A Portable Automatic PA-TA-KA Syllable Detection System to Derive Biomarkers for Neurological Disorders

Fei Tao1, Louis Daudet2, Christian Poellabauer2, Sandra L. Schneider3 and Carlos Busso1

1. Multimodal Signal Processing (MSP) Lab, The University of Texas at Dallas, Richardson TX
2. Mobile Computing Lab (M-LAB), University of Notre Dame, Notre Dame, IN
3. Department of Communicative Sciences and Disorders, Saint Mary’s College, Notre Dame, IN

fxt120230@utdallas.edu, ldaudet@nd.edu, cpoellab@nd.edu, sschneider@saintmarys.edu, busso@utdallas.edu

Motivation

Background:
- Neurological disorders disrupt brain functions, affecting the life of many individuals.
- Conventional neurological disorder diagnosis methods require inconvenient and expensive devices

Goal:
- Stand-alone speech-based assessment tools for portable devices

Solution:
- Build an ASR-based application specific for “PA-TA-KA”

Task Design and Data Collection

Previous Effort At ND-SMC-UTD
- Derive reliable biomarkers of motor speech disorders using few minutes of speech recordings.
- Define 7 specific tasks for speech collection

Recognition Task Setting:
- Pocketsphinx is used for building an ASR on mobile device
- Acoustic model
- Syllable model for PA, TA and KA
- Filler model and background model
- GMM-HMM trained with 3 states left-to-right structure
- 13 MFCC + ∆ + ∆∆ = 39D vector
- Language model
- Tri-gram, we learn common errors from training set
- 60% for training, 40 % for testing

Syllable Recognition:

<table>
<thead>
<tr>
<th>Set</th>
<th>Conditions</th>
<th>SER [%]</th>
<th>Boundary Detection</th>
<th>PA</th>
<th>TA</th>
<th>KA</th>
<th>PATAKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc.</td>
<td>Conceded</td>
<td>2.4</td>
<td>0.92 0.48 0.63</td>
<td>0.20 0.08 0.12 0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Conceded</td>
<td>3.5</td>
<td>0.91 0.48 0.63</td>
<td>0.27 0.20 0.24 0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>Conceded</td>
<td>7.9</td>
<td>0.82 0.46 0.59</td>
<td>0.75 0.50 0.38 0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Conceded</td>
<td>6.2</td>
<td>0.85 0.46 0.60</td>
<td>0.25 0.38 0.25 0.63</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SER: syllable error rate

Data Collection
- We controlled SNR during recordings
- Recordings were manually transcribed

Reference:

Set	Total	Female	Male	mean	Age	max	min
Con. | 95 | 16 | 79 | 17.5 | 24 | 14 |
Non-Con. | 485 | 87 | 398 | 16.4 | 22 | 14 |
Total | 580 | 103 | 477 | 16.6 | 24 | 14 |
PD | 7 | 4 | 3 | 65.6 | 82 | 57 |
Non-PD | 10 | 7 | 3 | 54.1 | 76 | 23 |
Total | 17 | 11 | 6 | 58.5 | 82 | 23 |

mTBI Dataset
- 580 youth athletes (boxing, football)
- 95 reported concussion symptoms
- Collect before season as baseline; repeat protocol after competition for comparison

This work was funded by the NSF under grant IIS-1450349.

Discussion

- We presented a task-specific ASR system for the popular test consisting of repetitions of syllables “PA-TA-KA”.
- We are collecting more data from PD patients

Reference:

Parkinson Disease (PD) Dataset (on going)
- Data collected from PD patients and their spouse (age matched control group)
- 17 participants collected; 10 of them were with Parkinson

Target Speech Biomarkers:
- The number of repetitions of “PA-TA-KA”
- The Diadochokinetic (DDK) rate
- The number of syllables per second
- The DDK period
- The standard deviation of DDK rate
- The degree of variation in DDK period
- Estimate the number of “PA”, “TA”, “KA” and “PATAKA”, measured by MAD score

MAD = \sum_{i=1}^{n} |N_{meas} - N_{direction}| / L