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ABSTRACT

Visual information can improve the performance of automatic
speech recognition (ASR), especially in the presence of background
noise or different speech modes. A key problem is how to fuse the
acoustic and visual features leveraging their complementary infor-
mation and overcoming the alignment differences between modali-
ties. Current audiovisual ASR (AV-ASR) systems rely on linear in-
terpolation or extrapolation as a pre-processing technique to align
audio and visual features, assuming that the feature sequences are
aligned frame-by-frame. These pre-processing methods oversim-
plify the phase difference between lip motion and speech, lacking
flexibility and impairing the performance of the system. This paper
addresses the fusion of audiovisual features with an alignment neural
network (AliNN), relying on recurrent neural network (RNN) with
attention model. The proposed front-end model can automatically
learn the alignment from the data. The resulting aligned features are
concatenated and fed to conventional back-end ASR systems. The
proposed front-end system is evaluated with matched and mismatch
channel conditions, under clean and noisy recordings. The results
show that our proposed approach can relatively outperform the base-
line by 24.9% with Gaussian mixture model with hidden Markov
model (GMM-HMM) back-end and 2.4% with deep neural network
with hidden Markov model (DNN-HMM) back-end.

Index Terms— audiovisual speech recognition, deep learning,
recurrent neural network, attention model

1. INTRODUCTION

Current automatic speech recognition (ASR) systems have reached
level of performance that are high enough for practical human-
computer interfaces, as demonstrated by commercial products such
as Siri, Google voice assistant, Alexa and Cortana. As the acous-
tic noise in the environment increases, these systems become less
effective. It is important to explore solutions to improve the robust-
ness of ASR systems that work regardless of the noise condition.
Exploring audiovisual solutions is an appealing approach. Previous
studies have shown that audiovisual automatic speech recognition
(AV-ASR) can overcome the drop in performance caused by noise
[1, 2].

A key open challenge is to find effective approaches to combine
audio and visual features, as inappropriate fusion schemes may im-
pair the system performance [3, 4]. Conventional approaches include
fusing the likelihood scores of modality-dependent systems (i.e., de-
cision level fusion), concatenating the audiovisual features (i.e., fea-
ture level fusion), or creating audiovisual latent variables within the
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models to capture the relationship between modalities (i.e., model-
level fusion). In most cases, the audiovisual features are assumed
to be synchronized. Since their sampling rate are often different,
the features are interpolated or extrapolated to align the modalities.
However, audiovisual features are not synchronized. Previous work
suggests the existence of a time-variant phase between the audiovi-
sual streams. Studies have reported differences of hundred of mil-
liseconds between modalities [5, 6, 7], which correspond to more
than three video frames. Bregler and Konig [8] estimated the mutual
information between speech and lip features by adding temporal off-
sets, assuming that lip movements precede speech. Their analysis
showed that the best alignment was with a shift of 120 milliseconds.
The challenge is that this phase is not constant or even consistent.
For certain phones the modalities are synchronized, for other speech
precedes facial movements, and for other facial movements precede
speech [5, 9, 10]. These studies suggest that the modalities have to
be aligned within a temporal window.

This study introduces the alignment neural network (AliNN),
a data-driven front-end framework to learn the time-variant phase
between audiovisual modalities. The framework relies on sequence-
to-sequence learning with attention model [11, 12]. AliNN creates
synchronized audiovisual sequences than can be used as features of
a back-end ASR system, learning the alignment rules from the data.
This appealing framework addresses one of the key problems in AV-
ASR that is often ignored.

The proposed approach is evaluated on the CRSS-4ENGLISH-
14 corpus [13]. The results show that using AliNN as a front-end im-
proves the performance of different back-end systems, compared to
simple linear interpolation of the audiovisual features. It shows that
under the ideal condition, our proposed approach obtains a relative
improvement of 24.9% with a back-end implemented with Gaussian
mixture model with hidden Markov model (GMM-HMM), and 2.4%
with a back-end implemented with deep neural network with hidden
Markov model (DNN-HMM). Under channel mismatched condition
or noise condition, the proposed framework obtains even larger per-
formance gains, reaching up to 70.5% relative improvements. The
experimental evaluation demonstrates the important of synchroniz-
ing the audiovisual modalities, a step that is ignored by current sys-
tems. The proposed front-end system is flexible, offering a principle
framework to improve AV-ASR systems.

2. RELATED WORK

Adding visual information is an appealing solution to build ASR
systems robust against background noise or different speech modes
[14, 15, 16]. Neti et al.[14] showed that by combining audiovisual
information, the ASR system would have better performance. In ad-
dition, Tao et al.[17] and Tao and Busso [13] showed that audiovisual
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feature is also helpful for other speech processing systems such as
voice activity detection (VAD)

The fusion approaches used in previous work are mainly
grouped at feature, decision and model level integration [1]. At the
feature level, the audio and visual features are concatenated, which
tends to lead to lower performance [14]. One common simplifica-
tion is to align the modalities frame-by-frame, which lead to poten-
tial problems [3] as the speech and lip movements are not neces-
sary synchronized [9]. For certain phonemes, there are anticipatory
movements that precede speech production [5]. For other phoneme,
speech precede lip motions. Decision level fusion combines the like-
lihood scores from modality-depended systems. These systems also
operate with common frame rates so the synchronization problem
still play an important role. Model level fusion finds hidden latent
variables to better capture the relationship between the modalities
[18, 19]. While certain systems can model the asynchrony between
modalities, such as asynchronous hidden Markov models (AHMMs)
[20], the level of asynchrony is limited to reduce the complexity of
the system.

Deep learning techniques have recently emerged as powerful
techniques in audiovisual speech processing systems. The front-end
for feature extraction and back-end for recognition can be learned
from the data, without pre-assumed rules. Ninomiya et al.[21]
learned new audiovisual features by extracting a hidden represen-
tation with deep bottleneck features. This feature representation was
used as audiovisual features of a back-end AV-ASR system. Ngiam
et al.[4] proposed multimodal deep neural network (DNNs) which
can learn the relationship between the modalities from the data. Tao
et al.[13] extended the work creating bimodal recurrent neural net-
work (RNN), capturing the temporal information with recurrent con-
nections. Chung et al.[22] proposed a bimodal end-to-end frame-
work relying on RNN with attention model to capture temporal de-
pendencies. Sanabria et al.[23] used connectionist temporal classi-
fication (CTC) as loss function in building an end-to-end system to
learn text sequence from audiovisual representation sequences.

Previous studies have often relied on feature interpolation or ex-
trapolation to form audio and visual feature vectors with the same
length [1, 24, 14]. This pre-processing step is essential to align au-
diovisual feature sequences. However, this approach does not pro-
vide the flexibility to capture the time-variant phase between modal-
ities for different phonetic units. Contextual features used in ASR
systems implemented with DNN [25] can help to model temporal
information by concatenating multiples previous and future frames
[26]. However, the systems does not provide enough flexibility by
defining a fixed window. Bahdanau et al.[11] propose to align the
input and output sequences with different lengths using RNN with
attention model in the context of machine translation. Our study
explores this solution for audiovisual ASR, aligning audiovisual fea-
tures within a data-driven front-end framework based on attention
model. As demonstrated in this study, this front-end approach leads
to measurably improvements in word error rate (WER).

3. DATABASE AND AUDIOVISUAL FEATURES

3.1. CRSS-4ENGLISH-14 corpus

This study uses the CRSS-4ENGLISH-14 corpus [13]. The corpus
was collected in a 13ft × 13ft ASHA certified sound booth. The
sound booth was illuminated by two LED light panel during the data
collection, providing uniform illumination (Fig. 1(a)). The corpus
includes recordings from 442 subjects (217 females and 225 males)
from four English accents: Australian (103), Indian (112), Hispanic

(a)
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Fig. 1. Data collection setting with the equipments used in the
recordings of the CRSS-4ENGLISH-14 corpus.

(112) and American (115). The data was manually transcribed.
The data contains audio and video information using multiple

recordings (five microphones and two cameras). For the audio, this
study uses a close-talking microphone (Shure Beta 53) and a micro-
phone from the tablet placed about 150 centimeters from the subject
(Samsung Galaxy Tab 10.1N). The two microphones collect audio
at 44.1 kHz. For the video, this study uses a high definition (HD)
camera (Sony HDR-XR100) and the tablet’s camera. The videos of
HD camera was set to 1440×1080 resolution and a sampling rate of
29.97 frames per second (fps). The videos from the tablet was set to
1280× 720 resolution and 24 fps. A monitor was placed in front of
the speaker to show the required tasks. The equipments are shown
in Figure 1(b). A clapping board was used at the beginning of each
recordings to synchronize all the channels.

The tasks for the subjects included two sections: clean and noisy
recordings. In the clean recordings, the protocol included read and
spontaneous speech. The read speech task required the speaker to
read prompted text shown in the monitor, including isolated words,
short phrases, and complete sentences. The spontaneous speech task
required the speaker to answer questions shown on the monitor. In
the noisy recordings, a portion of the read text was repeated by ran-
domly selecting slides used during the clean recordings (i.e., the ma-
terial used in the noisy section was a subset of the material used
in the clean section). The difference is that background noise was
played through a loud speaker (Beolit 12) in the sound booth to em-
ulate noisy environments.

This study only uses the set with American accent to reduce



Fig. 2. The procedure to extract visual features. A frontal face image was selected as a global template. Points with green circles were
defined as rigid points, used to normalize the size and pose of the face. After detecting the ROI, we estimate 5D geometric distances between
landmarks and 25D local DCT, extracted from the gray box (30D visual feature vector).

intra-speaker variability due to differences in accent. The duration
of the set is 60 hours and 48 minutes, including 55 females and 50
males. We separate the data into train (70 speakers), develop (10
speakers) and test (25 speakers) sets. We did not use data from 10
speakers, because some of the videos were not properly stored.

3.2. Audiovisual Features

This study uses the audiovisual features proposed by Tao and Busso
[16]. The audio is downsampled to 16 kHz. We extract 13D Mel fre-
quency cepstrum coefficients (MFCCs), which are used as acoustic
features. We use a 25 milliseconds window shifted by 10 millisec-
onds, creating 100 fps.

The visual features correspond to geometrical and appearance
features extracted from the region of interest (ROI) centered around
the lips. Figure 2 shows the details of the visual extraction process.
We use IntraFace [27] to automatically extract 49 facial landmark.
A frontal face image from one subject is selected as the global tem-
plate. This template is used to normalize the size and pose of the face
for each frame. We estimate this affine transformation by comparing
selected rigid points in both the input frame and the template. These
rigid points are selected since they are less sensitive to facial move-
ments (green dots in Figure 2). We define the ROI, after normalizing
the face. We estimate a 5D geometric vector describing distances be-
tween landmarks in the lips (see Fig. 2). We define a box inside the
mouth from which we extract 25D discrete cosine transform (DCT)
coefficients. The final vector is a 30D feature vector after concate-
nating the geometric and DCT features.

4. PROPOSE APPROACH

4.1. Alignment Neural Network

We propose the front-end alignment neural network (AliNN), which
aims to learn the synchrony between audiovisual modalities from
the data. The key idea is to synchronize the visual features with
the acoustic features, providing a new aligned visual sequence with
the same length as the acoustic features. The alignment between
modalities is learned from the data. Figure 3 shows the proposed
deep learning structure, which consists of a dynamic part and a static
part.

Fig. 3. Diagram describing the proposed AliNN front-end system.
It includes a dynamic part, implemented with RNN and attention
model, and a static part, implemented with DNN with static layers.
The first layer of the static part extracts audiovisual features.

The dynamic part relies on attention model to apply sequence-
to-sequence learning. The attention model was introduced by Bah-
danau et al.[11] and Chorowski et al.[12]. Figure 4 shows the core
part of the attention model. The output state is modeled based on
the previous state and the linear combination of all hidden values in
the input layer. Very importantly, the output and input sequences can
have different lengths. Equations 1 and 2 show the linear combina-
tion equations, where i is the timestep in the output layer, and j is the
timestep in the input layer. hj is the hidden value at the timestep j in
the input layer, aij is the weight of the input frames at the timestep
i of the output, and ci is the linear combination of all hidden values
in the input layer for the output timestep i. Equation 2 shows that
the summation of all the weights for the output at timestep i is equal
to 1. Each output frame is a linear combination of the input frames.
The weight aij plays the role of aligning the input at timestep j and
the output at timestep i. Therefore, the attention model can learn
the alignment between sequences even though they have different
lengths.

ci =
T∑

j=1

aijhj (1)



Fig. 4. Diagram of the attention model. The input and output se-
quences are unrolled along the time axis. The state in the output
layer is controlled by the previous state and the linear combination
of all the hidden values in the input layer. The input and output se-
quences can have different lengths.

T∑
j=1

aij = 1 (2)

The attention model offers a principled approach to synchronize
audiovisual features. The formulation in AliNN takes visual features
as inputs and acoustic features as the target outputs. The training is
equivalent to regress visual features to acoustic features, where the
mean squared error (MSE) is used as the loss function. The layers
on the dynamic network of the AliNN framework are implemented
with long short-term memory (LSTM) networks.

The AliNN front-end does not consider the phonetic content in
the speech. The static network on top of the dynamic layers aims to
predict the acoustic features after the alignment. The static part is
implemented with several layers without recurrent connections. The
first layer of the static part serves as a feature extractor, providing
a new visual feature representation that is timely aligned with the
acoustic features (see Fig. 3). Once the AliNN framework is trained,
the output of the first layer of the static part is used as our new visual
feature vector, which is concatenated with the original acoustic fea-
ture to form the final audiovisual feature vector. This feature vector
is then used as the input of our back-end ASR recognizer.

The structure of the dynamic part is implemented with two re-
current layers (i.e., LSTM) with 30 neurons in each layer. The
static part has three fully connected layers with rectified linear unit
(ReLU) as activation function. Each layer has 30 neurons. The num-
ber of neuron in each layer is the same as the dimension of the orig-
inal visual feature vector, so the dimension of the new visual feature
is not changed.

4.2. Training AliNN

The asynchrony between audiovisual features reported in previous
studies is around 100 milliseconds [7, 8]. Therefore, we restrict the
search during the training process by segmenting the sequences with
one second window shifted by 0.5 seconds (i.e., 0.5 seconds over-
lap between two contiguous sub-sequences). Zero-padding is added

if the sub-sequences are less than one second. Segmenting the se-
quences also makes the training process more efficient, reducing the
time to train the AliNN system.

The AliNN front-end is trained with the sub-sequences of audio-
visual features. Hidden representations are also extracted with the
sub-sequences. We combine the outputs obtained from the feature
representation layers by averaging the overlap from contiguous sub-
sequences. With this approach, we obtain a new feature sequence
with the same length as the unsegmented target sequence. This pro-
cess facilitates the training of the AliNN front-end, providing a new
synchronized visual vector that has the same length, and is timely
aligned with the acoustic features. The back-end ASR system can
be trained by concatenating the new aligned visual features with the
acoustic features.

5. EXPERIMENTAL EVALUATION

5.1. Experiment Settings

We evaluate the proposed approach on the CRSS-4ENGLISH-14
corpus. The AliNN approach is used as a front-end of two back-
end ASR systems implemented with GMM-HMM and DNN-HMM.
For the GMM-HMM back-end, the feature vector is augmented with
delta and delta-delta information. For the DNN-HMM, we used the
contextual features with a window of 15 frames (i.e., seven previous
frames and seven future frames). The word error rate (WER) is used
as the performance metric.

For training the models, we use data collected from the close-
talking microphone and HD camera using clean recordings. For test-
ing the models, we have two channel conditions. The ideal channel
condition uses audio from the close-talking microphone and videos
from the HD camera. Since the back-end systems are trained with
data collected with these devices, we have matched channel condi-
tions when we test the models with the ideal condition. The second
condition is referred to as the tablet channel condition, where the
audio and video are recorded with the tablet. Testing the model with
the tablet condition creates channel mismatched, so we expect lower
performance. Since the videos from the HD camera and tablet cam-
era have different sampling rates, we linearly interpolated the 30D
features obtained from the tablet videos, matching the sampling rate
of the HD camera. This step is implemented before they are fed
into AliNN. We evaluate the models with clean and noisy recordings
(Sec. 3.1).

The front-end for the baseline system consists of linear interpo-
lation of the original visual features to match the sampling rate of the
acoustic features, which is a common approach used in AV-ASR. Af-
ter interpolation, we concatenate the audiovisual features. While the
baseline systems used the interpolated version of the visual features,
the proposed method uses the aligned visual features which have
the same sampling rate of the audio stream, and are timely aligned
with the acoustic features. The acoustic features are the same for the
baseline and the proposed front-end system.

5.2. Results and Discussion

Table 1 presents the results of the experimental evaluation. It shows
that the AliNN front-end can outperform linear interpolation method
with either GMM-HMM or DNN-HMM back-end system under
most conditions, showing the capability of our proposed front-end
framework.

With a GMM-HMM back-end under ideal channel conditions,
the proposed front-end provides relative improvements over the



Table 1. WER of systems implemented with linear interpolation
(baseline denoted by LInterp) and the proposed front-end framework
(denoted AliNN). The table shows results with matched and mis-
matched channel conditions, with clean and noisy conditions, and
with two back-end ASR systems.

Front-end MODEL
Ideal Conditions Tablet Conditions
Clean Noise Clean Noise
WER WER WER WER

LInterp GMM-HMM 23.3 24.2 24.7 30.7
AliNN GMM-HMM 17.5 19.2 22.7 35.6
LInterp DNN-HMM 4.2 4.9 15.5 15.9
AliNN DNN-HMM 4.1 4.5 4.6 10.0

baseline of 24.9% under clean recording, and of 20.7% under noisy
recordings. Under tablet channel condition, the proposed approach
is 8.1% (relative) better than the baseline in clean recordings. How-
ever, the approach is 16.0% (relative) worse than the baseline in
noisy recordings. The improvement under ideal channel conditions
is larger than the tablet channel condition. A reason for this result is
the use of linear interpolation to upsample the visual features from
24 fps to 29.97 fps before feeding the visual features into the AliNN
front-end. This linear interpolation step may impair the alignment
with acoustic features.

With a DNN-HMM back-end, the proposed approach outper-
forms the baseline under all conditions. Under ideal channel condi-
tions, the AliNN front-end obtains a relative improvements of 2.4%
for clean recordings, and 8.2% for noisy recordings. Notice that
the DNN-HMM framework provides better performance than the
GMM-HMM framework with WER below 5% for the ideal channel
condition. Therefore, it is harder to improve the results. Under tablet
channel condition, the proposed approach achieves impressive rela-
tive gains over the baseline front-end (70.5% for the clean recordings
and 39.7% for noisy recordings).

We also observe that the performance in noisy recordings un-
der tablet channel condition is lower than the ideal tablet conditions.
This result is explained by the setup used to collect the corpus. The
load speaker playing the noise was physically closer to the tablet
microphone than the close-talking microphone. As a result, the
level of noise was higher in the microphone from the tablet. Fig-
ure 5 presents the distribution for the signal-noise-ratio (SNR) for
the ideal and tablet channel conditions, automatically estimated us-
ing the NIST speech SNR tool [28]. The figure shows that under the
ideal channel condition, the clean and noisy recordings have impor-
tant overlap, so the WER by the system is less affected by the noise.
Under the tablet channel condition, however, the noisy recordings
have significant lower SNR. Therefore, the ASR task is more chal-
lenging.

6. CONCLUSIONS AND FUTURE WORK

This paper proposed the alignment neural network (AliNN), which
is a principled front-end framework to model the temporal align-
ment between audiovisual features. AliNN learns the alignment
from the data without the need of labels (e.g., transcription). The
framework uses attention models with LSTM, where the task is to
estimate acoustic features from visual features. The attention model
framework addresses the difference in sampling rate in the modali-
ties, creating a new visual vector that not only has the same length
as the acoustic feature vector, but also is timely synchronized with
speech.

(a) SNR for close-talk microphone

(b) SNR for tablet microphone

Fig. 5. The SNR distribution for close-talking and tablet micro-
phones. The gray bars represent the noisy recordings, and the white
bars represent the clean recordings.

The experimental evaluation conducted on the CRSS-
4ENGLISH-14 corpus shows that the proposed front-end provides
better performance than the baseline front-end (matching the
sampling rate using linear interpolation on the visual features). We
evaluated the front-end approaches with back-end ASR systems
implemented with either GMM-HMM or DNN-HMM. The results
show that the AliNN approach can outperform the baseline front-end
under most of the conditions (channel mismatched condition, noise
versus clean conditions). The results are specially impressive with
DNN-HMM, where the WER are consistently reduced across all
conditions when using the proposed AliNN front-end. Our approach
can model the temporal and spatial relationship between audio
and visual modalities directly from data without pre-defined rules,
which addresses one the challenges in AV-ASR that is commonly
ignored.

There are many directions to extend this work. One of the most
unique features of the proposed approach is that it can be used with
any back-end system. In the future, we will explore an end-to-end
back-end system, which have emerged as a powerful deep learning
solution for AV-ASR. We are planning to integrate the AliNN with
an end-to-end back-end ASR, providing a unified solution that aligns
the audiovisual features, maximizing their phonetic discrimination.
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