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Abstract
Detecting the presence or absence of speech is an important
step toward building robust speech-based interfaces. While
previous studies have made progress on voice activity detec-
tion (VAD), the performance of these systems significantly de-
grades when subjects employ challenging speech modes that de-
viate from normal acoustic patterns (e.g., whisper speech), or in
noisy/adverse conditions. An appealing approach under these
conditions is visual voice activity detection (VVAD), which de-
tects speech using features characterizing the orofacial activ-
ity. This study proposes an unsupervised approach that relies
only on visual features, and, therefore, is insensitive to vocal
style or time-varying background noise. This study proposes an
unsupervised approach that relies on visual features. We es-
timate optical flow variance and geometrical features around
lips, extracting the short-time zero crossing rates, short-time
variances, and delta features over a small temporal window.
These variables are fused using principal component analysis
(PCA) to obtain a “combo” feature, which displays a bimodal
distributions (speech versus silence). A threshold is automati-
cally determine using the expectation-maximization (EM) algo-
rithm. The approach can be easily transformed into a supervised
VVAD, if needed. We evaluate the system in neutral and whis-
per speech. While speech based VADs generally fail to detect
speech activity in whisper speech, given its important acoustic
differences, the proposed VVAD achieves near 80% accuracy
in both neutral and whisper speech, highlighting the benefits of
the system.
Index Terms: Visual voice activity detection, whisper speech

1. Introduction
Speech-based interfaces rely on voice activity detection (VAD)
to effectively process only the signals containing speech. Ro-
bust VAD techniques exploit the statistical patterns observed in
acoustic features which separate speech from other audio sig-
nals (harmonic, prosodic, and spectral properties) [1]. In many
cases, environmental conditions or the nature of the applications
introduce challenging conditions for existing VAD solutions.
For example, when noise consists of background speech (e.g.,
babble noise) segmenting the target speech is very challenging.
The performance also decreases when the speech mode deviates
from neutral speech. An important case considered in this study
is whisper speech which presents significant acoustic differ-
ences from neutral speech. For example, whisper speech lacks
voiced excitation, and the formants are shifted [2–5]. Thus, the
performance of speech-based VAD decreases. In these cases,
an appealing alternative is using visual voice activity detection
(VVAD) systems, which use facial features [6–10]. In theory,
these facial features are insensitive to time-varying background
noise or speech mode conditions.

VVAD systems offer suitable solutions to several interest-
ing applications. For example, they can play an important role
in silent speech interfaces [11] for speech-impaired individuals.
They can also support audiovisual automatic speech recogni-
tion (AV-ASR) [12] systems. In the context of smart rooms [13],
VVAD can facilitate the detection of the active speaker during
group discussions. These approaches are also useful in the con-
text of surveillance, security, and defense.

Previous studies have considered VVAD, proposing super-
vised [6–9, 14, 15] or unsupervised [10, 16] approaches. From
an application perspective, unsupervised methods offer more
flexible solutions across problems, since they can adapt to mis-
matches between test conditions. Inspired by the speech-based
Combo-SAD system proposed by Sadjadi and Hansen [1], we
present an unsupervised solution for VVAD which provides
state-of-the-art performance. We extract optical flow variation
and geometric features from the orofacial area. We capture the
temporal facial fluctuations that characterize speech by estimat-
ing their short-time zero crossing rates, short-time variances,
and delta features over a small temporal window. We fuse these
features using principal component analysis (PCA), forming a
“combo” feature, which displays a bimodal distribution, one
for silence and the other for speech. The classes are automat-
ically determined by using the expectation-maximization (EM)
algorithm over the “combo” feature. We achieve competitive
performance that does not decrease in the presence of whisper
speech. Finally, we demonstrate that the system can be easily
transformed into a supervised method, if needed.

2. Relation to Prior Work
Recent advances in AV-ASR have inspired the community to
consider VVAD as an appealing approach to segment speech.
Previous studies have considered supervised and unsupervised
approaches. This section describes past relevant studies.

Most VVAD approaches rely on supervised frameworks
where data is needed to train classifiers. Navarathna et al. [6]
extracted DCT features around the mouth region. After con-
catenating the coefficients for seven consecutive frames, they
projected the vector into a 40-dimensional space using linear
discriminant analysis (LDA), forming a dynamic feature vec-
tor. Next, they used Gaussian mixture models (GMM) as the
classifier. In addition to frontal views, they demonstrated that
it is possible to detect speech activity using profile views of the
subjects. Aubery et al. [8] used an active appearance model
(AAM) and retinal filter to detect speech activity using hidden
Markov models (HMMs), and later explored the use of optical
flow [7]. They set thresholds on the likelihood of the models
to define speech/silence regions. Joosten et al. [14] investi-
gated the performance of VVAD at different speeds of facial
movements. The system forms a feature vector by combining
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(a) Subject (b) Setup

Figure 1: The MSP-AVW corpus. The figure displays a subject
and the setting used to record the database.

spatiotemporal Gabor filters and frame differencing methods.
They relied on support vector machine (SVM) as their classi-
fier. Takeuchi et al. [9] extracted the variance of optical flow
as visual features, and proposed a multimodal VAD system that
combines acoustic and visual features.

Supervised models for VVAD trained with specific data
are less flexible than unsupervised models. However, very few
studies have proposed unsupervised VVAD methods. Sodoyer
et al. [10] proposed an unsupervised method to detect lip ac-
tivity. They estimated the height and width of the mouth. Next,
they normalized their values, and estimated their derivatives. Fi-
nally, they added the values, forming a single feature describing
the dynamic of the lip motion. A threshold was used to define
lip activity boundaries. That study demonstrated that dynamic
features (i.e., derivative) are more effective than the actual val-
ues describing the lip configuration. Notice that their work does
not distinguish between lip motion associated with speech or
non-speech events (e.g. smack, smile or laugh).

We propose a flexible unsupervised VVAD system that
combines different temporal features capturing orofacial fluc-
tuations caused by speech articulation. We develop the ap-
proach as an alternative to speech-based VAD. We evaluate the
approach with whisper speech, achieving competitive perfor-
mance for speech detection under neutral and whisper speech.

3. MSP-AVW Corpus
The study relies on the audiovisual whisper (AVW) corpus [17],
which consists of whisper and normal speech recordings from
40 subjects (20 male and 20 female). The database has three
parts: isolated digits (1-9, “zero” and “oh” – 220 samples per
speaker), read sentences (TIMIT – 120 sentences per speaker),
and spontaneous speech (answering to prompted questions – 10
questions per speaker). The speakers used whisper and neu-
tral speech modes to collect each of these recordings. The data
was recorded in a 13ft × 13ft ASHA certified sound booth, il-
luminated by two professional LED light panels (see Fig. 1(b)).
We collected the audio with a SHURE close-talk microphone
(48KHz) placed such that it does not occlude the participants’
face (see Fig. 1(a)). We recorded a frontal and profile views
of the participants using two high definition SONY cameras
(1440×1080, 29.97fps). For most of the recordings, we in-
clude two chroma key green screens to facilitate video process-
ing steps. We describe the corpus in details in Tran et al. [17].

After segmenting the recordings, we annotate the phonetic
boundaries. We use forced alignment for the neutral portion of
the data to estimate word and phoneme boundaries (SAILAlign
[18]). At the present time, we do not have the transcriptions for
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Figure 2: Flow chart of the proposed VVAD system.

the spontaneous speech, so this study relies on read sentences.
Given the acoustic differences in whisper speech, we manually
annotate the word boundary in the whisper speech. This study
uses read sentences from 39 subjects, corresponding to approx-
imately 10 hours of data (the facial extraction algorithm failed
for one subject).

4. Proposed Visual Voice Activity Detection
The proposed approach is inspired by the speech-based Combo-
speech activity detection (SAD) system proposed by Sadjadi
and Hansen [1], which combines five different features captur-
ing various acoustic properties (periodicity, harmonicity, spec-
tral flux, clarity, prediction gain). We build our approach by
considering temporal orofacial features (see Fig. 2 ). We es-
timate a set of facial features capturing fluctuations caused by
speech production. These features are combined using PCA,
creating a “combo” feature. We use the EM algorithm to cre-
ate speech and silence clusters over the “combo” feature. This
section describes the approach.

4.1. Feature Set
Figure 3 shows the flowchart of the feature extraction pro-
cess. We follow the methodology presented in our previous
work [19]. We use the CSIRO face analysis SDK to extract 66
facial landmarks from the frontal videos. The toolkit uses a de-
formable model to fit landmarks from each frame to a template
manually created for each subject [20]. To verify the correct de-
tection of landmarks, we detect the face using the Viola-Jones
detector algorithm [21]. We implement a generative model to
independently obtain 9 facial landmarks [22, 23]. We compare
the results from both approaches by estimating the coordinates
of the lips corner, eyes corners and nose points. We also com-
pare the mouth width and face size (Fig. 3). If we detect errors,
we mark these frames. If a video has less than 10% missing
features, we interpolate these values. Otherwise, we discard the
entire video from the analysis.

After landmarks are detected, we define the region of in-
terest (ROI) around the mouth. We estimate the width (W )
and height (H) of the mouth. These geometric features are de-
rived from the lips landmarks. We also estimate the mouth area
(area = WH) and the overall geometrical distance (H +W ).
Likewise, we estimate optical flow features to capture the lip

Figure 3: The feature extraction procedure.
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Table 1: Temporal facial features. “X” denotes the statis-
tic/functional estimated per feature. OFx and OFy are the hor-
izontal and vertical optical flow variances. OFxy is the overall
optical flow. H and W are the height and width of the mouth,
andH+W is the overall distance. area is the mouth area (Orig-
inal: original feature set; ST-ZCR: short-time zero crossing rate;
ST-Var: short-time variance; Delta: first order difference).

Feature Set
Set OFx OFy OFxy H W H+W area
Original X
ST-ZCR X X X X X X X
ST-Var X X X X X X X
Delta X X X X

Final Feature (19 Dimensions)
ST-ZCR (7D) + ST-Var (7D) + Delta (4D) + OFxy (1D)

motion dynamics. We downsample the frame size by a fac-
tor of four to reduce overall computation. Once we estimate
the optical flow for a given frame, we compute its variance
across the horizontal (OFx) and vertical (OFy) directions over
the mouth region. We obtain the overall optical flow variance
(OFxy = OFx + OFy) representing the lip motion intensity.
This 7D vector is our original feature set [OFx, OFy , H , W ,
OFxy , H +W , area].

Dynamic features provides better performance than actual
values describing the lip configuration [10]. Therefore, we es-
timate temporal features from the 7D original feature vector:
short-time zero crossing rate (ST-ZCR), short-time variance
(ST-Var), and absolute first order difference (Delta). The first
two temporal features (ST-ZCR and ST-Var) are derived from
short windows of consecutive frames. There are two impor-
tant constraints on the window size considered in this study: it
should be short enough to have good resolution in the estimation
of the silence-speech boundaries; and, it should be long enough
to capture temporal speech fluctuations. We set the window
length to nine video frames (300ms) to balance this tradeoff.
Since we assign the resulting values of the functionals to the
central frame of the window, the boundary resolution is only
150ms. Table 1 lists the temporal statistics derived from the 7D
features. Next sections describe these temporal features.

4.1.1. Short-Time Zero Crossing Rate (ST-ZCR)

We use ST-ZCR to capture the fluctuation in facial features gen-
erated by voice activation. SZ-ZCR is obtained by calculating
the zero crossing rate (ZCR) of each of the seven facial fea-
tures during the short window (see Table 1). Since some of the
variables are always positive (e.g., optical flow variances), we
normalize the seven features by subtracting their mean, before
estimated ZCR. This temporal functional captures the periodic
fluctuations observed in facial features while speaking.

4.1.2. Short-Time Variance (ST-Var)

We also estimate ST-Var over the facial features to capture tem-
poral variations. We follow a similar methodology used for the
ST-ZCR calculation, where the values are estimated over nine
frames, and assigned to the central frame. Notice that optical
flow features convey spatial variances. By estimating the ST-
Var over the short window, we estimate the temporal variance.
The ST-Var and ST-ZCR functionals provide complementary
information. ST-ZCR functional captures the frequency associ-
ated with the signal fluctuation. The ST-Var functional captures
the intensity associated with the signal fluctuation. We estimate
ST-Var for all facial features as shown in Table 1.
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Figure 4: Distribution of the 1D “combo” feature for one video.
It shows two Gaussian distributions where silence (first mode)
is clearly different from speech (second mode). The vertical
dash line gives the classification threshold estimated with EM.

4.1.3. Absolute First Order Difference

A popular approach in speech processing to incorporate tem-
poral information is the use of delta features. We calculate the
absolute first order differences of the height, width, overall ge-
ometrical distance, and mouth area (Table 1). We expect that
changes in these geometric features will provide more informa-
tion about speech fluctuations than their actual values. Notice
that we do not estimate delta features of the optical flow vari-
able. These features describe the spatial variance in the mouth
area. Delta features over optical flow will provide acceleration
which has an unclear relationship with speech fluctuation. Fur-
thermore, preliminary results demonstrate that including delta
features for optical flow variables do not improve the overall
performance of our VVAD.

4.2. Fusion of Temporal Features
As listed in Table 1, we use seven ST-ZCR features, seven ST-
Var features and four delta features. From the original features,
we do not consider geometric features. We only considerOFxy ,
since it provides the overall lip motion intensity. These features
define a 19D vector describing different aspects of speech fluc-
tuation in the orofacial area, as discussed before.

We are interested in an unsupervised framework for VVAD.
Following the approach proposed by Sadjadi and Hansen [1],
we fuse the feature vector by estimating PCA, where the first
principal component is used as a 1D “combo” feature. Since
the 19D temporal features have different scales, we apply Z-
normalization for each video using Equation 1, where f and σ
are the mean and standard deviation of the features.

fnorm =
(f − f)

σ
(1)

The 1D combo feature has a bimodal distribution, where
silence frames are clearly separated from speech frames. Fig-
ure 4 shows an example estimated from one of the videos. We
assume that the 1D combo feature follows a Gaussian mixture
model (GMM) with two univariate mixtures. We use the EM
algorithm to estimate the means and variances of these distribu-
tions, which determine the threshold to automatically classify
voice and silence frames. For each video, we run 50 times the
EM algorithm on the “combo” feature to cluster the two classes.
We select the result with the highest log-likelihood. Orofacial
fluctuations caused by speech production increase the 1D value
of the “combo” feature. Therefore, we assume that the cluster
with higher mean represents speech frames, and the cluster with
lower mean represents silence frames. We apply a median filter
over the resulting decision values to remove spike noise given
by the EM algorithm. Since we use a nine-frame window to cal-
culate temporal statistics, we apply a median filter of order 19.
Figure 5 shows the boundaries after this post-processing step.
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Figure 5: Silence/speech decisions boundary. The dashed line
gives the ground truth, and the solid line gives the decision
boundaries generated by the system.

Table 2: Performance of speech-based VAD [1]. (NSen: normal
sentences, WSen: whisper sentences).

Set Precision Recall F-score Accuracy
[%] [%] [%] [%]

Nsen 98.0 91.3 94.5 93.9
Wsen 72.3 78.7 75.3 74.8

5. Experimental Evaluations
We evaluate our VVAD on read sentences in whisper (WSen)
and neutral (NSen) modes, reporting precision, recall, F-score,
and accuracy (speech is relevant class for precision and recall).

For comparison, we use the state-of-the-art speech-based
VAD system proposed by Sadjadi and Hansen [1] to evaluate
the read sentences. Table 2 reports the results, which show that
the F-score for the speech based VAD system is 94.5% in neu-
tral sentences, but decreases to 75.3% for whisper speech. Lee
et al. [24] proposed a supervised approach for speech-based
VAD on neutral and whispering speech. Under matched sce-
narios (training and testing data are under same speech mode),
they achieved around 93% accuracy. However, the performance
drops under mismatched scenarios. When the supervised mod-
els are trained with neutral speech and tested with whispering
speech, the accuracy is only 83% [24]. These results show the
need for visual-based VAD.

Table 3 reports performance of the proposed VVAD ap-
proach. The F-score rates for whisper and neutral sentences is
above 81%. For an unsupervised approach, this performance is
very competitive. For comparison, Sodoyer et al. [10] reported
90% correct silence detection rate with 12% false detection rate
over a small corpus (4.4 minutes). Joosten et al. [14] reported
65% precision rate and 70% recall rate for speech detection in
isolated words sentences. Our unsupervised approach achieves
over 80% accuracy on a challenging corpus (subjects in our cor-
pus were allowed to move their body and head, some of them
wore eye glasses, hat, and ear rings).

An interesting result is the similar performance for whisper
and neutral speech. We have analyzed the differences in facial
features produced under these two speech modes [17]. While
the differences are not as evident as the patterns observed in the
acoustic features, we noticed statistical significant differences
in certain facial features (e.g., lip spreading). Speakers change

Table 3: Results of the proposed VVAD system (NSen: normal
sentences, WSen: whisper sentences).

Set Precision Recall F-score Accuracy
[%] [%] [%] [%]

Nsen 73.8 90.7 81.4 80.0
Wsen 73.5 90.3 81.1 79.4

Table 4: Results of the supervised VVAD over testing set (19
subjects) with linear kernel SVM. We report the results of the
unsupervised VVAD for these partitions (P: precision, R: recall,
F: F-Score, A: accuracy, NSen: normal sentences, WSen: whis-
per sentences)

Supervised VVAD Unsupervised VVAD
Set P R F A P R F A

[%] [%] [%] [%] [%] [%] [%] [%]
Nsen 84.3 89.1 86.6 86.9 73.1 90.5 80.8 79.1
Wsen 84.2 88.7 86.4 86.7 73.7 90.1 81.1 79.2

their articulatory production strategy while whispering. Since
our approach did not use supervised methods, the performance
is robust against characteristic patterns of whisper speech.

The differences in recall and precision rates suggest that
setting the threshold using a supervised approach may improve
the overall F-score rate. We evaluate this hypothesis by training
a linear kernel support vector machine (SVM) with the 19D
feature vector used to form the PCA-based “combo” feature
(Sec. 4.2). We split the data into two speaker-independent,
gender balanced partitions, where data from 20 subjects is used
for training, and data from 19 subjects for testing. This clas-
sifier is trained with only the neutral sentences of the training
set, using the speech/silence labels from forced alignment. Ta-
ble 4 shows the results for neutral and whisper sentences on
the testing set (19 subjects). The table also lists the results for
the unsupervised VVAD for this set. The supervised version of
the approach achieves an F-score of 86%, increasing 5% (ab-
solute) over the unsupervised version of the approach. The re-
call rates increase approximately 10% as a result of setting the
class boundaries with SVM, supporting our hypothesis. While
the supervised version of the approach provides better overall
performance, it is important to note that (1) it requires labeled
data, (2) when the mismatch between test condition increases,
the hyperplane defined by the SVM may not be optimum, de-
pending on the training speakers. The supervised version of the
proposed approach do not have these limitations.

6. Conclusions and Discussion
This study has proposed a new unsupervised visual-only VAD
approach that can be easily adapted into a supervised VVAD, if
needed. We used temporal and dynamic features to capture oro-
facial fluctuations caused by speech production. The approach
utilizes PCA to fuse multiple features, and the EM algorithm to
implement unsupervised classification of speech and silence. In
spite of potential articulatory differences between neutral and
whisper speech, the approach achieves similar performances
under both conditions. The proposed unsupervised system is
robust to both speech modes.

We expect that most errors are close to the speech-silence
boundaries, given the asynchronies between speech and lip ar-
ticulation (the boundaries are annotated based on speech). Also
the use of temporal windows, which provides important infor-
mation for this task, reduces the boundary resolution to 150ms.
If the ultimate goal is to correctly determine speech segments,
a simple solution would be to slightly extend the speech bound-
aries provided by the VVAD. An important advantage of the
proposed approach is the flexibility to incorporate other facial
cues or information from other modalities (e.g., speech). For
future work, we will explore audiovisual solutions for VAD.
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