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Abstract—The prediction of valence from speech is an important, but challenging problem. The expression of valence
in speech has speaker-dependent cues, which contribute to performances that are often significantly lower than the
prediction of other emotional attributes such as arousal and dominance. A practical approach to improve valence
prediction from speech is to adapt the models to the target speakers in the test set. Adapting a speech emotion
recognition (SER) system to a particular speaker is a hard problem, especially with deep neural networks (DNNs), since
it requires optimizing millions of parameters. This study proposes an unsupervised approach to address this problem by
searching for speakers in the train set with similar acoustic patterns as the speaker in the test set. Speech samples from
the selected speakers are used to create the adaptation set. This approach leverages transfer learning using pre-trained
models, which are adapted with these speech samples. We propose three alternative adaptation strategies: unique
speaker, oversampling and weighting approaches. These methods differ on the use of the adaptation set in the
personalization of the valence models. The results demonstrate that a valence prediction model can be efficiently
personalized with these unsupervised approaches, leading to relative improvements as high as 13.52%.

Index Terms—Speech emotion recognition, adaptation, transfer learning, emotional dimensions, valence.

1 INTRODUCTION

HE area of speech emotion recognition (SER) is
Tan important research problem due to its key
potential in fields such as human-computer interac-
tions (HCIs), healthcare [1]], [2] and behavioral stud-
ies [3]], [4]. Despite remarkable advances in emo-
tion recognition, detecting emotions from speech
is still a challenging task. The usual formulation
to describe emotions is with categorical descrip-
tors such as happiness, sadness, anger and neutral.
However, this approach may not capture the intra
and inter class variability across distinct emotional
classes (i.e., variability across sentences with the
same emotional class labels and variability across
sentences with different emotional class labels). An
alternative representation is the use of emotional
attributes, as suggested by the core affect theory
[5]. The most common attributes are arousal (calm
versus active), valence (unpleasant versus pleasant)
and dominance (weak versus strong). Because of
their direct application in many areas, it is very
important to build accurate models, which can re-
liably predict these emotional attributes. The esti-
mation of emotional attributes is often posed as
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a regression problem, where the goal is to pre-
dict the scores associated with these attributes. In
particular, the emotional attribute valence is key
to understand many behavioral disorders [6], [7]
such as post-traumatic stress disorder (PTSD), depres-
sion, schizophrenia and anxiety. Although different
approaches have been proposed to improve SER
systems, the prediction of valence using acoustic
features is often less accurate than other emotional
attributes such as arousal or dominance. The gap in
performance is significant even with different meth-
ods specially implemented to correct this problem,
such as using features from other modalities [8],
[9], [10], [11], modeling contextual information [12]
or regularizing deep neural network (DNNs) under a
multitask learning (MTL) framework [13], [14]. It is
important to explore why predicting valence from
speech is so difficult, and use these findings and
insights to improve SER systems.

In our previous work, we studied the prediction
of valence from speech [15], focusing the analysis
on the role of regularization in DNNs. In partic-
ular, we explored the role of dropout as a form
of regularization and analyzed its effect on the
prediction of valence. Our analysis showed that
a higher dropout rate (i.e., higher regularization)
led to improvements in valence predictions. The
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optimal dropout rate for valence was higher than
the optimal dropout rates for arousal and domi-
nance across different configurations of the DNNs.
A hypothesis from this study was that a heavily
regularized network learns features that are more
consistent across speakers, placing less emphasis
on speaker-dependent emotional cues. We also con-
ducted controlled speaker-dependent experiments
to evaluate this hypothesis, where data from the
same speakers were included in the train and
test partitions. For valence, we observed relative
gains in concordance correlation coefficient (CCC) up
to 30% between speaker-dependent and speaker-
independent experiments. The corresponding rela-
tive improvements observed for arousal and dom-
inance were less than 4%. These results showed
that valence emotional cues include more speaker-
dependent traits, explaining why heavily regulariz-
ing a DNN helps to learn more general emotional
cues across speakers [15]. Building on these results,
we propose an unsupervised personalization ap-
proach that is very useful for valence prediction.
This paper explores the speaker-dependent na-
ture of emotional cues in the expression of valence.
We hypothesize that a regression model trained to
detect valence from speech can be adapted to a tar-
get speaker. The goal is to leverage the information
from the emotional cues of speakers in the train
set to fine-tune a regression model already trained
to perform well on the prediction of valence. Our
approach identifies speakers in the train set that
are closer in the acoustic space to the speakers in
the test set. Data from these selected speakers are
used to create an adaptation set to personalize the
SER models toward the test speakers. We achieve
the adaptation by using three alternative methods:
unique speaker, oversampling and weighting ap-
proaches. The unique speaker approach randomly
selects samples from the data obtained from the se-
lected speakers in the train set without replacement,
regardless of how many times these speakers are
selected (i.e., a speaker in the train set may be found
to be closer to more than one speaker in the test
set). The oversampling approach draws data from
the selected speakers as a function of the number of
times that a given speaker is selected. For instance,
if a speaker in the train set is found to be closer
to two speakers in the test set, the selected sen-
tences from that training speaker is counted twice.
This approach repeats the data from this speaker
during the adaptation phase, so the model sees the
same speech samples in multiple batches in a single
epoch. The weighting approach uses weights, where
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samples from the selected speakers in the train set
are weighted more. This approach adds weights
on the cost function during the training process,
building the models from scratch. We demonstrate
the idea of personalization under two scenarios:
1) separate SER models, where each of them is
personalized to a single test speaker (i.e., individual
adaptation models), and 2) a single SER model
personalized to a pool of 50 target speakers (i.e.,
global adaptation model).

Using the proposed model adaptation strategies
leads to relative improvements in CCC as high
as 13.52% in the prediction of valence. This result
indicates the need for a personalization method to
improve the prediction of valence, highlighting the
benefits of our proposed approach. The contribu-
tions of our study are:

o We leverage the finding that the expression
of valence in acoustic features is more speaker-
dependent than arousal and dominance, raising
awareness on the need for special considerations in
its detection.

o We successfully personalize a SER system using
unsupervised adaptation strategies by exploiting
the speaker-dependent traits.

o We propose three alternative adaptation strate-
gies to personalize a SER system, obtaining im-
portant relative performance improvements in the
prediction of valence.

One of the key strengths of this study is that we
find similar speaker in the emotional feature space
alone. By exploiting similarities in the emotional
feature space, we have suppressed the speaker
trait or text dependencies. Our approach provides
a much more powerful way of comparing emo-
tional similarities than traditional methods used for
speaker identification. Likewise, our personaliza-
tion approach avoids or minimizes “concept drift.”
SER is a challenging problem, where the prediction
models can become more volatile with the addition
of more data over time. Therefore, models built for
analyzing such data quickly become obsolete. With
our personalization study, we can minimize the
impact of concept drift by developing personalized
SER models that are tailored to target speakers. We
can periodically update the models to target speak-
ers or even weight the data based on their historical
significance to develop better personalized models.

The paper is organized as follows. Section [2| dis-
cusses relevant studies on the prediction of valence
from speech. It also describes the adaptation and
personalization approach proposed for improving
SER systems. Section [3| presents the database used



This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2022.3187336

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, NOVEMBER 2021 3

in this study. Section [4 describes the analysis on the
role of regularization in the prediction of valence
from speech, summarizing the study presented in
our preliminary work [15]. Section [5| presents the
proposed formulation to personalize a SER system,
building on the insights learned from the analysis
in Section [} Section [f] presents the results obtained
by using our proposed approaches to personalize
a SER system. We primarily present the results
on the MSP-Podcast corpus, but we evaluate the
generalization of our proposed approach with two
other databases. The paper concludes with Section
[7, which summarizes our key findings, providing
future directions for this study.

2 RELATED WORK
2.1

While valence is a key dimension to understand
complex human behaviors, its predictions using
speech features are often lower than the predictions
of other emotional attributes such as arousal or
dominance [16]. Therefore, several speech studies
have focused on understanding and improving va-
lence prediction. Busso and Rahman [17] studied
acoustic properties of emotional cues that describe
valence. They built separate support vector regres-
sion (SVR) models trained with different groups of
acoustic features: energy, fundamental frequency,
voice quality, spectral, Mel-frequency cepstral coeffi-
cients (MFCCs) and RASTA features. They also built
binary classifiers to distinguish between two groups
of sentences characterized by similar arousal but
different valence. The study showed that spectral
and fundamental frequency features are the most
discriminative for valence. Koolagudi and Rao [18]
claimed that MFCCs were effective to classify emo-
tion along the valence dimension (i.e., spectral fea-
tures). Cook et al. [19], [20] explored the structure
of the fundamental frequency (F0), extracting domi-
nant pitches in the detection of valence from speech.
Despande et al. [21] proposed a reduced feature set
consisting of the autocorrelation of pitch contour,
root mean square (RMS) energy and a 10- dimensional
time domain difference (TDD) vector. The TDD vector
corresponds to successive differences in the speech
signal. The feature set collectively led to better re-
sults than MFCCs or OpenSmile features [22]. Tur-
sunov et al. [23]] used acoustic descriptors associated
with timbre perception to classify discrete emotions,
and emotions along the valence dimension. Tahon
et al. [24] showed that voice quality features were
also useful in the detection of valence.

Improving the Prediction of Valence
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Other studies have explored modeling strategies
to improve the prediction of valence. Lee et al. [25]
used dynamic Bayesian networks to capture time
dependencies and mutual influence of interlocutors
during dyadic interactions. Contextual information
was found to be particularly useful in the prediction
of valence, leading to relative improvements higher
than the one observed for arousal. Another alterna-
tive approach to improve valence was by regulariz-
ing a DNN. For example, Parthasarathy and Busso
[13] showed that jointly predicting valence, arousal
and dominance under a multitask learning (MTL)
framework helps to improve its prediction. The
MTL framework acts as regularization in DNNSs.
Other approaches using MTL have shown similar
findings. Since the performance of lexical models
often outperforms acoustic models in predicting
valence [9]], Lakomkin et al. [26] suggested the use
of the output of an automatic speech recognition (ASR)
as the input of a character-based DNN.

2.2 Model Adaptation in SER Tasks

Unlike other speech tasks such as automatic speech
recognition (ASR) that rely on abundant data,
databases used in SER are often small. Therefore,
many researchers have explored the use of model
adaptation techniques to generalize the models be-
yond the training conditions. Most of the adaptation
techniques aim to attenuate sources of variability in-
cluding channel, language and speaker mismatches.
Early studies demonstrated the effectiveness of
these techniques with algorithms based on support
vector machine (SVM) [27]. Abdelwahab and Busso
[28] demonstrated the importance of data selection
strategy for domain adaptation. They illustrated
that, incrementally adapting emotion classification
models using active learning to select samples from
the target domain can improve their performance.
They used a conservative approach where only the
correctly classified samples were used to adapt the
model, leaving out the incorrect ones to avoid large
changes in the hyperplane between the classes.
Recent efforts in model adaptation have mainly
focused on DNNs, where important advances have
been made in the area of transferring knowledge
between domains [29]. DNNs with their deep ar-
chitectures can learn useful representations by com-
pactly representing functions. Deng et al. [30] used
sparse autoencoders to learn feature representations
in the source domain that are more consistent with
the target domain. This goal was achieved by si-
multaneously minimizing the reconstruction error
in both domains. Deng et al. [31] proposed the use
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of unlabeled data under a deep autoencoder frame-
work to reduce the mismatch between train and
test conditions. They also simultaneously learned
common traits from labeled and unlabeled data.

Instead of the traditional method of pre-training
and fine-tuning for model adaptation, Gideon et al.
[32] used progressive networks to enhance a SER
system. They trained the model on new tasks by
freezing the layers related to previously learned
tasks and used their intermediate representations as
inputs to new parallel layers. This study also used
paralinguistic information from gender and speaker
identity to achieve improvements. Similarly, other
variants of adaptation techniques use kernel mean
matching (KMM) [33], Nonnegative matrix factoriza-
tion [34], domain adaptive least-squares regression [35],
and PCANet [36]]. These methods lead to improve-
ments on emotion recognition tasks, by using hy-
brid frameworks involving unsupervised followed
by supervised learning. Our proposed approach is
different from these studies, since we aim to explic-
itly exploit similarities between speakers in the train
and test sets, as measured in the feature space. This
approach leads to powerful adaptation methods
that are particularly useful to predict valence.

2.3 Speech Emotion Personalization

This study focuses on adapting or personalizing a
SER system to a target set of speakers. Busso and
Rahman [37] demonstrated the idea of personaliza-
tion using an unsupervised feature normalization
scheme. They used the iterative feature normalization
(IFN) method [38] to reduce speaker variability,
while preserving the discriminative information of
the features across emotional classes. The IFN al-
gorithm has two steps. First, it detects neutral sen-
tences which are used to estimate the normalization
parameters. Then, the data is normalized with these
parameters. Since the detection of neutral speech is
not perfect, this process is iteratively repeated lead-
ing to important improvements. Busso and Rahman
[37] implemented the IFN scheme as a front end of
a SER system designed to recognize emotion from a
target speaker, observing better accuracy.

3 RESOURCES
3.1 Emotional Corpora
3.1.1 The MSP-Podcast Corpus

The study relies on the MSP-Podcast corpus [39],
which provides a diverse collection of spontaneous
speech segments that are rich in emotional content.
The speech segments are obtained from podcasts
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taken from various audio-sharing websites, using
the retrieval-based approach proposed by Mari-
ooryad et al. [40]. The content of the podcasts is
diverse, including discussions on sport, politics, en-
tertainment, games, social problems and healthcare.
The podcasts are segmented into speaking turns
between 2.75s and 11s duration. These segments
are automatically processed to discard segments
with music, overlapped speech, and noisy record-
ings. Since most of the segments are expected to
be neutral, we retrieve candidate segments to be
included in the database by leveraging a diversi-
tied set of SER algorithms to detect emotions. The
selected speech segments are annotated on Ama-
zon Mechanical Turk (AMT) using a crowdsourcing
protocol similar to the one introduced by Burma-
nia et al. [41]. This crowdsourcing protocol stops
the annotators in real-time if their performance is
evaluated as poor. The raters annotate each speak-
ing turn for its arousal, valence and dominance
content using self-assessment manikins (SAMs) on a
seven Likert-type scale. The ground truth labels for
each speaking turn is the average across the scores
provided by the annotators. Although we do not
use categorical annotations in this study, the corpus
also includes annotations of primary and secondary
emotions. The primary emotion corresponds to the
dominant emotional class. The secondary emotion
corresponds to all the emotional classes that can be
perceived in the speech segments.

The collection of the MSP-Podcast corpus is
an ongoing effort. This study uses version 1.6 of
the MSP-Podcast corpus, which consists of 50,362
speech segments (83h29m) annotated with emo-
tional classes. From this set, 42,567 segments have
been manually assigned to 1,078 speakers. The
speaker identity for the rest of the corpus has not
been assigned yet. Figure |1| illustrates the partition
of the dataset used in this study. The test set has
10,124 speech segments from 50 speakers, and the
development set has 5,958 speech segments from 40
speakers. Each speaker in the test and development
sets has a minimum of five minutes of data. The
rest of the corpus is included in the train set, which
consists of a total of 34,280 speech segments. The
data partition aims to create speaker-independent
partitions between sets. Lotfian and Busso [39] pro-
vide more details on this corpus.

As shown in Figure |1} we further split the test
set into two partitions for this study: test-A and test-
B sets. The test-A set includes 200s of recording for
each of the 50 speakers in the test set. The test-B set
includes the rest of the recordings in the test set.
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Each test speaker has at least 300s (5 mins) of data.
After removing 200s from each speaker to form the
test-A set, the test-B set is left with at least 100s
of data for each speaker. The average duration per
speaker in the test-B set is 1005.96s.

3.1.2 The IEMOCAP and MSP-IMPROV Corpora

Besides the MSP-Podcast corpus, we use two other
databases for our experimental evaluations. The
tirst database is the USC-IEMOCAP corpus [42],
which is an audiovisual corpus and contains dyadic
interactions from 10 actors in improvised scenarios.
This study only uses the audio. The database con-
tains 10,039 speaking turns, which are annotated
with emotional labels for arousal, valence and dom-
inance by at least two raters using a five-Likert
scale. We also use the MSP-IMPROV corpus [43],
which is a multimodal emotional database that con-
tains interactions between pairs of actors engaged
in improvised scenarios. In addition to the con-
versations during improvised scenarios, the dataset
also contains the interactions between the actors
during the breaks, resulting in more naturalistic
data. The corpus uses a novel elicitation scheme,
where two actors in an improvised scenario leads
one of them to utter target sentences. For each of
the target sentences, four emotional scenarios were
created to contextualize the sentence to elicit happy,
angry, sad and neutral reactions, respectively. This
corpus consists of 8,438 turns of emotional sen-
tences recorded from 12 actors (over 9 hours). The
sessions were manually segmented into speaking
turns, which were annotated with emotional labels
using perceptual evaluations. Each turn was anno-
tated for arousal, valence and dominance by five
or more raters using a five-Likert scale. In both
databases, the consensus emotional attribute label
assigned to each utterance is the average across the
scores provided by the annotators, which is linearly
mapped between -3 and 3.

3.2 Acoustic Features

This study uses the feature set proposed for the
computational paralinguistics challenge (ComParE) in
Interspeech 2013 [44]]. The features are extracted by
estimating several low-level descriptors (LLDs) such
as energy, fundamental frequency and MFCCs. For
each speech segment, statistics such as mean, stan-
dard deviation, range and regression coefficients are
estimated for each LLD, creating high-level descrip-
tors (HLDs). With this approach, the feature vector
is fixed regardless of the duration of the sentence.
The ComParE set creates a 6,373 dimensional fea-
ture vector for each sentence.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

MSP-Podcast Corpus

Development set

Train set Test set

34,280 sentences
At least 1,078 speakers

5,958 sentences
40 speakers

10,124 sentences
50 speakers

Test-A

200s per speaker
50 speakers

Test-B
Rest of test set
50 speakers

Fig. 1. Partitions of the MSP-Podcast corpus used in this study
for the train, development and test sets. The test set is further
split into the test-A and test-B sets.

4 ROLE OF REGULARIZATION

Our proposed personalization method for valence
builds upon the findings reported in our prelimi-
nary study [15]. This section summarizes the main
findings on the role of dropout rate as a form of
regularization in DNNs and its impact on SER. The
study in Sridhar et al. [15] was conducted on an
early version of this corpus. We update the analysis
with the release of the corpus used for this study
(release 1.6 of the MSP-Podcast corpus).

4.1 Optimal Dropout Rate for Best Performance

Our previous study focused on the role of dropout
as a form of regularization in improving the predic-
tion of valence [15]. When dropout is used in DNNSs,
random portions of the network are shutdown
at every iteration, training a smaller network on
each epoch. This approach helps in learning feature
weights in random conjunction of neurons, prevent-
ing developing co-dependencies with neighboring
nodes. This regularization approach leads to better
generalization. We explore the role of regularization
in the prediction of valence by changing the dropout
rate p. The goal of this analysis is to understand the
optimal value p that leads to the best performance
for different network configurations (i.e., different
number of layers, different number of nodes per
layer). We train the models for 1,000 epochs, with an
early stopping criterion based on the development
loss. The loss function is based on CCC, which has
led to better performance than mean squared error
(MSE) [16]]. We train separate regression models by
changing the dropout rate p € {0.0,0.1,---,0.9},
recording the optimal dropout rate leading to the
best performance on the development set. We eval-
uate two networks with three and seven layers, im-
plemented with 256, 512 and 1,024 nodes per layer.
Note that deeper models have dropout in more
layers, so more nodes are being turn off. Therefore,
comparisons of dropout rates on networks with
different layers are less meaningful than compar-
isons of the optimal dropout rate across emotional
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Fig. 2. Optimal dropout rate observed in the development set as
a function of the number of nodes per layer in a DNN. The DNN
is implemented with either three or seven layers.

attributes. Figure 2| illustrates the results, showing
the optimal dropout rate observed in the devel-
opment set. The optimal dropout rates that give
the best performance are higher for valence than
arousal and dominance. Figure 2| shows that the
gap between the optimal dropout rates for valence
and arousal/dominance stays consistent across con-
ditions. Interestingly, the optimal dropout rates for
arousal and dominance are exactly the same across
different DNN configurations, whereas it is differ-
ent for valence. The results show that the need for
higher regularization for valence is consistent across
variations in the architectures of the DNNSs.

4.2 Speaker-Dependent
Independent Models

Section [4.1] demonstrated that a DNN needs to be
heavily regularized to give good predictions for
valence. We hypothesize that this finding can be ex-
plained by the speaker-dependent nature of speech
cues in the expression of valence (i.e., we use differ-
ent acoustic cues to express valence). A DNN with
higher regularization, learns more generic trends
present across speakers, leading to better gener-
alization. To validate our hypothesis, we conduct
a controlled emotion detection evaluation, where
we train DNNs with either speaker-dependent or
speaker-independent partitions. SER should be per-
formed with speaker-independent partitions, where
the data in the train and test partitions are from
disjoint set of speakers. A model trained with data
from speakers in the test set has an unfair advan-
tage over a system evaluated with data from new
speakers, resulting in overestimated performance.
Our goal is to quantify the benefits of using speaker-
dependent partitions.

We build DNNs with four layers, imple-
mented with 256, 512 or 1,024 nodes. The speaker-

versus Speaker-
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TABLE 1

Comparison of CCC values between speaker-independent and
speaker-dependent conditions. The DNN is trained with four
layers. The column ‘Gain’ shows the relative improvement by
training with partial data from the target speakers (fest-A set).

Attributes Nodes Speaker Speaker Gain
Independent Dependent

Test-B set Test-B (%)

256 0.3076 0.3373 9.65

Valence 512 0.3083 0.3670 19.03
1,024 0.2997 0.3538 18.05

256 0.7153 0.7216 0.88

Arousal 512 0.7164 0.7331 2.33
1,024 0.7104 0.7258 2.16

256 0.6300 0.6379 1.25

Dominance 512 0.6374 0.6565 2.99
1,024 0.6253 0.6352 1.58

dependent model is built by adding the test-A set in
the train set (Fig. [I). This approach creates a train
set with partial knowledge about the speakers in
the test set. In contrast, the speaker-independent
model uses only the train set. To have a fair com-
parison, both models are evaluated on the test-B
set with speech samples that are not used to either
train or optimize the parameters of the systems.
Table [1] shows the CCC values of the models for
speaker-independent and speaker-dependent con-
ditions. The last column calculates the relative im-
provements achieved under the speaker-dependent
condition. We observe up to 19.03% gain in per-
formance for valence. The performances for the
arousal and dominance models also increase, but
the relative improvements are less than 3%. These
results are not due to the extra samples added in the
train set. The test-A set only represents a 4.4% of the
size of the train set. In fact, evaluations where we
randomly remove data from the train set to main-
tain a consistent size led to similar performance
than the speaker dependent condition reported in
Table [I} The fact that the performances increase
using speaker dependent sets is expected. What is
unexpected is that the relative gain is significantly
higher for valence than for arousal and dominance.
These results clearly show that learning emotional
traits from the target speakers in the test set has
clear benefits for valence, validating our hypothesis
that the expression of valence in speech has speaker-
dependent traits.

5 PROPOSED PERSONALIZATION METHOD
5.1 Motivation

The findings in Section {4f suggest that leveraging
data from speakers in the train set that are closer to
our target speakers in the test set should benefit our
SER models. This is the premise of our proposed
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approach. We aim to improve the prediction of
valence, bridging the gap in performance between
speaker-dependent and speaker-independent con-
ditions reported in Table (I} Data sampled from the
selected speakers’ recordings are used to create an
adaptation set, as illustrated in Figure Once
the closest speakers are identified, we can either
adapt the models or assign more weights to samples
from this adapatation set. This section describes
our unsupervised personalization approach to im-
prove the prediction of valence. Unlike the speaker-
dependent settings used in Section [4.1|(and Sec.[6.8),
the analysis and experiments in this study oper-
ate with speaker-independent partitions for train,
development and test sets. The assumption in our
formulation is that we have the speaker identity
associated with each sentence in the test set.

5.2 Estimation of Similarity Between Speakers

A key step in our approach is to identify speak-
ers in the train set that are closer to the speakers
in the test set. Ideally, we would like to identify
speakers who externalize valence cues in speech in
a similar way. This aim is difficult with no clear
solutions. We simplify our formulation by searching
for similarities between speakers in the space of
emotional speech features. By exploiting similarities
on the emotional feature space, we expect to focus
more on emotional patterns than on speaker traits,
which would be the focus of speaker embeddings
created with methods such as the i-vector [45] or
the x-vector [46]. Our approach relies on principal
component analysis (PCA) to reduce the dimension
of the space, followed by fitting a Gaussian mixture
model (GMM) to the resulting reduced feature space.

We aim to quantify the similarity in the feature
space between the speaker i in the train set, and
the speaker j in the test set, d(7,j). The first step
is to reduce the feature space, since we consider a
high dimensional feature vector (6,373D — Sec. [3.2).
Reducing the feature space creates a more compact
feature representation, where the similarity between
speakers can be more efficiently computed. We im-
plement this step with PCA, which is a popular
unsupervised dimensionality reduction technique.
First, we estimate the zero-mean vector y, = f; — f,
where f; is the feature vector of sentence s, and f
is the mean feature vector. Then, we concatenate
these M vectors, creating matrix F' (Eq. . From this
matrix, we estimate the sample covariance matrix
@ using Equation 2| Then, we compute the eigen-
vectors of (), selecting the ones with the highest
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eigenvalues, which are considered as the principal
components (PCs).

F o= lyiyz....yu] D
Q = g FF" @

The PCA-based feature reduction is imple-
mented for each speaker in the test set, creating
speaker-dependent transformations. We use the 10
most important dimensions, which explain in aver-
age 57.9% of the variance in the feature space. The
speech sentences from speaker i (train set) are pro-
jected into the PCA space associated with speaker j
(test set). The speech sentences from speaker j are
also projected in that space. After the PCA projec-
tions, we fit two separate GMMs on the reduced
feature space, one for the sentences of speaker 4
(pi"™), and another for the sentences of speaker j
(¢;°*"). We empirically set 10 mixtures for the GMMs
(there is no direct connection between the number
of mixture components used for the GMMs and
the dimensionality of the PCA space). Finally, we
estimate the similarity between the GMMs using
the Kulback Liebler Divergence (KLD). We employ
a numerical approximation using multiple Monte
Carlo simulations. We sample a set of data points
from each pair of GMMs to compute the KLD score.
We repeat this procedure multiple times, estimating
the average results.

For a given speaker j in the test set, we estimate
d(i,j) = KLD(p;™™", ¢i**") for all the speakers in the
train set, sorting their scores in increasing order. The
closest speakers in the train set are the top speakers
in this ranked list. This approach is repeated for
each of the 50 speakers in the test set (i.e., we have
50 different PCA projections). While this step can
be implemented using all the data from the test set,
we use the test-A set to have the same amount of
data for each speaker (i.e., 200s — Fig.[I). Figure
illustrates the process to form the adaptation set by
finding the closest set of training speakers to a target
speaker. Notice that the adaptation set is a subset of
the train set, for which we have labels.

5.3 Personalization Approach

After selecting the speakers in the train set that are
closest to each of the test speakers, our next step
is to leverage data from these train set speakers to
either personalize or adapt the emotion prediction
models for valence. We propose and evaluate three
alternative methods, referred to as unique speaker,
oversampling, and weighting approaches. The first
two approaches rely on adapting a model. We built
a regression model using the train set to predict
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(b) Criteria for selecting samples for the adaptation set

Fig. 3. lllustration of proposed personalization approach. We
identify the closest set of speakers in the train set to each of the
target speaker in the test set. Sentences from these speakers
are randomly sampled with different selection criteria.

valence. The weights of the pre-trained models are
frozen with the exception of the last layer, which are
fine-tuned using the adaptation data. The last ap-
proach requires training the network from scratch.

Unique speaker approach: Each speaker in the test
set generates a list with its NV closest speakers in the
train set. Since some speakers in the train set may
be close to more than one speaker, the total number
of selected speakers after combining the lists from
the 50 speakers in the test set is less or equal to
N x 50. The unique speaker approach considers all
the data from these speakers in the train set. Each
speech segment can be considered only once in the
adaptation set. The order in which we consider the
target speakers does not affect the final selection
of the data, since the algorithm selects for each
speaker in the test set her/his closest speakers from
the entire set of speakers in the train set. Figure
illustrates the process for the case when we
have only 2 speakers in the test set. In the example,
speakers 2, 7 and 120 in the train set are found to be
close to both test speakers, hence, we consider them
only once when forming the adaptation set. We
implement a balance sampling criterion that aims
to select approximately the same amount of data
for each speakers. For example, for an adaptation
set of 200s, if we have 7 unique speakers selected as
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the closest speakers from the test speakers, as in the
example, we would randomly select approximately
28.6s for each of these speakers. We adopt this
approach in an attempt to diversify and balance
the speech samples selected from all the speakers
in the unique speakers set. This approach uses
the pre-trained models built with all the train set,
personalizing the models with the adaptation set.
Oversampling approach: A speaker in the train set
may be in the list of the closest speakers for more
than one speaker in the test set. The oversampling
approach assumes that these samples are more rel-
evant during the adaptation process. If a speaker
is selected C' times (i.e., the speaker is one of the
closest speakers for C' speakers in the test set),
the oversampling method will create C' copies of
his/her sentences before randomly drawing the
samples. This process is illustrated in Figure
were speakers 2, 7 and 120 in the train set are copied
twice. Therefore, more samples from these speakers
will appear in the adaptation set. We form the
adaptation set with a balance approach, choosing
approximately the same amount of data from the
selected speakers. In the example from Figure
we would select 20 second for each of the 10 sets
for an adaptation set of 200s. Sentences can even
be repeated on the adaptation set. This approach
also fine-tunes the pre-trained model using speech
samples from the oversampled adaptation set.
Weighting approach: The third approach to person-
alize a model is by increasing the weights in the
loss function during the training process for speech
samples in the adaptation set (i.e., same set used
in the unique speaker approach). Unlike the pre-
vious two approaches, which adapt a pre-trained
system, this approach trains the regression model
from scratch. As described in Equation 3| we use
L = (1 —CCCQC) as the loss function to train our
models. For the weighting approach, this cost is
assigned to a sample in the train set, but not on the
adaptation set. For samples in the adaptation set, we
multiply the cost £ by a factor A > 1. Therefore, an
error of a sample from the adaptation set is A times
more costly than an error made on other samples
from the train set not included in the adaptation
set. We experiment with weighting ratios of 1:2, 1:3,
1:4 and 1:5, where higher weights are assigned to
samples in the adaptation set. This approach uses all
the train set, increasing the importance of correctly
predicting samples in the adaptation set.

The proposed unsupervised adaptation schemes
can be jointly applied to all the speakers in the
test set, creating a single model. We refer to this
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approach as global adaptation (GA) model. Alterna-
tively, the approaches can be individually imple-
mented for each speaker, creating as many models
as speakers in the test set. This implementation
only works for the unique speaker and weighting
approaches. The oversampling approach does not
apply in this case, since each speech segment in the
adaptation set is drawn only once (i.e., we consider
one test speaker at a time). We refer to this approach
as the individual adaptation (IA) model. We evaluate
both implementations in Section [f| using adaptation
sets of different sizes.

6 EXPERIMENTAL RESULTS

The prediction of valence is formulated as a regres-
sion problem implemented with DNNs with four
dense layers and 512 nodes per layer. This setting
achieved the best performance for valence on Table
We use rectified linear unit (ReLU) at the hidden
layers and linear activations for the output layer.
The DNNs are trained with batch normalization
for the hidden layers. We use a dropout rate of
p = 0.7 at the hidden layers. The selection of
this rate follows the findings in Section which
demonstrates that a higher value of dropout is
important for improving the detection of valence.
We pre-train the models for 200 epochs with an
early stopping criterion based on the performance
on the development set. The best model is used
to evaluate the results. The DNNs are trained with
stochastic gradient descent (SGD) with momentum of
0.9, and a learning rate of » = 0.001. For the unique
speaker and oversampling approaches, the learning
rate is reduced to 7,4, = 0.0001 while adapting
the regression model. We adapt the models with
these approaches for 100 extra epochs with an early
stopping criterion based on the performance on
the development set. For the weighting approach,
we train the models from scratch for 200 epochs
with early stopping criterion, maximizing the per-
formance on the development set. The loss function
(Eq. [3) relies on the concordance correlation coefficient
(CCC), which is defined in Equation [4}

L =
cce =

(1—-CCoO)
2p0 0y
03+ 07 + (Ha — py)?

®)
(4)

The parameters i, and j,, and o, and o, are the
means and standard deviations of the true labels (z)
and the predicted labels (y), and p is the Pearson’s
correlation coefficient between them. CCC takes
into account not only the correlation between the
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true emotional labels and their estimates, but also
the difference in their means. This metric takes care
of the bias-variance tradeoff when comparing the
true and predicted labels. CCC is also the evaluation
metric in all our experimental evaluation.

The input to the DNNs is the 6,373D acoustic
feature vector (Sec.[3.2). The features are normalized
to have zero mean and unit standard deviation. This
normalization is done using the mean and stan-
dard deviation values estimated over the training
samples. After this normalization, we expect the
features to be within a reasonable range. We remove
outliers by clipping the features with values that
deviate more than three standard deviations from
their means (i.e., uy, — 30y, < fi < py, + 30y,). The
output of the DNNSs is the prediction score for the
emotional attribute.

We use the speaker-independent and speaker-
dependent models described in Section {4.2] as base-
lines, where the results are listed in Table [1l The
speaker-independent model does not rely on any
adaptation scheme to personalize the models to per-
form better on the test set. As described in Section
the speaker-dependent model is built by adding
the test-A set to the train set, using partial infor-
mation from the speakers. While this setting is not
representative of the performance expected for the
regression model when evaluated on speech from
unknown speakers, it provides an upper bound
performance to contextualize the improvements ob-
served with our proposed personalization methods.
For analysis purposes, we report the performance
of the speaker-dependent models obtained with the
addition of 50s, 100s, 150s, and 200s per speaker
in the test set. These extra samples are obtained
from the test-A set. We consistently evaluate all
the models using the test-B set. This experimental
setting creates fair comparisons, since these samples
are not used to train any of the models.

6.1 Global Adaptation Model

We evaluate the performance of the system with the
global adaptation model, where a single regression
model is built. The three adaptation schemes are im-
plemented by considering the 50 speakers in the test
set. The adaptation set is obtained by identifying the
closest speakers in the train set to each speaker in
the test set (Sec. 5.2). We implement this approach
by identifying the five closest speakers in the train
set (IV = 5). Section[6.3|shows the results with differ-
ent number of speakers. We incrementally add more
samples by randomly selecting 50s, 100s, 150s, 200s,
and 300s from the selected speakers associated with
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Fig. 4. Results on the test-B set for the global adaptation model
for the unique speaker and oversampling methods. It shows
the results for the speaker-dependent and speaker-independent
baselines. It also shows the speaker-dependent model imple-
mented with different size of data from the test-A set.

a given speaker in the test set (Sec.[5.3). This process
is repeated for each of the speakers in the test set to
observe the performance trend as a function of the
size of the adaptation data.

First, we evaluate the unique speaker and over-
sampling approaches, which rely on model adapta-
tion. Figure | shows the results. The two solid hor-
izontal lines are the speaker-dependent (green) and
speaker-independent (red) baselines. The green line
(triangle) corresponds to the speaker-dependent
model as we increase the amount of data from
the test-A set. The performance for the unique
speaker approach is shown in blue (square). We
clearly observe an improvement over the speaker-
independent baseline, which demonstrate that the
adaptation scheme is effective even with a very
small adaptation set (e.g., 50s). The pink (aster-
isk) line in Figure 4| shows the performance of
the oversampling approach, which leads to better
performance than the unique speaker approach.
Both approaches use the same amount of adaptation
data, but rely on different criteria to select the adap-
tation samples. Adding samples in multiple mini-
batches according to the oversampling strategy is
beneficial to improve the prediction of valence. For
both models, we observe consistent improvement
in CCC as more data is added into the adaptation
set from 50s to 200s. After this point, the perfor-
mance seems to saturate, observing fluctuations.
Interestingly, adaptation with 200s of data using the
oversampling approach leads to better performance
than the speaker-dependent baseline implemented
with 50s and 100s of data from the fest-A set.

Second, we evaluate the performance of the
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Fig. 5. Results on the fest-B set for the global adaptation model
for the weighting approach. The figure shows the results for the
speaker-dependent and speaker-independent baselines.

weighting method, which trains the models from
scratch, weighting more the samples in the adap-
tation set (Sec. 5.3). We evaluate the amount of
data included in this selected set, including 50s,
100s, 150s, 200s per speaker in the test set. We
also consider using all the data from the selected
speakers. Only samples in this set are weighed
more, implementing this approach with different
ratios (1:2, 1:3, 1:4 and 1:5). Figure |5/ shows the
results. For weighting ratios 1:2 and 1:3, the per-
formance gradually increases by adding more data
in the selected set, peaking at 200s per speaker.
However, the opposite trend is observed when the
weighting ratios are either 1:4 or 1:5. Increasing
the weights of speech samples in the adaptation
set diminishes the information provided in the rest
of the train data, leading to worse performance.
The best performance is obtained with a weighting
ratio of 1:3, when the selected set includes 200s per
speaker. Figure 5| shows that this setting achieves
similar performance than the best setting for the
oversampling approach (Fig. [4).

The global adaptation models are trained with
50 target speakers. We also investigate the per-
formance, when we reduce the number of target
speakers. We implement the approach with 5, 10,
25 or 50 target speakers. This analysis only uses
the two best models for the global adaptation ap-
proach, which are the weighting method with a
1:3 ratio, and the oversampling approach. Figure [6
shows that the performance trends are similar for
these four conditions as we increase the among of
adaptation data. This result is expected, because we
are still using the closest training speakers to each
target speaker to perform the adaptation, which is
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Fig. 6. Performance of the global adaptation model with differ-
ent number of target speakers as we increase the size of the
adaptation set. The figure reports results using the weighting
(1:3 ratio) and oversampling approaches on the test-B set.

shown to be beneficial for predicting valence. The
best performance is achieved by using the 50 target
speakers. The slight decrease in performance by
using less target speakers may be explained by the
reduced size of the adaptation set, noting that we
add 50s, 100s, 150s, 200s, or 300s for each of the
target speakers.

6.2

This section presents the results of our approach im-
plemented using the individual adaptation model.
This approach builds one model for each of the
speakers in the test set, creating the adaptation
set with the samples from the speakers in the
train set that are closer to this speaker (i.e., 50
separate models). For each model, we attempt to
select equal duration of speech samples from each
of the closest train speakers in the adaptation set
to balance the amount of data used from each
speaker. After adapting the models, the results are
reported by concatenating the predicted vectors for
each speaker in the test set. We estimate the CCC

Individual Adaptation Model
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Fig. 7. Results on the test-B set for the individual adaptation
model using the unique speaker and weighting approaches.
The figure shows the results for the speaker-dependent and
speaker-independent baselines.

values for the entire test-B set. The approach is
implemented with the five closest speakers to each
speaker in the test set. The performance of the ap-
proaches are reported by increasing the adaptation
set. As explained in Section[5.3} we only evaluate the
unique speaker and weighting approaches, since
the oversampling approach cannot be implemented
with a single speaker in the test set.

Figure [/| shows the CCC scores obtained for
different sizes of the adaptation set. The results
show improvements over the speaker-independent
baseline performance. The performance gains are
consistently higher when all the data from the
closest speakers are used. The weighting approach
also leads to better performance than the unique
speaker approach. However, the results are worse
than the CCC values of approaches implemented
with the global adaptation model (Figs. 4] and [5).
The decrease in performance in the IA model can
be associated with the adaptation procedure. In
the IA models, we adapt separate models for each
target speaker. This procedure involves adapting
50 different models where their parameters and
hyperplanes change based on a small adaptation
set. This approach may be too aggressive, resulting
in lower performance than adapting a single model,
considering all the target speakers. We have seen
similar observations in the area of active learning
in SER tasks, where a more conservative adaptation
strategy led to better results [28]. In the GA models,
we are adapting a single model, where the shape
and direction of the change of the hyperplane are
smoother than in the case of the IA models achiev-
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Fig. 8. Evaluation of the optimal number of closer speakers
(V) from the train set for each of the speakers in the test set.
The training data from the selected speakers is included in
the adaptation set. The results corresponds to the CCC values
obtained with different methods on the fest-B set.

ing a better and stable performance.

6.3 Number of Closest Speakers

This section evaluates the number of closest speak-
ers (V) from the train set selected for each speaker
in the test set. If this number is too small, the
adaptation set will not have enough variability. If
this number is too high, we will select speakers
that are not very close to the target speakers. We
implement the weighting approach with the ratio
1:3. Figure |8 shows the results on the test-B set
for the models implemented with the global and
individual adaptation models using the proposed
adaptation schemes (N € {3,5,10}). The results
clearly show that V = 5 is a good balance, obtaining
higher performance across conditions. We set N = 5
for the rest of the experimental evaluation.

6.4 Size of Target Speaker Data for Speaker
Similarity
Throughout the paper we have used 200s of data
from each target speaker to perform speaker sim-
ilarity estimation. This section evaluates the per-
formance of the personalization method when we
use less data from each target speaker. We consider
the best performing method for the global (ie.,
weighting method with a 1:3 ratio) and individual
(i.e.,, unique speaker method) personalization for-
mulations using 50s, 100s and 200s of data from
each target speaker. We kept the test-B set consistent
across all the experiments, without augmenting it
with data from the test-A that we do not use.
Figure [ shows the results obtained for the
global (Fig. and individual (Fig. [9(b)) adapta-

tion methods. The results show consistent patterns

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

—A— 50s for similarity est.
—A— 100s for similarity est.

—- 200s for similarity est

0.340 {
0.335
0.330

9

3 0.3251
0.320
0.315 {

0.3104

b}

0s 100s 150s 200s 300s
Amount of adaptation data

v

(a) Global Adaptation Model — Weighting Approach

0.3354
0.3301
0.3254
© 0.3201
0.3154

0.3101

i\

0s 100s 150s 200s 300s
Amount of adaptation data

u

(b) Individual Adaptation Model — Unique Speaker
Approach

Fig. 9. Adaptation results for different size of data from the
target speakers used for estimating speaker similarity. The fig-
ure shows the results for the weighting method for the global
adaptation experiments with a 1:3 ratio, and the unique speaker
method for the individual adaptation experiments.

when we used either 50s, 100s or 200s of the target
speakers. The adaptation methods lead to increase
in performance as we add adaptation data draw
from the closest speakers in the train set. The best
performance for both global and individual adapta-
tion methods is when we use 200s of data from the
target speakers to estimate the speaker similarity
estimation. Unfortunately, we cannot evaluate cases
when we have more than 200s, given that we want
to keep the test-B set consistent for all the evalu-
ations. This evaluation suggests that a minimum
of 200s of data from the target speakers is needed
to successfully estimate the speaker similarity, and
achieve the best performance.

6.5 Minimizing Loss on Adaptation Set

The results of the model adaptation presented in

Sections and [6.4] are obtained by min-

imizing the loss function on the development set,
a practice that aims to increase the generalization
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Fig. 10. Improvement in performance achieved by monitoring the
loss function on the adaptation set while fine-tuning the models.
The percentages over the bars indicate the relative improve-
ments over the speaker-independent baseline. The figure shows
the performance observed in the test-B set.

of the models. In our formulation, however, we
aim to personalize a model towards a known set
of speakers in the test set. Given the assumption
that the selected speakers in the train set are similar
to the test set, we can optimize the system by
minimizing the loss function on the adaptation set
when fine-tuning the model (i.e., samples from the
selected speakers used for adaptation). Since we
want to personalize the system, it is theoretically
correct to maximize the performance of the model
on data that is found to be closer to the target
speakers. This section evaluates this idea. We record
the best performance of the model by using an early
stopping criterion on the adaptation loss. The only
special case is the weighting approach which trains
the models from scratch. Since monitoring the loss
exclusively on the adaptation set will ignore other
samples in the train set, we decide to monitor the
loss on the full train set. The differences in the
weights increase the emphasis of samples from the
adaptation set, achieving essentially the same goal.
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We use the adaptation set using the 200s condition.
The weighting approach is implemented with the
1:3 ratio, which gave the best CCC in previous
experiments (Figs. 5|and [7)

Figure [10|shows the performance improvements
achieved by minimizing the loss function on the
adaptation set. The darker bars indicate the results
obtained while monitoring the training loss, and the
lighter bars indicate the results obtained while mon-
itoring the development loss. We include the rel-
ative improvements over the speaker-independent
baseline with numbers on top of the bars. The
relative improvements are constantly higher when
maximizing the performance on the train set, tailor-
ing even more the models to the test speakers. We
conducted a one-tailed student t-test over ten trials
to assert if the differences in performance between
minimizing the loss function on the development
and train sets are statistically significant. We assert
significance when p-values<0.05. The statistical test
indicates that the differences are statistically signifi-
cant for all the adaptation approaches implemented
with either the global or individual adaptation
models. This approach leads to performances that
are closer to the speaker-dependent baseline.

6.6 Performance on Other Emotional Attributes

The premise of this study is that valence is external-
ized in speech with more speaker-dependent traits
than arousal and dominance. Therefore, personal-
ization approaches to bring the models closer to the
test speakers should have a higher impact on va-
lence. This section implements the proposed adap-
tation schemes on arousal and dominance, com-
paring the relative improvements over the speaker-
independent baseline with the results for valence.
Table 2| reports the performance and relative im-
provements over the speaker-independent baseline
for valence, arousal, and dominance when using
the proposed methods. The relative improvements
for arousal and dominance are less than 1.9%, mir-
roring the results observed in Table [1| that shows
relative improvements less than 3% for arousal
and dominance when labeled data from the tar-
get speakers is available (i.e., speaker-dependent
condition). Therefore, it is not surprising that the
method does not lead to big improvements for
arousal and dominance where there is little room
for improvements. We argue that the approach is
successful even for arousal or dominance, since
the relative improvements for these emotional at-
tributes are similar to the values reported in Table
1 under speaker dependent conditions. In contrast,



This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2022.3187336

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, NOVEMBER 2021 14

TABLE 2
Performance achieved using different adaptation approaches
on the test-B set. The table reports the performance gain over
the speaker-independent baseline reported in Table[T]

TABLE 4
Comparison of CCC values between speaker-independent and
speaker-dependent conditions for EMOCAP (IEM) and
MSP-IMPRQV (IMP) databases. The DNN is trained with three
layers and 256 nodes per layer. The column ‘Gain’ shows the
relative improvement by training with partial data from the
target speakers (test-A set).

Adaptation Minimizing loss Minimizing loss
Scheme in development set | in adaptation set
CCC  Gain (%) | CCC  Gain (%)
Unique speaker (GA) | 0.3295 6.87 0.3320 7.68
::d Oversampling (GA) 0.3378 9.56 0.3447 11.80
9 | Weighting (GA) 0.3412 10.67 0.3500 13.52
£ | Unique speaker (IA) 0.3332 8.07 0.3366 9.17
Weighting (IA) 0.3319 7.65 0.3385 9.79
_ | Unique speaker (GA) | 0.7196 0.44 0.7221 0.79
% | Oversampling (GA) 0.7209 0.62 0.7258 1.31
2 | Weighting (GA) 0.7222 0.80 0.7296 1.84
& | Unique speaker (IA) 0.7185 0.29 0.7267 1.43
Weighting (IA) 0.7202 0.53 0.7271 1.49
® | Unique speaker (GA) | 0.6410 0.56 0.6415 0.64
S | Oversampling (GA) 0.6428 0.84 0.6430 0.87
£ | Weighting (GA) 0.6433 0.92 0.6451 1.20
% Unique speaker (IA) 0.6399 0.39 0.6419 0.70
A | Weighting (IA) 0.6417 0.67 0.6422 0.75
TABLE 3

Comparison of results in terms CCC obtained with the
proposed personalization approach and other methods. All the
experiments are done with MSP-Podcast corpus and evaluated

on Test-B set. STL: Single Task Learning
(Speaker-Independent baseline), MTL: Multi-Task Learning

Attributes Database Speaker Speaker Gain
Independent Dependent
Test-B set Test-B set (%)
Valence IEM 0.4428 0.5072 14.54
IMP 0.3420 0.4164 21.75
Arousal IEM 0.6953 0.7255 4.34
IMP 0.5958 0.6218 4.36
Dominance TEM 0.5444 0.5678 4.29
IMP 0.5625 0.4911 6.18
TABLE 5

IEMOCAP and MSP-IMPRQV: Performance achieved using
different adaptation approaches on the test-B set. The table
reports the performance gain over the speaker-independent
baselines reported in Table [4} All the experimental evaluations
are done by minimizing the loss in the development set.

Attributes Proposed STL MTL Ladder
Approach Networks

Valence 0.3500 0.3083 0.3302 0.3158

Arousal 0.7296 0.7164 0.7214 0.7421

Dominance 0.6451 0.6374 0.6287 0.6498

the relative improvements for valence are as high
as 13.52%. These results validate our hypothesis
that exploiting speaker-dependent characteristics
between train and test speakers helps to personalize
a SER system in the prediction of valence.

6.7 Comparison with Other Baselines

We compare the results from our proposed per-
sonalization approach with other state-of-the art
approaches. We consider multi-task learning (MTL)
[13], and ladder network [14] for SER. These are
some of the most successful approaches used in
SER. The MTL approach jointly predicts arousal,
valence and dominance, where the loss function is a
weighted sum of the individual attribute losses. We
used £ = (1 — CCC) as the loss for each attribute
(Laros Luvat, Ldom)- Equation [p| shows the overall
loss function, where (o, 3) € [0,1] and o + 8 < 1.
The hyperparameters o and 3 are tuned on the
development set.

©)

The ladder network approach follows the imple-
mentation presented by Parthasarathy and Busso

EMTL = aﬁaro + Bﬁval + (1 - — B)Edom
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Adaptation USC-IEMOCAP MSP-IMPROV
Scheme
CCC  Gain (%) CCC Gain (%)

Unique speaker (GA) | 0.4761 7.52 0.3866 13.04

§ Oversampling (GA) 0.4790 8.17 0.4014 17.36
9 | Weighting (GA) 0.4889 10.41 0.3915 15.52
£ | Unique speaker (IA) 0.4725 6.70 0.3855 12.71
Weighting (IA) 0.4759 7.47 0.3873 13.24

_ | Unique speaker (GA) | 0.6988 0.50 0.6057 1.66
% | Oversampling (GA) 0.7001 0.69 0.6086 2.14
3 | Weighting (GA) 0.7002 0.70 0.6191 391
2 Unique speaker (IA) 0.6966 0.18 0.6087 2.16
Weighting (IA) 0.7000 0.68 0.6095 2.29

% | Unique speaker (GA) | 0.5491 0.86 0.4718 2.01
S | Oversampling (GA) 0.5500 1.02 0.4731 2.29
£ | Weighting (GA) 0.5495 0.93 0.4820 421
§ Unique speaker (IA) 0.5451 0.12 0.4710 1.83
A | Weighting (IA) 0.5496 0.95 0.4713 1.90

[14]. This method uses the reconstruction of fea-
ture representations at various layers in a DNN
as auxiliary tasks. In addition, we consider the
speaker-independent baseline discussed in previous
sections, referred here to as single task learning (STL).
Table 3| describes the results, which clearly show
significant improvements over alternative methods
in CCC for valence using our proposed approach,
reinforcing our claim about the benefits of person-
alization in the estimation of valence. Other ap-
proaches are effective for arousal and dominance.

6.8 Performance on Other Corpora

We validate the effectiveness of the proposed
personalization approaches with other emotional
databases. We use a K-fold cross-validation strategy
to train DNN models using the USC-IEMOCAP and
MSP-IMPROV databases. In each fold, we consider
2 speakers as the test speakers and the rest of
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the speakers as the train speakers. With this cross-
validation approach, all the speakers are at some
point considered as the test speakers. The final
results are averaged across the K folds. Similar to
Figure (I} we split the test set of both IEMOCAP and
MSP-IMPROV databases into two partitions for this
study: test-A and test-B sets. The test-A set includes
200s of recording for each of the speakers in the
test set. This set is reserved for finding the closest
training speakers to the target speakers. The test-B
set includes the rest of the recordings in the test set.
We implement the global and individual adaptation
models with all the different adaptation approaches
by minimizing the loss in the development set.

Table [ shows the CCC results for speaker-
independent and speaker-dependent conditions us-
ing the USC-IEMOCAP and the MSP-IMPROV cor-
pora. The results validate the findings in Table
showing that the speaker-dependent condition
leads to higher relative gains for valence than for
arousal or dominance.

Table B shows the results obtained with dif-
ferent adaptation schemes on the USC-IEMOCAP
and MSP-IMPROV databases. The results are con-
sistent with the findings observed with the MSP-
Podcast corpus. We observe that the relative im-
provements over the speaker-independent baseline
are much higher for valence than the relative im-
provements for arousal and dominance. With the
USC-IEMOCAP corpus, we achieve relative gains
in performance up to 10.41% for valence whereas
less than 1.03% for arousal and dominance. Sim-
ilarly, with the MSP-IMPROV corpus, we achieve
relative gains in performance up to 17.36% for
valence whereas less than 4.22% for arousal and
dominance. These results show the effectiveness of
our proposed approach applied to other emotional
corpora, reinforcing our finding about the speaker-
dependent nature of valence emotional cues.

7 CONCLUSIONS

This paper demonstrated that a valence prediction
system can be personalized to target speakers by
exploiting speaker-dependent traits. The study pro-
posed to create an adaptation set by identifying
speakers in the train set that are closer to the speak-
ers in the test set. Since we evaluate the similarity
between speakers by comparing the acoustic fea-
ture spaces associated with each speaker without
using emotional labels, the adaptation approaches
are fully unsupervised. We proposed three meth-
ods to create this adaptation set: unique speaker,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

oversampling and weighting approaches. The adap-
tation sets from the selected closer speakers are
used to personalize the DNNs to the speakers in
the test set. The experimental results showed that
the global adaptation models achieved better per-
formance than the individual adaptation models.
Further improvements are observed when the loss
function is minimized by monitoring the loss in the
adaptation set. The proposed adaptation schemes
lead to relative improvements up to 13.52% over a
speaker-independent baseline. We observed signifi-
cant improvements in performance, even when only
a few seconds of adaptation data (belonging to the
train set) for each of the speakers in the test set was
used for adaptation. The maximum performance
gains were observed for 200s of adaptation data
for each of the speakers in the test set. We also
demonstrated the effectiveness of the proposed per-
sonalization approaches with the USC-IEMOCAP
and MSP-IMPROV databases, showing consistent
findings.

There are many interesting and important ap-
plications where our personalization models can be
very helpful. In healthcare applications where med-
ical data cannot be frequently obtained, a personal-
ized system can keep track of a patient’s expressive
behaviors and his/her medical record for better and
efficient treatment. Another example is on personal
assistant systems on mobile devices, which are often
used by a limited number of users. Over time, the
system can collect enough data from the target users
to improve their emotion recognition systems. For
cloud-based applications, the training data needs to
be stored in the cloud, instead of the edge device.
With a simple modification on the approach to
obtain the PCA projections (i.e., finding a common
PCA space across testing speakers), the training
data can be pre-estimated and stored. Therefore,
this approach does not require storage or compu-
tational resources on the edge devices and can be
efficiently implemented during inferences.

This study demonstrated the importance of ex-
ploiting the speaker-dependent traits observed in
the expression of valence from speech, which led to
clear improvements. It also showed that we can per-
sonalize SER models by just finding speakers in the
train set that are similar to the target speakers. The
proposed formulation is flexible, requiring only to
know the block of data associated with each speaker
in the test set. This assumption is reasonable since
it is straightforward to group data per speaker in
many practical applications As a future work, we
will evaluate more sophisticated methods to assess
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the similarity of speakers by considering more than
acoustic similarities. Also, we will explore the use
of the proposed adaptation schemes in other deep
learning frameworks such as autoencoders, gener-
ative adversarial networks (GANSs) or long short-term
memory (LSTM).
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