy.	When	we	evaluated	the	performance	

with	 three	 classes,	 including	 the	 intermediate	 level	 pain	 (value	 1),	 the	

performance	dropped.	A	possible	reason	is	the	similarly	between	pain	 levels	1	

and	 2,	 which	 are	 difficult	 to	 distinguish	 between	 each	 other.	 Collectively,	 the	

evaluation	 shows	promising	 results,	which	 can	be	 improved	by	 collecting	 and	

annotating	more	frames.	

For	 our	 future	 endeavors,	 we	 plan	 to	 extend	 this	 work	 to	 include	 other	

features	such	as	ears,	nose,	whiskers	and	cheeks	as	additional	attributes	to	better	

discriminate	 the	 pain	 levels.	 Some	 of	 these	 facial	 landmarks	 will	 require	 our	

system	to	focus	on	details	 in	the	image.	A	potential	solution	is	to	progressively	

resize	the	image	to	learn	from	coarse	to	detailed	features	(Bhatt	et	al.,	2021).	We	

can	also	explore	deep	learning	methods	that	increase	the	interpretability	of	the	

model,	 indicating	what	 facial	 cues	were	 used	 to	 determine	 a	 given	 prediction.	
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Furthermore,	we	trained	our	models	with	limited	annotated	data.	Using	a	semi-

supervised	model	can	be	helpful	in	learning	inherent	structures	in	the	data	that	

can	 help	 us	 train	 more	 efficient	 models	 with	 the	 limited	 labeled	 data.	 An	

alternative	approach	is	using	more	sophisticated	data	augmentation	techniques	

(Chaudhari	et	al.,	2020).	Since	we	have	continuous	recordings	of	the	mice	in	their	

cage,	we	want	to	explore	longitudinal	analysis	correlating	the	predicted	pain	level	

with	 procedures	 conducted	 by	 the	 neuroscience	 team	 (e.g.,	 measuring	 time	

needed	for	a	drug	to	effectively	reduce	chronic	pain).	Finally,	we	would	also	like	

to	 work	 with	 mice	 with	 black	 fur	 (e.g.,	 the	 C57BL6	 strain),	 which	 is	 a	 more	

challenging	problem,	given	that	facial	landmarks	are	harder	to	distinguish	from	

their	 fur.	 For	 some	 problems,	 using	 handcrafted	 features	 can	 lead	 to	 better	

performance	than	models	using	feature	representations	directly	learned	from	the	

data,	especially	for	cases	with	limited	data	(Sanghani	&	Kotecha,	2019;	Nanni	et	

al.,	2017).	A	future	research	direction	is	to	explore	if	handcrafted	features	can	be	

beneficial	to	detect	facial	landmarks	of	mice	with	black	fur.	This	is	an	important	

goal	because	most	mice	used	in	pain	research	are	on	genetic	backgrounds	that	

have	black	fur	(Mogil,	2009).	
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