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Abstract—This paper presents a novel speech emotion recog-
nition (SER) method to capture the uncertainty in predicting
emotional attributes using the true distribution of scores pro-
vided by annotators as ground truth (i.e., soft-labels). Reliable,
generalizable, and scalable SER systems are important in areas
such as healthcare, customer service, security, and defense. A
barrier to build these systems is the lack of quality labels due to
the expensive annotation process, leading to poor generalization.
To address this limitation, this study proposes a semi-supervised
generative modeling approach using a variational autoencoder
(VAE) with an emotional regressor at the bottleneck trained
with soft-labels of emotional attributes. We demonstrate that
estimating uncertainties in predicting emotional attribute scores
is possible with soft-labels. We analyze the benefits of uncertainty
estimation with a reject option formulation, where the model can
abstain from predicting emotion when it is less confident. At 60%
test coverage, we achieve relative improvements in concordance
correlation coefficient (CCC) up to 16.85% for valence, 7.12%
for arousal, and 8.01% for dominance. Furthermore, we propose
an uncertainty transfer learning strategy where uncertainties
learned from one attribute are used as a sample re-ordering cri-
terion for another attribute, achieving additional improvements
in prediction performance for valence. We also demonstrate the
generalization power of our method in comparison to other
uncertainty estimating methods using cross-corpus evaluations.
Finally, we demonstrate that our method has lower computational
complexity than alternative approaches.

Index Terms—Generative Models, Variational Autoencoder,
Speech Emotion Recognition, Emotional Attributes

I. INTRODUCTION

With the growing popularity of human computer interaction
(HCI) in areas such as healthcare and security, and the ubiq-
uitous nature of speech based devices to perform HCI tasks,
robust and reliable speech emotion recognition (SER) systems
have enormous potential to improve the user experience. A
major drawback is the time consuming nature of acquiring
good quality emotional labels for the speech samples. Despite
listening to the same audio clip, different annotators may
disagree on a particular emotional label. These subjective
labels create a perceptual distribution where the confusion
between the annotators is evident. The conventional approach
is to consolidate individual annotations with rules such as the
majority vote for categorical emotions (e.g., happiness, anger
or sadness) or simply the average of the scores in the case of
emotional attributes (valence, arousal and dominance). These
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aggregation approaches reduce the confusion between the
labelers, but they can lose some valuable information and mask
less prominent emotional traits. Many studies have directly
used soft-labels in emotion classification tasks, leveraging the
labels provided by individual evaluators, even if they do not
agree with the consensus-labels [1], [2]. We expect that the
same idea can be explored for emotion regression tasks for
emotional attributes. Soft-label probabilities of the emotional
attribute scores can provide information about the disagree-
ment between annotators. This problem can be formulated as
a classification task by binning the attribute scores and using
an appropriate loss to train a deep neural network (DNN) that
directly compares the predicted and ground truth distributions.

Soft-labels encode the confusion between labelers. Studies
have shown that ambiguous samples for human labelers are
also ambiguous samples for SER systems [3]. Therefore,
soft-labels can be leveraged to learn the uncertainty in a
SER model to predict emotion, providing a reliability score
associated with its predictions. Knowing the uncertainty in
the predictions makes a SER system more versatile in mission
critical applications with human-in-the-loop solutions, where
only the uncertain cases are reviewed by humans. Knowledge
about prediction uncertainties can also help in developing
unsupervised and semi-supervised algorithms for machine
learning problems such as active learning [4]–[6], co-training
[7], and curriculum learning [8].

This study proposes a semi-supervised learning (SSL)
method using a variational autoencoder (VAE) [9] to lever-
age soft-labels in the prediction of emotional attributes. The
approach has an emotional regressor attached to its bottleneck
representation layer and is trained with soft-labels of emotional
attributes to perform SER. Soft-labels help in incorporating
information from the label distributions into the latent space
of the VAE. We employ Monte Carlo (MC) samplings from
the latent space to obtain multiple predictions for the same
input instance, from which we measure the uncertainty in
the predictions using entropy. We demonstrate the use of
uncertainty predictions using a reject option framework, where
the model can selectively accept or reject a sample based on
its confidence in the predictions.

We evaluate the SER performance of the proposed model
by studying the tradeoff between test coverage (i.e., number
of accepted test samples) and performance, measured with



concordance correlation coefficient (CCC). At 60% test cover-
age, we achieve relative improvements in CCC up to 16.85%
for valence, 7.12% for arousal, and 8.01% for dominance.
We also show that the uncertainties learned when predicting
one emotional attribute can be used as a sample re-ordering
criterion to improve the prediction of another attribute. We
refer to this effect as uncertainty transfer learning (UTL).
We evaluate the generalization ability of our method with
cross-corpus evaluations, where our proposed approach leads
to better performance than alternative uncertainty prediction
algorithms. We evaluate the computational efficiency of our
method, showing a significant time reduction during inference
compared to Monte Carlo dropout (MCD) based approaches.

II. RELATED WORK

A. Soft-labels for SER

The conventional way of aggregating emotional attribute
annotations from several labelers is to average them, obtaining
a consensus-label. This approach ignores disagreements across
evaluators, removing information about inter-labeler variabil-
ity. An alternative approach is to train DNN models using
the true annotators’ distribution, which is referred to as soft-
labels. Studies have explored SER with soft-labels as ground
truth labels for categorical classification tasks [1], [2], [10]–
[12]. Fayek et al. [2] proposed a DNN to learn a mapping from
spectrograms to emotion classes by using soft-labels to model
the perceptual variations between multiple annotators. This
approach improved the performance compared to methods
trained with ground truth labels obtained by consensus-labels.
Lotfian and Busso [1] formulated emotion perception as a
probabilistic model, where each individual annotation corre-
sponds to a realization sampled from an unknown multivariate
Gaussian distribution representing the emotions of a sentence.
Each labeler is modeled as a point in the distribution, reporting
the emotional category that has the largest intensity measure.
Tarantino et al. [11] implemented an emotion classifier using a
transformer model with self-attention and global windowing.
They compared the SER performance with soft-labels and
hard-labels, showing that soft-labels are able to capture better
features from raw audio inputs, outperforming the SER model
trained with hard-labels. Kim et al. [12] proposed a soft-
label classification technique to deal with samples with no
agreement between annotators, reporting better performance
over a method that disregarded these samples.

While the use of soft-labels has been popular in speech
emotion classification tasks, fewer studies have explored its
use for regression tasks on emotional attribute descriptors.
Zhang et al. [13] proposed the f-similarity preservation gain
(f-SPG) loss for SER using soft-labels of emotional attributes.
This loss is added as an auxiliary loss in a multi-task learning
(MTL) formulation, enforcing that the embedding learned by
the model preserves label similarity between samples. Gideon
et al. [14] used an adversarial training strategy using soft-
labels of emotional attributes to learn a common representation
between the source and target domains to improve cross-
corpus SER. Cai et al. [15] used a SER system trained with

soft-labels of emotional attributes to develop a text-to-speech
(TTS) system that incorporates emotional expressiveness.

B. Uncertainty Prediction in SER

While soft-labels are capable of reflecting the diversity of
human annotation, modeling the label ambiguity in SER tasks
is a real challenge. Sethu et al. [16] developed a mathe-
matical framework called AMBiguous Emotion Representation
(AMBER) that takes different emotional representations into
account (categorical, numerical and ordinal) to create an
ambiguity function that reflects the perceptual uncertainties in
emotional label spaces. Studies have also predicted or modeled
confidence measures in SER. Deng et al. [17] used a SSL
approach to include target domain data during the training of
the models based on confidence scores obtained on the target
data through multi-corpora training. Steidl et al. [18] used an
entropy based measure to judge a classifier’s output, evaluating
the classifier by comparing the entropy in its predictions and
the entropy calculated from the labelers’ confusion. Studies
such as Chou et al. [19] and Han et al. [20] have also utilized
both hard and soft-labels to jointly model the emotional state
and the perceptual uncertainty in the annotations.

A technique that relies on uncertainty prediction is the reject
option formulation. A model with a reject option can decline
a prediction when its confidence is low. Recent studies by
Sridhar and Busso [21], [22] demonstrated the application of
reject options in SER. In Sridhar et al. [21], they devised a
reject option framework for emotion classification based on an
empirical risk minimization framework. They also used MCD
to model uncertainties in predicting emotional attributes [22].

This study evaluates uncertainty prediction using soft-labels
with a generative modeling approach. We show the benefits
of modeling uncertainty using soft-labels for predicting emo-
tional attributes. Furthermore, we demonstrate that our ap-
proach achieves better generalization using less computational
resources during inference when compared to alternative un-
certainty prediction approaches such as MCD based methods.

III. RESOURCES
A. Datasets

The primary corpus used in this study is the MSP-Podcast
corpus [23], which is the largest naturalistic speech emotion
database that is publicly available (release v1.6). The corpus
consists of emotionally rich spontaneous speech recordings
gathered from podcasts from various audio-sharing websites.
The data collection protocol relied on retrieving emotionally
rich segments with existing SER models to balance the emo-
tional content of the corpus by following the strategy suggested
in Mariooryad et al. [24]. The database is split into train,
test and development sets with the goal of creating partitions
with minimal speaker overlap. The test set has 10,124 samples
from 50 speakers, the development set has 5,958 samples from
40 speakers, and the train set has 34,280 samples from the
rest of the speakers. This study uses the emotional attributes
valence (negative versus positive), arousal (calm versus active),
and dominance (weak versus strong), which are annotated
on a seven point Likert scale. The annotation process uses



a crowdsourcing protocol similar to the one discussed in
Burmania et al. [25], where at least five annotators assessed
each sentence. There are around 600,000 speech segments that
are not yet annotated with emotional labels. We use a portion
of these recordings as the unlabeled set. This study uses the
true annotator distribution (soft-labels) to represent the ground
truth. The soft-labels for emotional attributes are constructed
by dividing the attribute space into bins, counting the number
of votes in each bin, creating a probability distribution for
each sentence. We expect that this approach provides a better
representation of the fuzzy labels, since this approach captures
the true variability in the emotional content, as perceived by
several annotators.

In addition to the MSP-Podcast corpus, we use the USC-
IEMOCAP corpus [26] as an additional test set for cross-
corpus evaluations. This is an audiovisual corpus, but this
study only uses the audio modality. It contains dyadic inter-
actions from 10 actors in improvised scenarios. The corpus
contains 10,039 speaking turns annotated for arousal, valence,
and dominance by at least two raters on a 5-Likert scale.
B. Acoustic Features

This paper uses the Interspeech 2013 computational paralin-
guistics challenge acoustic features [27], extracted using the
OpenSmile toolkit [28]. This feature set consists of frame level
features called low level descriptors (LLDs) such as energy,
fundamental frequency and Mel-frequency cepstral coefficients
(MFCCs). A set of sentence level statistics are calculated over
these LLDs (e.g., mean and variance of energy), which are
referred to as high level descriptors (HLDs). For each speech
utterance this process generates a 6,373 dimensional feature
vector, regardless of its duration.

IV. PROPOSED METHOD

This study explores the use of soft-labels of emotional
attributes in uncertainty predictions for SER problems. The
proposed method relies on a generative model with VAE,
trained in a SSL manner.

A. Generative Approach for SER Using Soft-labels

Figure 1 shows an overview of the proposed approach,
which consists of a VAE with an emotional regressor (ER)
attached to its bottleneck layer. VAEs [9] are probabilistic
graphical models with a network structure similar to an
autoencoder (AE), where an encoder (φ) compresses the high-
dimensional input features into a lower dimensional latent
representation and a decoder (θ) decompresses the latent
representations to reconstruct the input. The difference from
an AE is that the latent space has a distributional constraint
in the form of a prior, forcing it to learn the parameters
of the probability distribution of the inputs. The benefits of
this formulation are many, such as the inclusion of domain
knowledge about the inputs through the prior, learning a
continuous latent space that enables easy random samplings
and interpolations, and estimating uncertainty in predictions
through MC samplings in the latent space.

If z represents a latent vector that can generate an ob-
servation x, then the characteristics of z can be inferred
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Fig. 1. Proposed approach, which has a VAE and an emotional regressor
trained with soft and hard labels.

by computing the posterior probability pθ(z|x). Due to the
intractable nature of pθ(x), it is approximated using variational
inference. Here, pθ(z|x) is approximated by a tractable distri-
bution qφ(z|x) where its parameters can be optimized such that
pθ(z|x) ≈ qφ(z|x). This step can be achieved by minimizing
the Kullback-Leibler divergence (KLD) between pθ(z|x) and
qφ(z|x), leading to the formulation of the variational lower
bound as shown in Equation 1,

KLD(qφ(z|x)||pθ(z|x))− log(pθ(x)) =

− Eqφ(z|x)log(pθ(x|z)) +KLD(qφ(z|x)||pθ(z)) (1)

where pθ(x|z) is the likelihood of the generated data and
pθ(z) is the prior distribution over the latent variable z. The
maximization of the left hand side of Equation 1 (lower bound
of the probability of generating data) can be achieved by min-
imizing [−Eqφ(z|x)log(pθ(x|z)) + KLD(qφ(z|x)||pθ(z))]).
The first term denotes the reconstruction likelihood and the
second term ensures that the learned distribution qφ(z|x) is
similar to the true prior distribution pθ(z). In this study, we
use a VAE with an ER attached to the latent representation
layer such that the input to the ER is the sampled vector from
the latent space (the same input that the decoder receives).
We take the SSL approach to train our model. First, we
train the VAE on unlabelled data. Unsupervised pre-training
enables the model to learn prior information about the target
domain, which helps generalize the model as demonstrated on
cross-corpus evaluations. Pre-training the model also provides
a better initialization for the model parameters. The pre-
trained VAE and ER are jointly trained on the labelled data
in a MTL fashion. We use both the consensus and soft-
labels for the emotional attributes at the ER, weighing more
the loss on the soft-labels (Fig. 1). The information about
the confusion between annotators can be better leveraged
with soft-label probabilities. Additionally, joint training with
soft-labels enables the latent space of the VAE to jointly
model the label distribution and the input distribution while
backpropagating the gradients. We use consensus-labels to
reinforce the gradients and put a stronger constraint on the
latent space to model the true label distributions. Equations 2
and 3 show the cost function used for training our model,

Lunlabelled = −Eqφ(z|x)log(pθ(x|z)) (2)



Llabelled = α · (NLL)V AE + β · (1− CCC)consensus

+ γ · (KLD)soft
(3)

where the Equation 2 corresponds to the negative log-
likelihood (NLL) loss used for the unsupervised pre-training
phase, and the Equation 3 corresponds to the MTL loss
function used for the joint training phase. We minimize the
(1 - CCC) loss for the consensus-labels and the KLD loss
for the soft-labels. We weight the hyperparameters (α, β, γ)
such that the losses are in the same scale. We implement
a grid-search by varying the values of the hyper-parameters
((α, β, γ) ∈ {0.1, 0.2, 0.3, . . . , 2.5}). The combination that
maximizes the classification loss on the development set is
α = 0.5, β = 0.8 and γ = 2. These weights give more
importance to the classification loss on the soft-label (i.e.,
KLD), since our proposed method derives its main power by
learning uncertainties from the soft-labels.

B. Uncertainty Estimation from Soft-labels
The advantage of using soft-labels is that they provide

prior knowledge about the label distribution to be fitted,
which reduces the search space of the VAE and leads to
better generalization. For every input sample, we generate a
distribution of soft-label predictions to compute uncertainty
in the predictions. We use multiple MC samplings from the
bottleneck layer of the VAE to get multiple predictions for
a single input sample. With this approach, we approximate
the expected log likelihood ([Eqφ(z|x)log(pθ(x|z))]) multiple
times for each data point in a batch both during training and
inference. We average the generated distributions to obtain a
single soft-label prediction. We calculate the entropy of the
predicted distribution to quantify its uncertainty. We operate
on the hypothesis that confidence of the model increases as the
entropy in the prediction decreases (e.g., sharper distribution).

C. Implementation Details

The regression of emotional attributes using consensus-
labels is used as an auxiliary task. We construct the encoder
and decoder of the VAE using three dense layers with 512
nodes per layer. The encoder and decoder networks mirror
each other. The purpose of the encoder is to approximate
the true posterior distribution pθ(z|x). A proxy distribution
qφ(z|x) is used with its local variational parameters, which is
approximated using a multivariate Gaussian distribution with
a diagonal covariance matrix parametrized by (µφ,Σφ). The
mean and log variance of this distribution is specified as the
output of the encoder, represented by two fully connected
output layers with 256 nodes. We use rectified linear unit
(ReLU) activations at the encoder, tanh activations at the
hidden layers of the decoder, and sigmoid at the output layer.
The ER is constructed using four dense layers with 128
nodes per layer and tanh activations at the hidden layers. The
prediction layer for the consensus-label is a linear activation
layer with a single node. The classification layer for the soft-
label is a softmax layer with seven nodes, matching the ground
truth emotional attribute scores in the MSP-Podcast corpus
that range from 1 to 7. We use dropout in the hidden layers of

the VAE and ER. We use a higher dropout rate of p=0.7 for
valence and p=0.5 for arousal and dominance, since studies
have showed that valence requires higher regularization [29].

An important part of the VAE implementation is the cal-
culation of gradients with respect to the model parameters θ
and the variational parameters φ (see Sec. IV-A). Due to the
intractable nature of these gradients, a MC estimate of the
gradients is computed using a reparametrization trick. The
random variable representing the latent space of the VAE,
z ∼ qφ(z|x), is expressed as a deterministic transformation of
another random variable ε and input x such that z = fφ(x, ε),
where ε ∼ p(ε). Hence, the Gaussian approximation of
qφ(z|x) is achieved using Equation 4.

z ∼ fφ(x, ε) = µφ(x) + σφ(x)� ε; ε ∼ N (0, I) (4)

This reparametrization allows for smooth computation of the
stochastic gradients by drawing noise samples ε from p(ε). For
every input sample, we draw 100 MC samples from the latent
space for all our experiments.

The unlabeled data for the VAE pre-training phase is
selected by randomly sampling 10,124 samples (matching the
size of the test set) from the unlabeled set of the MSP-
Podcast corpus (Sec III-A). We use adaptive moment estima-
tion (ADAM) optimizer with a learning rate of 5e-5 for the
unsupervised training phase. Then, we attach the ER to the
bottleneck representation layer of the VAE and jointly train the
VAE-ER model by increasing the learning rate to 3e-4. The
input to the network is a 6,373D feature vector (Sec. III-B).
We use the KLD loss for the soft-label classification, where
we directly compare the predicted distributions to the ground
truth soft-labels. We separately train SSL models for arousal,
valence and dominance and save the best models based on
their performances on the development set. We train all our
models using the Keras deep learning library with a Tensorflow
backend on a single NVIDIA Quadro P4000 8GB GPU.

V. EXPERIMENTAL RESULTS AND ANALYSIS

This section analyzes the results obtained with our proposed
method to estimate uncertainty. The SER network and uncer-
tainty prediction networks are separate, but share the same
network structure. We create single-task learning (STL) SER
models by training separate regression models for arousal,
valence, and dominance. These models are constructed using
a DNN architecture similar to the ER model in our proposed
model. Since they have the same structure, we expect that
the predicted uncertainties reflect the uncertainties of the SER
models. We train the models for 200 epochs, optimizing their
performance on the development set.

A. Analysis of Uncertainty Predictions
Evaluating uncertainty prediction is not straightforward.

This study evaluates the CCC performance in predicting
emotional attributes after grouping the samples in the test set
according to their uncertainty. We expect that the uncertainty
value dictates the performance of the model, where better CCC
is achieved for sets with lower uncertainty. We split the test set
into five sets with equal number of sentences by sorting the test
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Fig. 2. Performance of regression models on sets with different uncertainty. The first set (0% - 20%) includes samples with the lowest uncertainty, and the
fifth set (80%-100%) includes the samples with the highest uncertainty.
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Fig. 3. Regression performance in CCC using a reject option for emotional
attributes. The figures show the tradeoff between coverage and performance.

samples according to their uncertainty scores. The first set has
20% of the samples with the lowest uncertainty scores. The
fifth set has 20% of the samples with the highest uncertainty
scores (e.g., 80 to 100 percentile in the list). Figure 2 shows the
results for this evaluation. We observe improvements in CCC
values as the uncertainty of the samples decreases, following
our expectation. The ranges of performance are broad, creating
important performance gap across sets. The trend is observed
in valence, arousal, and dominance. The result shows that our
proposed approach to estimate uncertainty is effective for SER
problems implemented with regression models.

B. Application in Reject Options
An application area for uncertainty predictions is in selective

prediction. We demonstrate the benefits of our model in SER
by training regression models with a reject option. With this
formulation, the SER system can selectively accept or reject
a test sample based on prediction uncertainties. As more
uncertain samples are rejected, the performance is expected
to improve. However, the coverage decreases as the system
provides predictions on fewer samples (i.e., tradeoff between
coverage and performance). The goal of a system with a
reject option is to obtain the best possible performance while
keeping the coverage (accepted samples) as high as possible.
Our approach rejects samples with more uncertainty.

The DNN models trained to create the STL baselines are
used here for inference. During inference, we accept or reject a

test sample based on the uncertainty prediction obtained with
our proposed method. Figure 3 shows the tradeoff between
the test coverage and CCC performance as we progressively
reject samples based on their predicted uncertainties. The
results at 100% coverage (baseline performance) correspond
to the CCC values achieved on the entire test data. The
baseline performances on valence, arousal, and dominance are
CCCval = 0.3170, CCCaro = 0.7205, and CCCdom =
0.6329, respectively. We observe clear improvements in CCC
as we progressively reject uncertain samples. At 60% test
coverage, we achieve relative gains in CCC up to 16.85% for
valence, 7.12% for arousal, and 8.01% for dominance.

C. Uncertainty Transfer Learning (UTL)
The baseline CCC values of arousal and dominance are

higher than the CCC value for valence. Although we use a
higher regularization (dropout rate of p = 0.7) to train a DNN
for valence prediction [29], estimating valence from speech
is inherently difficult [30]. Since the prediction of valence is
lower, we expect that the prediction of uncertainty may also be
less accurate. Can uncertainty predictions from one emotional
attribute (e.g., arousal) be transferred to another emotional at-
tribute (e.g., valence)? We refer to this approach as uncertainty
transfer learning (UTL). The prediction performance on each
attribute is evaluated using a reject option formulation with
two different scenarios: (a) self-learned uncertainty, where the
prediction uncertainty of an emotional attribute is used for
the same attribute (e.g., uncertainty prediction of valence used
for reject option on valence), and (b) transferred uncertainty,
where the prediction uncertainty of an emotional attribute is
used for a different attribute (e.g., uncertainty prediction of
arousal used for reject option on valence). The second scenario
corresponds to the UTL case. The UTL approach changes
the order of the samples to be rejected, directly affecting the
performance of the system.

Figure 4 shows the results obtained with the UTL strategy.
Uncertainties learned from arousal and dominance improve
the recognition of valence, where this trend becomes more
prominent as the coverage decreases. The uncertainty in-
formation from arousal and dominance help valence more
than the uncertainties learned from valence itself, showing
the benefits of the UTL approach. At 60% test coverage we
achieve relative gains in CCC up to 19.55% for valence using
arousal uncertainties. However, UTL is not as useful when
the accuracy in predicting the attribute is high. In these cases,
the self-learned uncertainties are also expected to be good.
Figures 4(b) and 4(c) show that the UTL approach does not
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Fig. 4. Results with UTL using a reject option. The order of the samples to
be rejected is determined with self-learned or transferred uncertainties.

help much with the arousal and dominance performances. The
only slight exception is the case of dominance, where arousal
uncertainties help in improving dominance predictions after
the 60% coverage point (Fig. 4(c)).

D. Model Generalization

This section analyzes the generalization of our proposed
method using a reject option formulation with and without
UTL on a different speech emotional database. We use the pro-
posed VAE-ER model exclusively trained on the MSP-Podcast
corpus, performing inference on the IEMOCAP corpus (i.e.,
uncertainty estimation). In contrast, the STL SER models
are trained with the IEMOCAP data (emotion prediction).
The IEMOCAP corpus with acted and improvised speech
recordings serves as a good example of domain mismatch
between the train and test conditions. The IEMOCAP database
has ground truth attribute labels using a 5-point Likert scale
and our proposed model has a softmax classification layer with
7 nodes. For the prediction of uncertainty, we do not modify
the width of the classification layer to fit the experiments on
the IEMOCAP database, since we only do inference on this
corpus and its labels are not used for our proposed model.
We compare the generalization ability of our method with the
following MCD based methods:
• MCD: Uses the same model and training procedure pro-

posed in Sridhar and Busso [22]. The model uses the
consensus-labels of the emotional attributes.

• MCD soft: A DNN implemented using MCD, following the
implementation procedure presented in Sridhar and Busso

TABLE I
CROSS-CORPUS EVALUATION RESULTS ON THE IEMOCAP DATABASE

USING SELF-LEARNED UNCERTAINTIES. THE RESULTS SHOW THE CCC
VALUES ACHIEVED AT DIFFERENT COVERAGE LEVELS WITH A REJECT

OPTION IMPLEMENTED USING OUR PROPOSED UNCERTAINTY PREDICTION
APPROACH AND OTHER MCD BASED BASELINES. † INDICATES THAT ONE
METHOD LEADS TO SIGNIFICANTLY BETTER RESULTS THAN THE OTHERS.

Attribute Approach CCC at different coverage (%)
80% 60% 40% 20%

Valence

Proposed 0.5489† 0.5710† 0.6122† 0.6433
AE-MCD 0.5380 0.5561 0.5918 0.6450
MCD MTL 0.5400 0.5650 0.5888 0.6492†

MCD soft 0.5391 0.5691 0.5820 0.6000
MCD 0.5340 0.5620 0.5725 0.6181

Arousal

Proposed 0.7859† 0.8022† 0.8108 0.8180
AE-MCD 0.7750 0.7920 0.8001 0.7590
MCD MTL 0.7480 0.7172 0.6509 0.6460
MCD soft 0.7500 0.7105 0.6823 0.6588
MCD 0.7830 0.7990 0.8482† 0.8791†

Dominance

Proposed 0.6795† 0.7201† 0.7505† 0.7653
AE-MCD 0.6450 0.6409 0.6621 0.6098
MCD MTL 0.6789 0.7170 0.7412 0.7808†

MCD soft 0.6205 0.6054 0.6011 0.5923
MCD 0.6790 0.7055 0.7415 0.7487

[22], but only trained with soft-labels using the KLD loss.
• AE-MCD: An AE model with a MCD decoder and an ER

attached to the bottleneck layer. This model is trained in a
MTL manner using both consensus and soft-labels. The key
differences with our proposed model are: (a) the bottleneck
layer of the AE has no distributional constraint, and (b)
the decoder network is implemented with MCD. The loss
function is the mean-squared error (MSE) for the AE and
[(1 - CCC) + KLD] for the ER. We pre-train the AE with
unlabelled data and jointly train the entire model using the
labeled data.

• MCD MTL: A DNN implemented using MCD, follow-
ing the implementation procedure presented in Sridhar and
Busso [22]. This model is trained in a MTL manner using
both consensus (1 - CCC) and soft-label (KLD) annotations.
We calculate the entropy of the predicted distribution to

quantify the uncertainty in predictions whenever soft-labels
are used to train the different models (proposed approach,
AE-MCD, MCD MTL, and MCD soft). For the MCD model,
we quantify uncertainty using the standard deviations of the
different dropout results, following the uncertainty estimation
procedure presented in Sridhar and Busso [22]. We implement
the reject options based on the predicted uncertainties achieved
from different methods and compare their performances. The
SER model is a DNN constructed with a similar architecture
as our ER. We create five sets of train-test partitions of the
IEMOCAP dataset, using a five-fold cross-validation strategy
to train the STL SER model. In each fold, we consider two
speakers as the test speakers and the rest as train speakers.
The final results are averaged across the 5-folds. We estimate
the significance of the results using one-tailed t-test over 10
trials, asserting significance when p-value≤ 0.05.

Table I shows the results obtained on the IEMOCAP
database using the self-learned uncertainties for reject op-
tions. The baseline CCC values achieved on all the test



TABLE II
CROSS-CORPUS EVALUATION RESULTS ON THE IEMOCAP DATABASE

USING THE UTL STRATEGY. † INDICATES THAT ONE APPROACH LEADS TO
SIGNIFICANTLY BETTER RESULTS THAN THE OTHERS.

Attribute- Approach CCC at different coverage (%)
Uncertainty Pairs 80% 60% 40% 20%

Val-Aro

Proposed 0.5500† 0.5929† 0.6292† 0.6558†

AE-MCD 0.5420 0.5650 0.5900 0.6329
MCD MTL 0.5322 0.5690 0.5899 0.5980
MCD soft 0.5480 0.5710 0.5902 0.5981
MCD 0.5280 0.5315 0.5428 0.5750

Val-Dom

Proposed 0.5498† 0.5717† 0.6073† 0.6490†

AE-MCD 0.5411 0.5650 0.5881 0.6126
MCD MTL 0.5325 0.5350 0.5510 0.5738
MCD soft 0.5450 0.5680 0.5838 0.5811
MCD 0.5255 0.5364 0.5427 0.5833

samples (100% coverage) are CCCval = 0.5224 for valence,
CCCaro = 0.7661 for arousal, and CCCdom = 0.6439
for dominance. Our proposed method performs significantly
better than the MCD-based approaches for the coverage at
80% and 60%, which are the most important cases for a
reject option formulation, improving the performance without
compromising too much coverage. For the 40% coverage, only
the MCD approach is able to achieve better performance than
our approach, but only for arousal.

Based on results shown in Section V-C, we also evaluate
if the UTL approach leads to better performance for valence
in cross-corpus evaluations. We report the results on valence
alone, since we do not observe improvements with UTL for
arousal and dominance. Table II shows the results obtained
on the IEMOCAP database using the UTL approach. The
first column indicates the attribute used for the transferred
uncertainties. For example, Val-Aro indicates the prediction
performances on valence using uncertainties learned from
arousal. We see that the UTL approach works best with our
proposed method, achieving significantly higher CCC scores
as we reject more ambiguous samples. The results in Table I
and II show the generalizability of our proposed method and
the advantages of the UTL approach.

E. Ablation Study

We evaluate different contributing factors of the model ar-
chitecture with an ablation study for within corpus experiments
(on the MSP-Podcast corpus) with self-learned uncertainties
using a reject option formulation. We evaluate the performance
after removing: (A) the VAE (removing the distributional
constraint at the bottleneck, replacing it with a simple AE),
(B) the soft-labels to train the ER, and (C) the need for MC
sampling at the latent space of the VAE. Table III shows the
results, which indicate that removing one of these components
lead to performance drops between 1% and 5% (absolute)
compared to the full system.

F. Computational Resources During Inference

A SER model should be efficient at inference time, not
requiring enormous computational memory or time to provide
a solution. To evaluate the complexity of our proposed method,

TABLE III
ABLATION STUDY: A, B AND C REPRESENT DIFFERENT KEY COMPONENTS
OF THE PROPOSED MODEL. A: VAE, B: USE OF SOFT-LABELS AT THE ER,

AND C: NEED FOR MC SAMPLING AT THE LATENT SPACE OF VAE.

CCC at different coverage (%)
Attributes A B C 100% 80% 60% 40% 20%

Aro
X X 100 0.720 0.754 0.770 0.788 0.805
X - 100 0.720 0.741 0.758 0.770 0.791
X X 1 0.720 0.731 0.739 0.745 0.750

Val
X X 100 0.317 0.348 0.369 0.399 0.450
X - 100 0.317 0.325 0.348 0.366 0.372
X X 1 0.317 0.319 0.325 0.333 0.348

Dom
X X 100 0.632 0.670 0.682 0.699 0.702
X - 100 0.632 0.652 0.655 0.659 0.675
X X 1 0.632 0.639 0.643 0.651 0.658

we calculate the average time that our proposed model takes
for inference on the entire test set of the MSP-Podcast corpus,
comparing it with that of the MCD model trained with
consensus-labels [22]. We take the average over 10 trials
with different random initializations of the parameters of the
models. On average, our method takes 11.39s for inference
whereas the MCD model takes 19.86s. This indicates that our
method is 74.36% faster than the MCD approach. Even though
our proposed generative model (7,519,341 parameters) has
more parameters than the MCD model (865,537 parameters),
this result shows that it is more computationally effective than
the MCD method during inference. The inference time for
other approaches used in Table I and II are 21.26s for MCD
soft, 41.38s for AE-MCD, and 26.32s for MCD MT.

VI. CONCLUSIONS

This study presented a novel approach for using soft-labels
of emotional attributes in uncertainty prediction. We use soft-
labels of emotional attributes to incorporate the confusion
between annotators and estimate uncertainty using a VAE-
ER model trained using SSL. We evaluate the application
of uncertainty prediction in SER as a reject option problem,
reporting the tradeoff between performance and test coverage.
At a test coverage of 60%, we achieve relative gains in
prediction performance in terms of CCC values up to 16.85%
for valence, 7.12% for arousal, and 8.01% for dominance. We
proposed a UTL strategy where prediction uncertainties are
transferred across emotional attributes. This approach is par-
ticularly useful for improving valence uncertainty, where SER
models achieve lower prediction performance than arousal or
dominance. The analysis demonstrated that transfer learning
with uncertainties is feasible in SER problems. We improved
the performance gains up to 19.55% on valence at 60%
test coverage. The results on cross-corpus evaluations showed
that our proposed method generalizes better than other MCD
approaches to estimate uncertainty. We also discussed the
efficiency of our method in terms of computational complexity
during inference, showing that our approach is significantly
faster than other MCD approaches. As a future work, we
will explore using these ideas in curriculum learning [8]. We
expect improvements by defining the curriculum according to
the predicted uncertainties of the training samples.
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