

Audiovisual Speech Activity Detection with **Advanced Long Short-Term Memory** Fei Tao and Carlos Busso THE UNIVERSITY OF TEXAS AT DALLAS

Erik Jonsson School of Engineering & Computer Science at the University of Texas at Dallas, Richardson, Texas 75080, USA

Motivation

Background:

- Speech activity detection (SAD) is an imp pre-processing step in speech-based inte
- Introducing visual information can improv performance and robustness
- Longer periodicity in the acoustic and vi features is crucial to distinguish speech a
- Recurrent connections in LSTM only co previous frame

Our Work:

This study proposes to explore the advar LSTM (A-LSTM) layers to improve the ter dependency of our AV-SAD system

Speech Activity Detection:

- Baseline: BRNN proposed in [Tao & Busso, 2007] with LSTM
- Run experiment on Nvidia GTX 1070 (8GB)

Env.	Approach	Test Condition	Acc [%]	Pre [%]	Rec [%]	F[%]	
С	BRNN	HD	90.1	94.5	84.8	89.4	
	BRNN	TG	90.1	91.9	87	89.3	
	A-BRNN	HD	90.6	94.5	85.3	89.7	
	A-BRNN	TG	90.4	92.3	87.4	89.8*	
N	BRNN	HD	93.3	93	94.1	93.5	
	BRNN	TG	83.1	77.7	96.6	86.1	
	A-BRNN	HD	93.1	92.7	94.8	93.7	
	A-BRNN	TG	84.6	79.4	96.8	87.2*	

SNR Analysis:

* : statistically significant improvements

- HD channel is not affected much by noise (mic is close to the mouth)
- TG channel is affected since it is close to the noise source
- Clean session contains spontaneous speech, which is a harder task

	Data and Fea						
	CRSS-4ENGLISH-14 Corpus :						
portant erfaces	 442 subjects in total with American, l and Australian accent 						
ove	 This study only uses data from 105 A train (70), validation (10) and test 						
/isual activity	 Clean and noisy sections with two ch Ideal condition: HD camera and cl 						
onsider	Tablet condition: camera and mic f Audiovisual Features:						
nced	 5-D acoustic feature: harmonicity, cla gain, periodicity and perceptual spece 						
emporal	 26-D visual feature following the flow Landmark Detection Affine Transformation 						
	$ \begin{tabular}{ c c c c c c c } \hline \hline & & & & & & & & & & & & & & & & & $						
xneriment and Results							

Non-speech Segments with Active Lip Motion:

- Evaluate the robustness to lip movements that are not associated with speech (smiles, lip-smack, deep breath)
- We manually identified 7,397 frames across speakers containing non-speech lip motion
- Report in F-score

tures

- Hispanic, Indian
- American speakers (25)
- hannels
- lose talk mic (HD)
- from tablet (TG)

larity, prediction ctral flux

vchart:

Future Work

This work was funded by NSF awards IIS-1718944 and IIS- 1453781 (CAREER)

Top network: LSTM(128) + LSTM(128) + maxout(128) + softmax

Conclusions

This study extended BRNN using A-LSTM for AV-SAD The proposed framework takes advantage of BRNN It has low latency and better time dependency modeling It is better in non-speech segments with active lip motion

The current implementation only uses A-LSTM in one layer, which is limited by the hardware requirement A-LSTM can be used in more layers.

More frames in the past can be consider

Learn facial and acoustic features with CNN

Training the approach as an end-to-end system