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Abstract
Neurological disorders disrupt brain functions, affecting the life
of many individuals. Conventional neurological disorder di-
agnosis methods require inconvenient and expensive devices.
Several studies have identified speech biomarkers that are in-
formative of neurological disorders, so speech-based interfaces
can provide effective, convenient and affordable prescreening
tools for diagnosis. We have investigated stand-alone automatic
speech-based assessment tools for portable devices. Our cur-
rent data collection protocol includes seven brief tests for which
we have developed specialized automatic speech recognition
(ASR) systems. The most challenging task from an ASR per-
spective is a popular diadochokinetic test consisting of fast rep-
etitions of “PA-TA-KA”, where subjects tend to alter, replace,
insert or skip syllables. This paper presents our efforts to build
a speech-based application specific for this task, where the com-
putation is fast, efficient, and accurate on a portable device, not
in the cloud. The tool recognizes the target syllables, provid-
ing phonetic alignment. This information is crucial to reliably
estimate biomarkers such as the number of repetitions, inser-
tions, mispronunciations, and temporal prosodic structure of the
repetitions. We train and evaluate the application for two neu-
rological disorders: traumatic brain injuries (TBIs) and Parkin-
son’s disease. The results show low syllable error rates and high
boundary detection, across populations.
Index Terms: automatic speech recognition, neurological dis-
orders diagnosis

1. Introduction
Neurological disorders affect the nervous systems, disrupting
the normal function of the brain, spine or nerves connected be-
tween them. There are more than 600 diseases related to neuro-
logical disorders, such as Parkinson’s disease (PD), Alzheimer’s
disease (AD), stroke, traumatic brain injuries (TBIs), and brain
tumors. Individuals with these diseases have low quality of
life with discouraging prognosis, as the condition progresses af-
fecting cognitive, communicative and motor functions. Current
medical techniques normally diagnose the neurological disor-
ders relying on expensive and intrusive devices such as nuclear
magnetic resonance (NMR) systems, CT scan and X-ray scan.
The high cost and technical skill required to operate these de-
vices are other barriers. Currently there are no systems or de-
vices available for personal use in early diagnosis of the dis-
ease or for monitoring the progression of the condition. Due to
these reasons, many diseases caused by brain injuries such as
concussions are not medically detected, and the individuals do
not receive appropriate treatment. New alternative methods are
needed that are effective, portable, convenient and affordable.

This work was funded by the NSF under grant IIS-1450349.

Speech production is a complex process that involves about
100 different muscles and triggers about 140000 neuromuscu-
lar events, per second [1]. The disruption caused by neurolog-
ical disorders affects speech production, showing deviations in
acoustic features when compared with speech from a typical
healthy person [2]. These speech-based biomarkers can serve
as building blocks to design a feasible, affordable and portable
tool to improve the assessment and treatment of neurological
disorders. Key challenges are (1) to identify these biomarkers,
and (2) to reliably estimate them using automatic systems. A
common and straightforward method is to train people to eval-
uate biomarkers based on auditory perception. However, this
method is subjective and prone to ignore subtle acoustic cues.
Advances in speech processing provide an alternative solution
for this problem. Automatic Speech Recognition (ASR) systems
are able to automatically recognize the input speech and capture
the timing boundaries at different levels, such as words, sylla-
bles and phonemes. We can automatically estimate correspond-
ing biomarkers, relying on the detection result provided by the
ASR system. Speech biomarkers can contribute with objective
and precise metrics without personal bias, providing valuable
information for clinicians or speech therapists.

Over the last couple of years, our groups have collabo-
rated to develop stand-alone applications to detect vocal acous-
tic biomarkers indicative of neurological disorders [2]. These
applications are implemented on portable devices (iOS), and
are designed to work regardless of Internet accessibility. As
a result, all the computation is done on the device, not in the
cloud. We have designed a data collection protocol with seven
brief tasks, for which we have developed specialized ASR sys-
tems. One of them is the diadochokinetic (DDK) test consist-
ing of speaking repetitions of “PA-TA-KA”, as fast as possible.
This popular task has been extensively used in previous work to
study the relationship between neurological disorders and DDK
rate [3–10]. This task poses important challenges for ASR sys-
tems due to the error patterns made by individuals, including
mispronunciation, alternating syllable order, skipping syllables,
replacing syllables, and restarting the sequences. These errors
are also informative of neurological disorder, so it is important
to identify them.

Under the constraint that the computation has to be done
on the portable device, this paper presents simple but effec-
tive speech solutions that work remarkably well for this DDK
task. We build syllable-based acoustic models, considering out-
of-vocabulary words, and speech fillers. Our language model
makes our ASR system robust to syllable sequences that are
out of order or incomplete. We obtain accurate syllable bound-
ary detection, which allows us to extract interesting candidate
biomarkers, such as DDK rate and temporal evolution of the
prosodic structure across multiple repetitions of “PA-TA-KA”.
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Figure 1: The procedure of data collection

We evaluate this system with data recorded from two important
neurological conditions, for which we are collecting extensive
recordings. The first condition is mild traumatic brain injuries
(mTBIs), where we collect data from high school and college
athletes participating in sports with high concussion rates. The
second condition is Parkinson’s disease (PD).

2. Related Work
Diadochokinetic (DDK) rate has been used to diagnose and
monitor motor speech disorders [11]. This task normally re-
quires subjects to speak repetitions of a single syllable or a
group of syllables as fast as possible. By increasing the speech
rate, the cognitive and motor function demands increase, espe-
cially when the task includes sequential syllables involving dif-
ferent speech articulation changing the configuration of the oral
cavity. DDK tasks are able to examine alternate and sequen-
tial movements involving specific syllable repetitions, provid-
ing valuable tools in neurological disorders diagnosis [12, 13].
High level features such as sequential motion rate (SMR), alter-
nating motion rate (AMR), temporal variation of fundamental
frequency (F0), and formant information (e.g. F1, F2) can be
extracted from DDK tests and used as standard biomarkers for
clinical diagnosis.

The sequence of syllables “PA”, “TA”, and “KA” are nor-
mally used to study the relationship between neurological dis-
orders and DDK rate [3–10]. This sequence requires the sub-
jects to use the lips, the tip of the tongue, and the soft palate.
These articulations involve the front, middle, and back parts of
the mouth respectively, providing a valuable test to assess motor
speech skill. The combination of these three syllables, “PA-TA-
KA”, in testing oral motor skills and neurological disorders has
proven to be more efficient than single syllable tests, because it
requires more complex speech articulation, increasing cognitive
demands [14–16]. Thus, we decided to investigate simple, but
effective solutions to improve the performance of our system
utilizing this task. This paper reports the proposed solution for
this DDK task.

3. Task Design and Data Collection
This section briefly describes our current protocol and iOS ap-
plication for data collection. Figure 1 describes the flowchart of
our system. We also briefly describe the data collection effort.
We describe in detail these aspects in Poellabauer et al. [2].

3.1. Task Design and Application for Portable Devices

The key goal of our effort is to create an application, which is
able to derive reliable biomarkers of motor speech disorders us-
ing only few minutes of recordings. After multiple iterations in
the design of our protocol, we defined seven brief tasks which
are listed in Table 1. Task 1 required the subject to speak multi-
syllabic words, capturing deficits in range, accuracy, and speed
of movement during speech production. In Task 2, the subject
read the sentence three times placing emphasis on “put”, “book”
and “here”, respectively, capturing restricted ability to produce
stress. Task 3 required the subject to accurately read a given

Table 1: Description of speech tasks for the mTBI data collec-
tion. A modified version is used for the PD data collection.

ID Task

1 Participate, Application, Education, Difficulty, Con-
gratulations, Possibility, Mathematical, Opportunity

2 Put the book here
3 We saw several wild animals
4 PA
5 KA
6 PA-TA-KA
7 AAAHHH

Figure 2: Interface of the iOS application for data collection.

sentence. Tasks 4 and 5 were DDK tasks including repeating a
single syllable (AMRs). Task 6 corresponded to the “PA-TA-
KA” task (SMRs), which is the focus of this paper. Finally, task
7 required the subject to sustain the /ah/ vowel for at least 5
seconds, capturing muscle tone and steadiness of the tone. The
entire recordings took between 2 and 3 minutes to complete.

We designed an iOS application for iPads which collected
the selected tasks the order shown in Table 1. Figure 2 shows the
interface for the task “PA-TA-KA”. The application displays the
content that the subject is required to read for a fixed duration
of 5 seconds. There is a fixed square bracket in the middle of
the screen highlighting the text that the user is expected to read.
The text moved from one side to the other. A SHURE SM-10
noise cancellation microphone was attached to the iPad, since
this external microphone provided higher signal-to-noise ratio
(SNR) than the iPad’s internal microphone [2] (Figure 1). The
application is intended to be used in realistic scenarios (e.g., in
hospitals, sports arenas, etc.), so we carefully control the noise
level. We estimate the SNR in real time and when the noise is
above an acceptable level, we ask the subject to move to a quiet
room and restart the data collection. The audio was originally
recorded at 44.1 kHz, 16 bit, with mono channel. We down-
sample the audios to 16 kHz for building our “PA-TA-KA” ASR
system.

3.2. Data Collection

Our investigation of speech biomarkers is targeted to two neu-
rological disorders: mTBIs and PD. For mTBIs, we collected
data from more than 2500 youth athletes participating in sports
with high concussion rates from 47 schools in the Midwest (Illi-
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Table 2: Summary of subjects in concussion and PD sets.
Set Total Female Male Age

mean max min

Concussed 95 16 79 17.5 24 14
Non-Concussed 485 87 398 16.4 22 14
Total 580 103 477 16.6 24 14
PD 7 4 3 65.6 82 57
Non-PD 10 7 3 54.1 76 23
Total 17 11 6 58.5 82 23

nois, Indiana, Michigan) and Pennsylvania. We collected base-
line recordings at the beginning of either the academic year or
the athletic season, assuming they were in healthy condition.
The subjects provided information about age, gender, previous
concussion events and other medical records. We repeated the
protocol immediately after the athletes finished their competi-
tions. We were only able to collect 580 of these athletes, where
95 of them reported concussion symptoms. Table 2 provides
information about this corpus.

Recently, we have started a new project to analyze speech
recordings from individuals with PD. This is an ongoing effort
where we are collecting speech recordings from PD patients
and their spouses (where the spouses serve as control subjects).
While the test for PD is slightly different from the test for mTBI,
the PA-TA-KA test is unchanged. For this study, we use 10 typ-
ical healthy people, and 7 subjects with PD (Table 2).

The recordings for the PA-TA-KA test were manually
transcribed, including the timing information for the syllable
boundaries. Currently, we are still processing the data, so this
paper uses 204 transcribed audios from the concussion set and
17 transcribed audios from the PD set. Each of them have a du-
ration of 5 seconds, including on average 9 repetitions of “PA-
TA-KA”.

4. Building ASR solutions for PA-TA-KA
Over the last five years, ASR systems built on deep neural net-
works (DNNs) have achieved state-of-the-art performance com-
pared to traditional systems built on Gaussian mixture models
(GMM) and hidden Markov models (HMM) [17, 18]. DNN
systems train millions of parameters relying on large databases
[19,20]. The computation and memory constraints of these sys-
tems is intense, so current ASR solutions for portable devices
such as Siri (Apple), Cortana (Microsoft), Alexa (Amazon) per-
form the computation in the cloud [21]. While there is a grow-
ing interest on running all the computation of these ASR sys-
tems on portable devices [21, 22], we decided to use a GMM-
HMM framework. In particular, we use Pocketsphinx [23],
which can be easily incorporated into iOS applications.

We designed simple ASR solutions for all the tasks listed
in Table 1 achieving adequate performance, except for the “PA-
TA-KA” task, which is the most difficult task from an ASR per-
spective. Subjects normally make mistakes, including insert-
ing, replacing, or deleting syllables. As participants are asked
to utter the syllable sequence as fast as they can, they tend to
produce syllables out of order, with poor pronunciations. The
participants often laugh and speak out-of-vocabulary words. We
address these challenges by building task specific language and
acoustic models. Since this study analyzes pre-recorded speech,
the processing is performed off-line. However, the ASR system
can be easily adapted to work in real time.

4.1. Task-Specific Acoustic Model

We built our ASR system using HMMs, where the acoustic
models are trained with GMMs. Instead of building phoneme

Figure 3: Example of a recording. The Figure shows the speech
wave, spectrogram (with formants), and syllable segmentation.

models, as conventional ASR systems, we created three sylla-
ble models for “PA”, “TA” and “KA”, respectively. Notice that
the three syllables have the same vowel and the key difference
is on their consonant (bilabial, alveolar, velar). By building
syllable models, we capture the consonant-vowel transitions at
the HMM level, creating more robust models. These HMMs
are built in Pocketsphinx with three states using a left-to-right
topology. The GMMs are built with four mixture components.

Our acoustic features correspond to Mel Frequency Cep-
stral Coefficients (MFCCs), which are extracted with Pocket-
sphinx using a 25ms Hamming window, which is shifted with
step size of 10 ms (e.g., 100 frames per second). We use 13
MFCCs where we concatenate the first and second order dif-
ferences to include temporal information, creating a 39 dimen-
sional feature vector. We normalize the feature vector using
mean shift normalization at the utterance level.

We cope with out-of-vocabulary words by creating a back-
ground model. We use the CRSS-4ENGLISH-14 corpus [24]
for this purpose, where we group all other syllables together.
This background model is effective in capturing instances where
the participants do not correctly complete the task. We build
other models for laughing, clearing throat, coughing, smacking
lips, and silence. Our silence model is trained with samples
from the concussion set (training partition). We obtain samples
for laughing, clearing throat, coughing and smacking lips from
the CRSS-4ENGLISH-14 corpus, which has transcriptions for
these fillers. We use these samples to build the models for the
fillers.

4.2. Language Model

During the DDK task, the subjects have to repeat “PA-TA-KA”
as fast as possible. Frequent errors include altering the order of
the syllables (e.g., “PA-KA-TA”), missing syllables (e.g., “TA-
KA”), or repeating syllables (“PA-PA-TA”). We address these
challenges with the language models. Instead of using a strict,
fixed grammar, we rely on a trigram language model were we
allow the system to account for wrong syllable sequences. We
especially consider the syllable errors observed during training,
which are used to estimate the transition probabilities. We also
consider uni-grams and bigram to account for new sequences of
target syllables not observed during training.

5. Experimental Evaluation
Figure 3 shows a speech recording with the results provided by
the proposed ASR system. The Figure shows the speech wave,
spectrogram (with formants), and syllable segmentation. We
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Table 3: The ASR performance in terms of SER and bound-
ary detection. Results are for the concussion (“Con”) and PD
(“PD”) sets.

Set Conditions SER[%]
Boundary Detection
Pre Rec F

Con
Concussed 2.4 0.92 0.48 0.63
Non-Concussed 3.5 0.91 0.48 0.63

PD
PD 7.9 0.82 0.46 0.59
Non-PD 6.2 0.85 0.46 0.60

100 ms

Correct Wrong

Truth

Detection

Figure 4: Evaluating boundary detection performance. We use
a tolerance window of 100ms around the ground truth label.

evaluate the proposed ASR system training the models with 124
recordings from the concussion set. Each of them have multiple
repetitions of PA-TA-KA. All these recordings correspond to
individuals without concussion. We test the models with the
remaining data: 80 sentences from the concussion set, where
27 presented concussion symptoms; and, 17 sentences from the
PD set, where seven were recorded by individuals with PD. We
evaluate the accuracy of our system in estimating the syllables
and their boundary detection, which are important aspects for
the speech biomarkers that we intend to estimate (Section 5.1).

The first metric is the syllable error rate (SER) reported in
Table 3 for the concussion and PD sets. The system performs
well reaching levels of SER under 4% for the concussion set
and under 7% for the PD set. For the concussion set, our ASR
performs well for both concussed and non-concussed individu-
als. The performance is around 1.1% better for concussed indi-
viduals, since they have less fillers. Due to the low number of
recordings from the PD set, we cannot draw conclusive insights.
The SER is about 3-4% worse. There is a clear difference in the
subject’s age, so we are planning to retrain the acoustic models
under matched age conditions.

The second metric is the accuracy in detecting the syllable
boundary. We set a 100ms window tolerance around the ground
truth. For example, if the labelled boundary is located at 2s, a
correct detection should lie between 1.95 to 2.05 seconds. Oth-
erwise, it is considered a wrong detection (Figure 4). We esti-
mated the precision (‘Pre.’), recall (‘Rec.’) and F-score (‘F’).
Table 3 lists the performance, which is consistent across con-
ditions for the concussion and PD sets. We observe precision
rates above 0.9 for the concussion set, and 0.8 for the PD set.
The detected boundary are mostly correct. However, there are
boundaries that we are not detecting, limiting our recall rates.

5.1. Target Speech Biomarkers

The proposed ASR system can be used to extract speech
biomarkers that are discriminative of neurological disorders.
We can derive various relevant measures, including (1) the num-
ber of repetitions of correctly uttered “PA-TA-KA”, (2) the aver-
age DDK rate, defined as the number of syllables per second, (3)

Table 4: Estimating candidate speech biomarkers. The table
reports the MAD scores for “PA”, “TA” and “KA” and complete
sequences of correctly uttered “PATAKA”. Results are for the
concussion (“Con”) and PD (“PD”) sets.

Set Conditions PA TA KA PATAKA

Con.
Concussed 0.20 0.08 0.12 0.32
Non-Concussed 0.27 0.20 0.24 0.73

PD
PD 0.75 0.50 0.38 0.75
Non-PD 0.25 0.38 0.25 0.63

the average DDK period (inversely related to DDK rate), (4) the
standard deviation of DDK rate, and (5) the coefficient of vari-
ation in DDK period, defined as the degree of variation in the
period. With the syllable boundaries, we can also analyze the
prosodic structure of consecutive repetitions of “PA-TA-KA”. A
comprehensive description of these biomarkers is discussed in
Poellabauer et al. [2].

As an example, we estimate the number of “PA”, “TA”, and
“KA” syllables uttered per sentence. We define the mean ab-
solute difference (MAD) score estimated in Equation 1, where
Ntrue is true number of syllables, Ndetection is the detected
number of syllable, and L is the number of recordings in the
testing set. For the concussion set, we observed errors below 0.3
which implies that we can reliably estimate the actual number
of syllables for each of the target syllables. We observe similar
performance for “PA”, “TA”, and “KA”. We included the results
for PD set, although the number of recordings is limited. Fi-
nally, we estimate the number of “PA-TA-KA” sequences which
were correctly spoken. We do not count cases with missing or
incorrect parts such as “PA-TA”, “PA-KA”, “PA”. The system
can robustly estimate the number of correctly spoken “PA-TA-
KA”, showing errors less than 0.75 (less than 1 count per record-
ing, which usually includes around 9 repetitions). These results
show the feasibility of using the proposed application to derive
biomarkers of neurological disorders.

MAD =

∑L
i=1 |Ntrue −Ndetection|

L
(1)

6. Conclusions
We presented a task-specific ASR system for the popular DDK
test consisting of repetitions of syllables “PA-TA-KA”. The pro-
posed approach addresses the key challenges associated with
this task, providing a flexible tool for portable devices, where
the computation is on the device, not in the cloud. The ASR
system robustly detects the target syllables and their bound-
aries. We demonstrated how this system can be used to estimate
speech biomarkers. In particular, we robustly estimated, for a
given recording, the number of repetitions for each of the tar-
get syllables uttered by the participant, and the total number of
correctly uttered sequences of “PA-TA-KA”.

We are currently collecting more data from patients diag-
nosed with PD. We are using the models to automatically derive
speech biomarkers that can reveal possible early indications of
neurological disorders. We expect to build a stand-alone ap-
plication for iOS, to record and process PATAKA recordings.
From a system perspective, we are looking for post processing
approaches to improve the recall rates of the syllable bound-
ary detection. We are exploring alternative methods for syllable
boundary segmentations from spectrograms [25]. Finally, we
plan to retrain the models for the PD set after collecting enough
recordings. We will use data from healthy individuals similar in
age, to reduce the existing age mismatch in our current study.
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