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Introduction

® Voice Activity Detection (VAD) plays an important
role in speech-based interfaces

® Audio based VAD (AVAD) has challenges:

® Background noise

® Different speech modes (e.g. emotion, soft speech,
whisper)

“ Visual VAD (VVAD) becomes an alternative
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Related Work

Supervised:

® Navarathna et al. [2011] extracted discrete cosine
transform coefficients around mouth and augment them

by their derivative.

Aubery et al. [2007] used active appearance model and
retinal filter to detect speech activity based on HMM

Takeuchi et al. [2009] extracted the variance of optical
flow as visual features and proposed audiovisual VAD

system




Related Work (Cont.)

Unsupervised:

® Sodoyer et al. [2006] proposed an unsupervised method

to detect lip activity by adopting a threshold.

Sadjadi and Hansen[2013] proposed a state-of-the-art
unsupervised approach for AVAD

Benefit:

® No training data
® Adapt to testing conditions

® Unsupervised approach offers more flexibility




Corpus Description

Audio-visual Whisper (AVW) corpus
20 males and 20 females

Corpus consists of
®  Digits
® Read sentence (120 TIMIT sentences: 60 in neutral and 60 in whisper)

®  Spontaneous talk

Audio collected with a SHURE 48 KHz close-talk microphone




Corpus Description

® Video collected with high definition SONY cameras
(1440 x 1080) at 29.97 fps (label based on audio)




Proposed Approach

Video processing and facial feature extraction
Estimation of dynamic and temporal features
Principle component analysis (PCA)

Expectation maximum (EM) algorithm for
clustering
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Feature Extraction

® 66 landmarks detected by CSIRO [Cox et al., 2013]

® Quality check with the outputs from another system

®  Orofacial feature extraction:

®  height(H) and width(W)

(OFy)

Landmark Detection

Quality Check

variance of optical flow in x direction(OFx) and y direction

Feature Extraction

Optical

4 ‘Geometric
’ Features




Dynamic and Temporal Features

® Facial feature vector (7D):

® Overall optical flow variance (OFxy): OFx + OFy

® Overall distance (H + W) & approximate area (H x W)

® Statistics over facial feature vector

®  Dynamic features

®  Delta: first order difference

® Temporal features over 7D vector:
®  ST-VAR: short-term (0.3s) variance
® ST-ZCR: short-term zero-crossing rate
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Feature Set

® Final feature vector consists of 19 features

Set OFx | OFy | OFxy
Original X

Delta*®
ST-VAR* X X
ST-ZCR* X X

*ST-ZCR: short term zero crossing rate;
*ST-VAR: short term variance;
*Delta: first order difference




Unsupervised Classification

®  Principle component analysis (PCA) applied on final
feature to form a 1-D combo feature

® Inspired by Sadjadi and Hansen [2013]

Visual
Feature Combo Feature




Unsupervised Classification

Principle component analysis (PCA) applied on final
feature to form a 1-D combo feature

Expectation maximum (EM) algorithm is run for
clustering

Non-Speech

Threshold
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Baseline AVAD

® Audio only VAD (proposed by Sadjadi and Hansen
[2013]):

5D feature: Harmonicity, Clarity, Prediction Gain,
Preodicity, Perceptual Spectral Flux

Changing speech mode impair the system
performance (20% drop)

Set

Precision[%]

Recall[%]

F-score[%]

Accuracy|[%]

Neutral

Whisper

91.3
78.7

98.0
72.3

94.5
75.3

93.9
74.8

F — Score =2 X

Precesion X Recall

Precesion + Recall




Experiment and Results

® Video only VAD (proposed approach):

Visual cues are robust to different speech modes

For neutral sentence, the performance is about 13%
lower than AVAD system

For whispered sentence, the performance is about 6%
higher than AVAD system

Set

Precision[%]

Recall[%]

F-score[%]

Accuracy[%]

Neutral

Whisper

90.7
90.3

/3.8
/3.5

81.4
81.1

380.0
79.4




Compare AVAD and VVAD

® Anticipatory movement of lips

® Lower resolution for visual modality

i — Audio
77| |—VVAD Detection
== Ground Truth




Compare Supervised and Unsupervised

® Training set: 20 speakers; testing set: 20 speakers
® Unsupervised setting:

® Proposed approach is applied on the testing data
® Supervised setting:

® Linear kernel SVM built with training set

Training: Testing:
20 Spkrs 20 Spkrs
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Compare Supervised and Unsupervised

® Training set: 20 speakers; testing set: 20 speakers
® Unsupervised setting:

®  Proposed approach is applied on the testing data
® Supervised setting:

® Linear kernel SVM built with training set

Supervised VVAD Unsupervised VVAD

Set

P[%]

R[%]

F[%]

A[%]

P[%]

R[%]

F[%]

A[%]

Neutral

Whisper

389.1
38.7

34.3
384.2

86.6
86.4

86.9
86.7

90.5
90.1

/3.1
73.7

80.8
81.1

79.1
79.2




Benefits of Supervised Approach

® Supervised approach is 5% higher than
unsupervised approach

®  Trade-off

® Unsupervised approach is 5% higher when tested
on a different corpus

® Benefits of supervised approach is gone




Conclusions and Future Work

® A new unsupervised VVAD approach is proposed

® The proposed approach is robust to speech mode
changing

® Audiovisual VAD will be explored in future to
improve the performance under the neutral mode
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