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Abstract
Speech emotion recognition (SER) for categorical descriptors is
a difficult task when the recordings come from everyday sponta-
neous interactions. The boundaries between emotional classes
are less clear, resulting in complex, mixed emotions. Since the
performance of a SER system varies across speech recordings,
it is important to understand the reliability associated with its
prediction. An intriguing formulation in machine learning re-
lated to this problem is the reject option, where a classifier only
provides predictions over samples with reliability above a given
threshold. This paper proposes a classification technique with a
reject option using deep neural networks (DNNs) that increases
its performance by selectively trading its coverage in the test-
ing set. We use two different criteria to develop a SER system
with a reject option, where it can accept or reject a sample as
needed. Using the MSP-Podcast corpus, we evaluate this idea
by comparing different classification performance as a function
of coverage. By selectively defining a coverage of 75% of the
samples, we obtain relative gains in F1-score of up to 25.71%
for a five-class problem and 20.63% for an eight-class problem.
The sentences that are rejected are analyzed in the evaluation,
confirming that they have lower inter-evaluator agreement.
Index Terms: Emotion Classification, Deep neural Networks,
Inter-evaluator agreement, F1-Score

1. Introduction
Speech emotion recognition (SER) is an important research area
due to its wide applications in human computer interactions

(HCIs) and behavioral studies [1]. Therefore, it is important
to design SER systems that lead to reliable predictions. An
important problem in SER is the classification of categorical
emotions, such as happiness, anger and sadness (basic emotion
theory [2]). The boundary between categorical emotions be-
comes less clear with natural, spontaneous recordings, which
are characterized by mixed emotions [3–5]. People in everyday
interactions exhibit complex emotional behaviors, which cannot
be aways described by a single emotional class with absolute
certainty. This challenge is one of the key reasons for the low
inter-evaluator agreements that are often observed in emotional
perceptual evaluations, as different raters have different percep-
tions after listening to the same recording. SER systems built to
recognize categorical emotions also face similar challenges.

Studies have shown that the reliabilities of SER systems
vary according to the emotional ambiguity of the speech, where
the classification performances increase when they are evalu-
ated with recordings that are consistently annotated [6]. It is
important to design architectures that not only have high accu-
racy, but also provide information about their confidence [7, 8].
For example, it is valuable to have a SER system that can dis-
tinguish cases where its confidence is low to make a reliable
decision. An appealing formulation in machine learning is to
build a classifier with a reject option [9–11], where the system
refuses to provide a prediction for uncertain samples. This pa-
per addresses this problem by introducing a SER system with a
reject option, balancing the tradeoff between classification ac-
curacy and coverage in the test set (i.e., percentage of accepted
samples). While studies have proposed confidence metrics to

describe the prediction of the systems, the implementation of a
reject option in SER is a novel formulation.

We train a DNN with a reject option using two different cri-
teria to accept or reject samples from the test set. The first crite-
rion learns the rejection function using the selective guaranteed

risk (SGR) algorithm [12]. This algorithm uses the softmax re-

sponse (SR) mechanism, where a threshold is applied on the
softmax probabilities of the output layer of a DNN. The goal
is to learn a rejection function that guarantees a desired risk,
or error rate, with high probability. The second criterion uses
the difference between the two highest softmax outputs to set
a threshold. We reject the sample if the difference is below a
given threshold. The F1-scores of both methods are evaluated
as a function of the coverage of the classifiers. We observe rel-
ative gains in F1-score up to 25.71% for a five-class problem
and 20.63% for an eight-class problem by rejecting only 25%
of the testing set. These results show the benefits of using a
reject option in SER problems.

2. Related Work
The concept of a reject option in classifiers has been used in
various machine-learning problems including gene-expression
classification [13], odor classification [14], and vocal fold paral-
ysis [15]. Studies have included a reject option in binary [16],
multi-class [17], and multistage [9] classifications. Studies have
often discussed the concept of a reject option in the context of
classifiers built with support vector machines (SVMs) [10, 16],
nearest neighbor (KNN) [11], ensemble of classifiers [18],
boosting algorithms [19], and DNNs [20,21]. The use of a clas-
sifier with a reject option has not been studied in SER problems.

The use of a reject option in neural networks often considers
costs or penalties assigned to misclassified samples, or rewards
assigned to correctly classified samples [20, 21]. An alternative
approach is to formulate the problem in terms of risk and cov-
erage [12, 22]. Geifman et al. [12] proposed a classifier with a
reject option for the problem of object recognition on images.
They propose a selective guaranteed risk (SGR) algorithm to
learn a rejection function on the classifier. They introduced the
notion of risk and coverage to learn a selection/rejection func-
tion that achieves a desired risk with very high probability. The
goal of the algorithm is to find the right threshold that minimizes
the generalization error (i.e., target risk) of the classifier, while
keeping the maximum test coverage. They evaluated the clas-
sification performance on the CIFAR and ImageNet databases,
achieving a very low error (2%) on the test data using 60% test
coverage. Our study follows this formulation.

Our study is closer to the work of Deng et al. [7], where
a confidence measure for SER was defined based on human
labeler agreement. The approach uses the FAU Aibo emotion
corpus, which has emotion labels as well as human agreement
scores assigned for each sample. They use an SVM classifier
to recognize the emotions. They also train scoring models us-
ing the human agreement levels as ground truth. These scoring
models estimate the agreement level a sentence. These esti-
mates are combined to define a confidence score, which was
shown to be highly correlated with the unweighted average re-
call of the classifier. Deng et al. [8] explored the reliability of
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predictions of a SER system by training classifiers on multi-
ple databases with manually created confidence levels. They
used a semi-supervised learning approach to gradually include
data from the target domain on the train set during this itera-
tive procedure. Classifiers trained on multiple corpora predict
various confidence ratios for each instance from the target do-
main. They aggregated these confidence ratios to calculate a
confidence measure. Both of these studies have used SVMs to
design classifiers [7,8]. However, our approach is implemented
with DNNs, since they have achieved better performance than
SVMs [23, 24].

3. Resources
3.1. The MSP-Podcast Database
This study uses the MSP-Podcast corpus [25]. The database is
a collection of spontaneous speech samples rich in emotional
content, obtained from various audio-sharing websites. The
speech samples are formed by segmenting the podcasts into
speaking turns with duration between 2.75 and 11 seconds, with
no background music or overlapped speech [25]. The study uses
version 1.4 of the corpus, which consists of 33,262 speaking
turns (56h 29m). In this set, we have identified and manually an-
notated the speaker identity of 30,070 sentences (703 speakers).
The database is split into train, test and validation partitions,
aiming to obtain speaker independent partitions. The test set
has 9,255 samples from 50 speakers, the validation set has 4,300
samples from 30 speakers, and the train set has 19,707 samples
from the rest of the speakers, including the segments without
speaker information. The database is annotated with emotional
labels using Amazon Mechanical Turk (AMT). The evaluation
uses a variation of the crowdsourcing protocol discussed in Bur-
mania et al. [26] to track the performance of the workers in real-
time. Each speech sample is annotated by at least five annota-
tors. While the corpus has categorical and attribute-based de-
scriptors, this study uses primary categorical emotions: anger,
sadness, happiness, surprise, fear, disgust, contempt, and neu-
tral states. More details on this corpus is provided in Lotfian
and Busso [25].

3.2. Acoustic Features
This study uses the acoustic features proposed for the Inter-
speech 2013 computational paralinguistics challenge [27]. We
extract the features using the OpenSmile toolkit [28]. The set
consists of low level descriptors (LLDs) and high level descrip-

tors (HLDs) extracted from each speaking turn. The LLDs con-
sist of frame-based features such as energy, fundamental fre-
quency and Mel-frequency cepstral coefficients (MFCCs). The
HLDs are sentence-level statistics from the LLDs (e.g., mean
of the energy). The approach creates a 6,373 dimension feature
vector for each utterance, regardless of its length.

4. Proposed Method
The main contribution of this study is the use of a reject option
for SER problems, where the classifier can decline to make a
prediction when it is not confident. A key challenge in this for-
mulation is to define a meaningful criterion to accept or reject a
sample. This study evaluates two criteria, which are explained
in this section.

4.1. Criterion 1: Threshold on the Neuronal Activations
The main objective in the first criterion is to minimize the em-
pirical risk of the selective classifier, while keeping the test cov-
erage as high as possible. We use the SGR algorithm introduced
by Geifman et al. [12] to construct a selection function (g) that
guarantees a desired risk (r⇤) with high probability. The learn-
ing of a selection function can be formulated as learning an opti-
mal risk bound on the classifier. This goal is achieved by setting
an optimal threshold on the softmax probabilities of the output
layer that guarantees a desired error rate with high confidence.

(a) Criterion 1 (b) Criterion 2

Figure 1: Defining thresholds to reject or accept samples using

criteria 1 or 2.

The empirical selective risk (r̂(f, g|Sm)) is defined as the ratio
of the expected loss ( 1

m

Pm
i=1 l(f(xi), yi)g(xi)) and the cov-

erage of the selective classifier (�̂(f, g|Sm)),

r̂(f, g|Sm) =
1
m

Pm
i=1 l(f(xi), yi)g(xi)

�̂(f, g|Sm)
(1)

where, f is a classifier, g is a selection function indicating that
the classifier accepts a sample when g(xi) = 1 and rejects a
sample when g(xi) = 0. Sm is the labeled training samples
({(xi, yi)}mi=1) and �̂(f, g|Sm) , 1

m

Pm
i=1 g(xi) is the empir-

ical coverage. Since the algorithm uses a 0-1 loss, the empirical
risk of the classifier can be interpreted as the generalization er-
ror of the classifier.

The algorithm uses the softmax response technique, where
the threshold is imposed on the neuronal responses of the layer
previous to the final softmax layer. The activation responses
are reflected on the final softmax probabilities. Therefore, the
threshold on the activations is equivalent to imposing the thresh-
old on the softmax probabilities (Fig. 1(a)). The algorithm
chooses an appropriate threshold using the validation set to
guarantee that the empirical risk is close to the desired risk with
very high confidence (we set the confidence at 99.99%) (Eq.2).
The optimal thresholds are used in the test set, defining different
levels of coverage.

PrSm{r̂(f, g|Sm) < r⇤} > 99.99% (2)

4.2. Criterion 2: Two Highest Prediction Values Difference
The second criterion defines the threshold by estimating the
difference between the two predictions with the highest values
(Fig. 1(b)). We expect a big difference for confident cases, indi-
cating that the top choice is the clear prediction. This criterion
has been used by Mitra and Franco [29] to deal with unseen data
in automatic speech recognition (ASR).

Since we use a multicalss classification approach to recog-
nize categorical emotions, the softmax output of a trained emo-
tion classifier is a probability vector, indicating the prediction
probability for each emotional class. We calculate the differ-
ence between the highest and second highest predicted proba-
bility values, setting a threshold on this difference (Fig. 1). The
thresholds are also optimized on the validation set, defining dif-
ferent levels of coverage.

4.3. Optimization of the Models
We optimize the selective classifier using two different tech-
niques. The first alternative is to optimize the empirical risk of
the classifier. We use the SGR algorithm to choose an appropri-
ate threshold, such that the generalization error of the classifier
is brought closer to a desired error rate (Eq.2). The two errors
are tightly bound with very high probability. The second al-
ternative is to optimize the F1-score achieved on the validation
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(a) Hard labels - 5 classes (b) Soft labels - 5 classes

(c) Hard labels - 8 classes (d) Soft labels - 8 classes

Figure 2: F1-score as a function of the test coverage. The figures consider the two criteria to define the reject option, and the two

optimization methods.

set. We use these optimization methods for the two proposed
criteria to introduce a reject option in a classifier, creating four
different implementations.

5. Experimental Evaluation
The experimental evaluation considers the two criteria to intro-
duce a reject option with the optimization methods. We evaluate
the F1-score of the models versus the test coverage, which de-
creases as we reject more samples. To compute the F1-score,
we estimate the precision and recall rates for each class, calcu-
lating their average across classes. Then, we use the average
precision and average recall rates to estimate the F1-score. This
approach gives the same weights to each emotional class, which
is important as the corpus is not balanced across emotions.

The recognition of categorical emotions is formulated as a
classification problem implemented with DNNs. We consider
two classification problems. The first problem is an eight-class
problem (happiness, sadness, anger, surprise, fear, disgust, con-
tempt and neutral state). The second problem is a five-class
problem (happiness, sadness, anger, disgust and neutral state),
removing some of the classes with fewer samples.

We implement a DNN with three dense layers with 1, 024
nodes per layer. The DNNs are implemented with rectified lin-

ear unit (ReLU) for intermediate layers and a softmax activation
for the output layer. We use a dropout of p = 0.5 and a batch
normalization for the hidden layers. Batch normalization has
been proven to improve the performance of DNNs [24, 30, 31]
by reducing the covariance shift and normalizing the output of
each layer, leading to better gradient flow and faster training.

We use adaptive moment estimation (ADAM) with a learning
rate of 0.0002 to optimize the parameters of the network. We
train the network to minimize the cross-entropy loss function.
The input to the network is the 6,373 dimension feature vector
described in Section 3.2. The features are standardized using
the mean and standard deviation values estimated over the train-
ing samples. The softmax layer outputs a vector with the proba-
bilities associated with the emotional classes. We train the mod-
els with hard and soft labels. The hard labels are obtained by
estimating the consensus across the annotations of each speak-
ing turn, using the majority vote rule. An alternative method
is to use soft labels to estimate the proportion of the labels as-
signed to the speaking turns (e.g., happiness=0.7; neutral=0.3;
other emotions=0). Soft-labels have been successfully used in
SER problems [32, 33].

6. Results and Analysis
This section evaluates the use of a reject option in SER prob-
lems. We create a baseline system for the five-class and eight-
class problems using a similar DNN structure, without the re-
ject option (i.e., 100% coverage). We train the classifier for 200
epochs, optimizing its performance on the validation set. We
evaluate the performance of the classifier with the reject option
by calculating the F1-score on accepted samples from test set.

6.1. Five-Class Problem
We select the speaking turns with consensus labels belonging to
the five emotions (happiness, anger, sadness, disgust, and neu-
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Table 1: Relative gains in F1-scores achieved for a 75% cov-

erage on the test data. The table lists the results for the two

criteria to reject subjects, using the two optimization methods.

It also lists the results when we select random samples until

achieving the desired coverage.

Proposed
methods Gain in F1-Score (%) for a 75% test coverage

Hard 5 Soft 5 Hard 8 Soft 8
Criterion 1
optimized

on risk 25.71 6.30 16.39 17.64
Criterion 1
optimized

on F1-Score 17.00 4.10 17.62 10.00
Criterion 2
optimized

on risk 19.90 6.20 12.70 18.82
Criterion 2
optimized

on F1-Score 17.27 6.84 6.55 20.63
Random Sampling -0.84 -0.68 1.80 0.70

tral states). For consistency, we remove the samples in the cor-
pus without consensus, even when using soft labels to train and
evaluate our models.

Figures 2(a) and 2(b) show the performance of the classi-
fier with a reject option learned using the two different crite-
ria. The performance of the baseline corresponds to the point
in the figures when the coverage is 100%. As expected, we
observe that the gain in performance increases as the test cover-
age decreases. As the classifier rejects ambiguous samples, its
confidence in predicting the accepted samples increases. The
performances across criteria and optimization methods are very
similar. The two methods that tend to have better F1-score are
criterion 1 with risk optimization, and criterion 2 with F1-score
optimization. In general, training with hard labels leads to bet-
ter performance. The line labelled as ”Random coverage F1-
Score” corresponds to the performance of a classifier without
a reject option, evaluated on test samples selected at random
until matching the test coverage of the classifier with the reject
option. The results show that the classifier with reject option
consistently performs better than the one without a reject op-
tion for different coverage of the test data, indicating that the
classifier is selective in rejecting the samples.

Table 1 gives a comparison of the relative gains in F1-scores
achieved over the baselines by using different criteria to intro-
duce a reject option for a coverage of 75% (e.g., we reject 25%
of the test set). The first two columns of the table lists the per-
formance for the five-class problem. We observe relative gains
up to 25.71% with hard labels (criterion 1, risk optimization)
and 6.84% with soft labels (criterion 2, F1-score optimization).

6.2. Eight-Class Problem

For the eight-class problem using hard and soft labels, we use
samples in the database with consensus labels associated to hap-
piness, sadness, anger, surprise, fear, disgust, contempt and neu-
tral state.

Figures 2(c) and 2(d) lists the results showing consistent
results as the one observed for the five-class problem. The clas-
sifiers with a reject option achieve better classification as the
coverage decreases. When the test coverage is between 60%
and 80%, the classifier trained with soft labels lead to better per-
formance. The last two columns of Table 1 show that for a 75%
test coverage, we achieve relative gains over the baseline up to
17.62% for hard labels (criterion 1, F1-score optimization), and
20.63% for soft labels (criterion 2, F1-score optimization). No-
tice that the performance gains are always higher than the ones
observed for the random sampling condition, indicating that the
classifiers are able to effectively identify samples that lead to
higher performance.

Table 2: Inter-evaluator agreement of the accepted and rejected

samples for different test coverages.

Inter-evaluator agreements
(Fleiss Kappa)

Test Coverage
(%) Accepted Samples Rejected Samples

Hard labels
5 classes

100 0.2642 -
75 0.2773 0.2590
50 0.2897 0.2651
25 0.3080 0.2633

Soft labels
8 classes

100 0.2680 -
75 0.2723 0.2450
50 0.2842 0.2496
25 0.2983 0.2563

6.3. Analysis of Accepted and Rejected Samples

This section studies the inter-evaluator agreement of the sen-
tences that are either accepted or rejected by looking at their
annotations. We use the Fleiss’ Kappa statistic to quantify the
agreement between annotations. For the analysis, we only con-
sider the best system for the five-class problem (hard label, cri-
terion 1, risk optimization) and the eight-class problem (soft
label, criterion 2, F1-score optimization).

Table 2 shows the inter-evaluator agreement scores ob-
tained on the accepted and rejected samples for different levels
of coverage on the test data. As the test coverage decreases, we
consistently observe that the agreement for accepted samples
increases. The inter-evaluator agreement for accepted samples
is always higher than the inter-evaluator agreement for rejected
samples. This result suggests that the rejected samples tend
to be more emotionally ambiguous, where even human evalu-
ators disagree. The two criteria used to reject samples (Sec. 4)
are effective in rejecting these samples, where many of the ac-
cepted samples with high inter-evaluator agreement satisfy both
of these criteria.

7. Conclusions
This study showed that a classifier with an option to abstain
from giving a prediction when its confidence is low can be suc-
cessfully designed without compromising much on its test cov-
erage. The reject option is a valuable feature, increasing the
confidence in the SER system when it gives a prediction. The
study evaluated two criteria, which dictate the acceptance or re-
jection of a sample. The first criterion set a threshold on the
neuronal activations of the output layer. The second criterion
set a threshold on the difference between the top two classes
with the highest probabilities predicted by a classifier. The re-
sults validated the proposed criteria to reject samples, observing
better performance as we allow the network to reject more sam-
ples. When the coverage is 75% of the test set, the relative gains
in F1-score were up to 25.71% for a five-class problem, and
20.63% for an eight-class problem. The analysis of the annota-
tions revealed a lower inter-evaluator agreement for the rejected
samples, suggesting that the proposed criteria were effective in
rejecting samples with ambiguous emotions.

Introducing a classifier with a reject option in SER prob-
lems can have important implications, such as improving the
precision and efficiency of SER models implemented to solve
real world problems in behavioral or psychological studies. As
future work, we intend to extend this framework to regression
problems that predict the emotional attributes arousal, valence
and dominance. We are also exploring alternative rejection op-
tion criteria that increase the F1-score while maintaining the
coverage as high as possible.

8. Acknowledgements
This work was supported by NSF under Grant CNS-1823166
and CAREER Grant IIS-1453781.

3275



9. References
[1] P. Georgiou, M. Black, and S. Narayanan, “Behavioral signal pro-

cessing for understanding (distressed) dyadic interactions: some
recent developments,” in joint ACM workshop on Human gesture

and behavior understanding (J-HGBU 2011), Scottsdale, Ari-
zona, USA, December 2011, pp. 7–12.

[2] P. Ekman, “An argument for basic emotions,” Cognition and Emo-

tion, vol. 6, no. 3-4, pp. 169–200, 1992.

[3] E. Mower, A. Metallinou, C.-C. Lee, A. Kazemzadeh, C. Busso,
S. Lee, and S. Narayanan, “Interpreting ambiguous emotional ex-
pressions,” in International Conference on Affective Computing

and Intelligent Interaction (ACII 2009), Amsterdam, The Nether-
lands, September 2009, pp. 1–8.

[4] R. Cowie and R. Cornelius, “Describing the emotional states that
are expressed in speech,” Speech Communication, vol. 40, no. 1-2,
pp. 5–32, April 2003.

[5] L. Devillers, L. Vidrascu, and L. Lamel, “Challenges in real-life
emotion annotation and machine learning based detection,” Neu-

ral Networks, vol. 18, no. 4, pp. 407–422, May 2005.

[6] C. Busso, S. Parthasarathy, A. Burmania, M. AbdelWahab,
N. Sadoughi, and E. Mower Provost, “MSP-IMPROV: An acted
corpus of dyadic interactions to study emotion perception,” IEEE

Transactions on Affective Computing, vol. 8, no. 1, pp. 67–80,
January-March 2017.

[7] J. Deng, W. Han, and B. Schuller, “Confidence measures for
speech emotion recognition: A start,” in ITG Conference on

Speech Communication, Braunschweig, Germany, September
2012, pp. 1–4.

[8] J. Deng and B. Schuller, “Confidence measures in speech emotion
recognition based on semi-supervised learning,” in Interspeech

2012, Portland, OR, USA, September 2012, pp. 2226–2229.

[9] P. Pudil, J. Novovicova, S. Blaha, and J. Kittler, “Multistage pat-
tern recognition with reject option,” in IAPR International Con-

ference on Pattern Recognition (ICPR 1992), vol. 2, The Hague,
Netherlands, August-September 1992, pp. 92–95.

[10] G. Fumera and F. Roli, “Support vector machines with embedded
reject option,” in Pattern Recognition with Support Vector Ma-

chines: International Workshop on Support Vector Machines, ser.
Lecture Notes in Computer Science, S. Lee and A. Verri, Eds. Ni-
agara Falls, ON, Canada: Springer Berlin Heidelberg, 2002, vol.
2388, pp. 68–82.

[11] M. Hellman, “The nearest neighbor classification rule with a reject
option,” IEEE Transactions on Systems Science and Cybernetics,
vol. 6, no. 3, pp. 179–185, July 1970.

[12] Y. Geifman and R. El-Yaniv, “Selective classification for deep
neural networks,” in In Advances in Neural Information Pro-

cessing Systems (NIPS 2017), Long Beach, CA, USA, December
2017, pp. 4878–4887.

[13] B. Hanczar and E. Dougherty, “Classification with reject option in
gene expression data,” Bioinformatics, vol. 24, no. 17, pp. 1889–
1895, September 2008.

[14] N. Hatami and C. Chira, “Classifiers with a reject option for
early time-series classification,” in IEEE Symposium on Compu-

tational Intelligence and Ensemble Learning (CIEL 2013), Singa-
pore, September 2013, pp. 9–16.

[15] C. Kotropoulos and G. Arce, “Linear classifier with reject option
for the detection of vocal fold paralysis and vocal fold edema,”
EURASIP Journal on Advances in Signal Processing, vol. 2009,
pp. 1–13, July 2009.

[16] Y. Grandvalet, A. Rakotomamonjy, J. Keshet, and S. Canu, “Sup-
port vector machines with a reject option,” in Advances in neu-

ral information processing systems (NIPS 2009), Vancouver, BC,
Canada, December 2009, pp. 537–544.

[17] D. Tax and R. Duin, “Growing a multi-class classifier with a reject
option,” Pattern Recognition Letters, vol. 29, no. 10, pp. 1565–
1570, July 2008.

[18] K. R. Varshney, “A risk bound for ensemble classification with
a reject option,” in IEEE Statistical Signal Processing Workshop

(SSP 2011), Nice, France, 2011, pp. 769–772.

[19] C. Cortes, G. DeSalvo, and M. Mohri, “Boosting with abstention,”
in Advances in Neural Information Processing Systems (NIPS

2016), Barcelona, Spain, December 2016, pp. 1660–1668.

[20] C. De Stefano, C. Sansone, and M. Vento, “To reject or not to re-
ject: that is the question-an answer in case of neural classifiers,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), vol. 30, no. 1, pp. 84–94, February
2000.

[21] L. P. Cordella, C. De Stefano, F. Tortorella, and M. Vento, “A
method for improving classification reliability of multilayer per-
ceptrons,” IEEE Transactions on Neural Networks, vol. 6, no. 5,
pp. 1140–1147, September 1995.

[22] R. El-Yaniv and Y. Wiener, “On the foundations of noise-free
selective classification,” Journal of Machine Learning Research,
vol. 11, pp. 1605–1641, May 2010.

[23] A. Stuhlsatz, C. Meyer, F. Eyben, T. Zielke, G. Meier, and
B. Schuller, “Deep neural networks for acoustic emotion recog-
nition: raising the benchmarks,” in IEEE international confer-

ence on acoustics, speech and signal processing (ICASSP 2011),
Prague, Czech Republic, May 2011, pp. 5688–5691.

[24] M. Abdelwahab and C. Busso, “Study of dense network ap-
proaches for speech emotion recognition,” in IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP

2018), Calgary, AB, Canada, April 2018, pp. 5084–5088.

[25] R. Lotfian and C. Busso, “Building naturalistic emotionally bal-
anced speech corpus by retrieving emotional speech from existing
podcast recordings,” IEEE Transactions on Affective Computing,
vol. To appear, 2019.

[26] A. Burmania, S. Parthasarathy, and C. Busso, “Increasing the re-
liability of crowdsourcing evaluations using online quality assess-
ment,” IEEE Transactions on Affective Computing, vol. 7, no. 4,
pp. 374–388, October-December 2016.

[27] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer,
F. Ringeval, M. Chetouani, F. Weninger, F. Eyben, E. Marchi,
M. Mortillaro, H. Salamin, A. Polychroniou, F. Valente, and
S. Kim, “The INTERSPEECH 2013 computational paralinguis-
tics challenge: Social signals, conflict, emotion, autism,” in Inter-

speech 2013, Lyon, France, August 2013, pp. 148–152.
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