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ConclusionUncertainty Transfer Learning (UTL)

Database and Features
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The MSP-Podcast Corpus
▪ Emotionally rich speaking turn from speaker appearing in various 

podcasts (2.75s to 11s in length)

▪ Annotated for categorical and attribute-based emotion labels on 

Amazon Mechanical Turk

▪ Version 1.6: Train = 34,280 sentences

Test =  10,124 sentences from 50 speakers

Validation = 5,958 sentences from 40 speakers

▪ 42,567 sentences with speaker ID (1,078 speakers)

Acoustic Features
▪ Interspeech 2013 ComParE feature set extracted using Opensmile

toolkit

▪ 65 LLDs and 6,373 HLDs

▪ Exploring annotator level uncertainties

▪ Generative modeling approach with soft-labels of emotional attributes

▪ Variational Autoencoder (VAE) with an Emotional Regressor (ER) attached to the 

bottleneck layer

▪ Multiple Monte Carlo from the latent space of the VAE to learn prediction uncertainties

▪ Soft-labels to train ER. Hard-labels to constrain the latent space of VAE

Predicted attribute scores in terms of CCC as a function of prediction uncertainties

▪ Entropy to quantify uncertainty

Application in Reject Options for SER

▪ At 60% test coverage, relative gains in CCC up to 16.85% for valence, 7.12% for arousal 

and 8.01% for dominance

▪ Can information from uncertainty prediction on one emotional attribute be 

transferred to another emotional attribute?

▪ Arousal and dominance uncertainties improve valence recognition performance 

but the vise versa is not true

▪ Transferred learned uncertainties lead to higher performance gains than self-learned 

uncertainties

Gains up to 19.55% at 60% test coverage 

for valence

Cross-corpus experiments on the IEMOCAP corpus

▪ Comparing proposed approach with other Monte Carlo Dropout (MCD) 

based approaches used for uncertainty modeling

▪ Experiments with UTL in application to reject options

▪ Novel generative modeling approach using soft-labels of emotional attributes in 

uncertainty predictions

Experiments Merits of the proposed VAE-ER approach

Uncertainty Predictions Using soft-labels

Reject Options using self-learned uncertainties At 60% coverage, gains in CCC up to:

16.85% for valence

7.12% for arousal

8.01% for dominance

Uncertainty Transfer Learning Works best with valence

19.55% gains in CCC

Model Generalization Cross-corpus results on IEMOCAP: Generalizes better than 

MCD based approaches

Computational complexity at inference 74.36% faster than MCD based approaches


