

THE UNIVERSITY OF TEXAS AT DALLAS

Proposed Framework

- Exploring annotator level uncertainties
- Generative modeling approach with soft-labels of emotional attributes
- Variational Autoencoder (VAE) with an Emotional Regressor (ER) attached to the bottleneck layer
- Multiple Monte Carlo from the latent space of the VAE to learn prediction uncertainties
- Soft-labels to train ER. Hard-labels to constrain the latent space of VAE

Uncertainty Transfer Learning (UTL)

- Can information from uncertainty prediction on one emotional attribute be transferred to another emotional attribute?
- Arousal and dominance uncertainties improve valence recognition performance but the vise versa is not true
- Transferred learned uncertainties lead to higher performance gains than self-learned uncertainties

Generative Approach Using Soft-Labels to Learn Uncertainties in Predicting **Emotional Attributes** Kusha Sridhar, Carlos Busso

 $\mathcal{L}_{unlabelled} = -E_{q_{\phi}(z|x)}log(p_{\theta}(x|z))$

The MSP-Podcast Corpus

- podcasts (2.75s to 11s in length)
- Amazon Mechanical Turk
- Version 1.6: Train = 34,280 sentences
- 42,567 sentences with speaker ID (1,078 speakers)

0.6492 0.6000

0.6181

0.6558

0.6329

0.5980

0.5981

0.5750

0.6490

0.6126

0.5738

0.5811

0.5833

0.5888

0.5820

0.5725

0.6292

0.5900

0.5899

0.5902

0.5428

0.6073

0.5881

0.5510

0.5838

0.5427

0.5650

0.5691

0.5620

0.5929

0.5650

0.5690

0.5710

0.5315

0.5717

0.5650

0.5350

0.5680

0.5364

Acoustic Features

- toolkit
- 65 LLDs and 6,373 HLDs

- **Cross-corpus experiments on the IEMOCAP corpus**
- based approaches used for uncertainty modeling
- Experiments with UTL in application to reject options

Attribute –	Approach		
Uncertainty Pairs		80%	
Val-Val	Proposed	0.5489	
	AE-MCD	0.5380	
	MCD MTL	0.5400	
	MCD Soft	0.5391	
	MCD	0.5340	
Val-Aro	Proposed	0.5500	
	AE-MCD	0.5420	
	MCD MTL	0.5322	
	MCD Soft	0.5480	
	MCD	0.5280	
Val-Dom	Proposed	0.5498	
	AE-MCD	0.5411	
	MCD MTL	0.5325	
	MCD Soft	0.5450	
	MCD	0.5255	

Uncertainty Transfer

Model Generaliza

Computational complexity

Uncertainty Analysis and Reject Options

Predicted attribute scores in terms of CCC as a function of prediction uncertainties

• At 60% test coverage, relative gains in CCC up to 16.85% for valence, 7.12% for arousal

Conclusion

Novel generative modeling approach using soft-labels of emotional attributes in

	Merits of the proposed VAE-ER approach
tions	Using soft-labels
ned uncertainties	At 60% coverage, gains in CCC up to: 16.85% for valence 7.12% for arousal 8.01% for dominance
earning	Works best with valence 19.55% gains in CCC
ition	Cross-corpus results on IEMOCAP: Generalizes better than MCD based approaches
at inference	74.36% faster than MCD based approaches

