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Speech-Driven Expressive Talking Lips with
Conditional Sequential Generative Adversarial

Networks
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Abstract—Articulation, emotion, and personality play strong roles in the orofacial movements. To improve the naturalness and
expressiveness of virtual agents (VAs), it is important that we carefully model the complex interplay between these factors. This paper
proposes a conditional generative adversarial network, called conditional sequential GAN (CSG), which learns the relationship
between emotion, lexical content and lip movements in a principled manner. This model uses a set of spectral and emotional speech
features directly extracted from the speech signal as conditioning inputs, generating realistic movements. A key feature of the approach
is that it is a speech-driven framework that does not require transcripts. Our experiments show the superiority of this model over three
state-of-the-art baselines in terms of objective and subjective evaluations. When the target emotion is known, we propose to create
emotionally dependent models by either adapting the base model with the target emotional data (CSG-Emo-Adapted), or adding
emotional conditions as the input of the model (CSG-Emo-Aware). Objective evaluations of these models show improvements for the
CSG-Emo-Adapted compared with the CSG model, as the trajectory sequences are closer to the original sequences. Subjective
evaluations show significantly better results for this model compared with the CSG model when the target emotion is happiness.

Index Terms—Speech-driven model, lip movements, expressive and naturalistic lip movements, generative adversarial network.
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1 INTRODUCTION

THE lower part of the face, which we refer to as the orofa-
cial area (see Fig. 1), plays an important role in convey-

ing lexical, emotional and idiosyncratic information. These
factors are integrated in a nontrivial manner, facilitating face
to face communications. It is important to generate proper
facial movements for virtual agents (VAs) to communicate
a message more effectively and more naturally. Although
emotion is expressed throughout the whole face, there are
emotional states such as happiness for which the orofacial
area plays a big role (e.g., smile). For these emotions, in
particular, careful modeling of the relationship between
emotion and articulation is required to have more natural
and expressive VAs.

Several factors contribute to the variation in the orofacial
area. The orofacial muscles are activated by the articulatory
movements imposed through the vocal region. The relation
between lip motion and phonetic content is colored by the
emotional cues expressed in the message. This coupling
between lexical and emotional contents is also affected by
idiosyncratic characteristics across people. The integration
between these factors in the orofacial area is complex [1, 2].
Most of the previous studies on lip movement synthesis
have relied on the recordings from one subject in order
to avoid speaker variations [3, 4, 5]. Since multimodal
emotional corpora usually include multiple speakers with
limited data per subject [6], it is important that the models
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can effectively capture speaker variability. If these variations
are not carefully considered, the model may predict trajec-
tories that average these variations, creating over-smoothed
movements. Furthermore, most of the previous models for
lip movements rely on transcriptions (e.g., phonemes or tri-
phonemes) [7, 8, 9], or transcriptions plus the target emo-
tional categories [5, 10, 11]. The need for transcriptions limits
the domain of applications. We envision a data-driven lip
generation framework that does not require transcription,
and can effectively capture the temporal relations between
speech, lip movement and emotion.

Speech conveys verbal and nonverbal cues, having a
direct influence in the visual appearance of the orofacial
area. For example, speech is one of the primary channels
to convey emotions [12]. Therefore, relying on speech for
modeling the nonverbal behaviors in the orofacial area can
help the model to capture the fine expressive movements
shown during natural interactions. Our envisioned frame-
work relies on speech features to generate lip motion. From
an application perspective, having a system that synthesizes
lip motion only from speech is very appealing. It brings
flexibility to the system that otherwise is not possible with-
out adding additional modules. From a theoretical perspec-
tive, the problem is also appealing, exploring and learning
directly the temporal relationship between speech features
and lip motion (e.g., lip appearance).

This paper proposes to use a conditional generative adver-
sarial network (cGAN), composed of long short-term memory
(LSTM) for generating realistic and expressive lip move-
ments. The approach is called conditional sequential generative
adversarial networks (CSG). The model learns the distribution
of the orofacial movements conditioned on speech features
(lips are represented in terms of the X , Y and Z positions of
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motion capture markers around the mouth – see Fig. 1). The
training of the models consists of an adversarial objective
that combines a generator and a discriminator, such that it
generates more convincing lip movements. A key feature of
the adversarial training is to teach the model to capture the
temporal relationship between acoustic features and lip mo-
tion. This objective is achieved by creating fake sequences
with mismatched speech and lip motion trajectories that
the discriminator has to recognize. The resulting lip motion
sequences capture the temporal coupling between speech
and lip movements, creating realistic sequences, which con-
vey the underlying lexical content. We compare the CSG
model with three baselines proposed in previous studies
[3, 13, 14], which use conventional non-adversarial methods.
The experimental evaluations with objective and subjective
metrics demonstrate that the proposed CSG model achieves
better performance than these methods.

Another appealing property of the CSG framework is
that it can be easily extended to consider emotions. Ex-
periencing emotions includes felt emotion, expressed emotion
and perceived emotion, which are not necessarily the same.
Felt emotion corresponds to the true emotion experience
by an individual. The expressed emotion corresponds to
the emotions externalized by the individual. The perceived
emotion corresponds to the emotion perceived by others.
Our goal is to generate emotional behaviors that convey the
intended emotion. Therefore, we want to create sequences
that are successful in affecting the perceived emotion of
the animation. To explicitly incorporate emotions, it is more
practical for a VA to represent emotion with discrete cat-
egories such as anger, happiness, fear, surprise, sadness,
and disgust (e.g., basic emotions [15]). It is easier to specify
that a CA is “happy” than to specify that its “arousal
level is 0.4” (core emotion theory) or that its “AU6 has
intensity 4” (facial action coding system (FACS)). Therefore,
this study describes emotion using categorical emotions. We
build two expression-dependent models: (1) by adapting the
CSG model to different emotions, called CSG-Emo-Adapted
model, and (2) by conditioning the CSG model on categor-
ical emotion of the speaker, called CSG-Emo-Aware model.
Objective and subjective evaluations show that the CSG-
Emo-Adapted model generates better expressions compared
to the CSG model, when the target emotion is happiness.
The results validate our proposed method, which can gen-
erate more convincing and expressive orofacial movements.

The rest of the paper is organized as follows. Section
2 reviews related work. Section 3 describes the resources
used in this study including the corpus, the extracted
audiovisual features, and the rendering toolkit. Section 4
describes the conditional sequential GAN (CSG) method, and
its two expression-dependent extensions: the CSG-Emo-
Adapted and CSG-Emo-Aware models. Section 5 describes
the experimental evaluation. Section 6 presents the results of
the models, comparing the CSG methods with the baselines.
Section 7 summarizes the contributions of this work high-
lighting the advantages and disadvantages of the approach,
and possible future directions.

2 RELATED WORK

This section summarizes previous studies on generating
lip motion. We group these studies into three categories:
canonical shape selection, hidden Markov model (HMM)-
based approaches, and deep neural network (DNN)-based
approaches.

2.1 Canonical Shape Selection
These methods consist of selecting canonical shapes, which
are blended for each predefined unit of articulation. For
example, canonical shapes can be blended with appropriate
weights to represent different phonetic units. Xu et al. [8]
considered several canonical shapes for lips, where the
weights for phonemes and bigrams were carefully defined
by artists. While blending the shapes, the approaches need
to model coarticulation between phonemes, which is an im-
portant task for realistic lip motion generation. Coarticula-
tion is the phenomenon of adjusting the articulation accord-
ing to the adjacent phonemes, capturing their dependencies.
Deng et al. [9] modeled coarticulation between phonemes,
relying on real recordings of human data. They found the
weights for the linear combinations of the canonical shapes
for diphones and triphones, minimizing the error between
the predicted and the original movements. Cao et al. [10]
developed a framework to generate expressive facial move-
ments. Their framework used tuples containing phoneme,
emotion, prosody, and lip trajectories. During testing, the
input was parsed with the phonetic content, and the target
or predicted emotion. The database was searched with the
sequence of tuples derived from the input, while imposing
correct co-articulation and smooth constraints. The selected
segments were aligned with the input using time-warping.
Finally, the motion segments were blended and smoothed
to create facial movements.

Unit selection methods require emotion-dependent
speech units to account for expressive lip motions, where the
weights have to be redefined for each of the target emotion.

2.2 HMM-based Modeling
HMM-based models learn to synthesize lip movements
from text or speech by implicitly modeling the underlying
co-articulations. Choi et al. [16] proposed to use HMM
inversion for audio to visual conversion. They used a three-
state HMM to model each phoneme. During testing, they
relied on the Baum-Welch algorithm to find the maximum
likelihood estimates of the visual features. Xie and Liu [17]
proposed to use coupled HMMs (CHMMs) to model the
dependencies as well as the differences between the audio
and visual modalities (e.g., their asynchrony and different
number of phonetic units). Anderson et al. [5] designed a
system to create emotional facial movements using cluster
adaptive training (CAT), which was built upon HMMs for
text-to-speech systems. Their HMM modeled quinphones
created with five states, where a decision tree was used to
handle the sparseness of the quinphones in the data. The
decision tree is also used to find the mean and variances of
the Gaussian distributions for the quinphone. The proposed
CAT framework captured emotion dependent quinphones
by finding emotion-dependent linear combinations between
clusters.
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2.3 DNN-based Modeling

DNN-based models directly learn how to predict the move-
ments from speech features. Taylor et al. [3] proposed a fully
connected feedforward neural network for audio to visual
conversion. Their network gets the speech features over a
specified contextual window, predicting current and future
orofacial movements. The approach used sliding windows
with step size of one frame where the average of the pre-
dictions for each window is considered as the target value
for the center of the window. Their model outperformed
the HMM inversion approach proposed by Choi et al. [16].
Fan et al. [14] explored the use of deep learning structures
built with bidirectional long short-term memory (BLSTM) to
synthesize head and face movements driven by transcrip-
tions, speech, and transcriptions plus speech. The inputs of
the system correspond to triphoneme labels from transcrip-
tions, and/or mel frequency cepstral coefficients (MFCCs) and
their first and second order derivatives from speech. The
study compared the results achieved with their model with
a HMM-based approach, showing improvements in terms
of objective and subjective metrics. Previous studies have
also modeled the relationship between speech and facial
movements with LSTMs, optimizing the L2 norm of the
error between the predictions and ground truth. To model
co-articulation, these studies use future frames ([18] [19]),
or context features consisting of more than one frame [19].
Li et al. [6] proposed strategies using BLSTM models to
create emotional facial movement by having access to a
small emotional dataset. They proposed several approaches
to leverage recordings from a neutral corpus and a small
emotional corpus, aiming to improve the emotional regres-
sion result. Their best result was achieved with a cascade
framework, where the predictions obtained with the neutral
corpus were concatenated with audio features and used as
features of a second system. The second system is trained
with the emotional corpus.

Karras et al. [4] proposed a framework with convolutional
neural networks (CNNs) to predict facial movements from
raw speech signal. Their framework disentangled the facial
configurations explained by audio features and emotional
states. This goal is achieved by considering a dedicated
emotional state learned for each training sentence. Their
framework predicted the facial pose one frame at a time,
utilizing a contextual window of 260ms with previous and
future frames. They trained separate models per speaker
with three to five minutes of synchronized audiovisual data.
They compared their method with the results achieved
by the faceFX software [20] using subjective evaluations
showing higher preferences for their models. Parker et al.
[11] proposed an approach for generating emotional audio-
visual content from transcriptions and target emotion. They
proposed to share the layers of the network across all the
emotions, with the exception of the last layer, which was
adapted for each emotion using regularized least squares.
They compared their results with a HMM system, showing
improvements when using their method.

2.4 Contributions

This paper proposes to use a conditional GAN structure,
called CSG, composed of BLSTM units to learn the distribu-

tion of orofacial movements. The proposed CSG framework
relies on adversarial training by jointly training a genera-
tor and a discriminator. During the adversarial training, a
discriminator learns to recognize two sets of fake samples:
the samples generated by the generator, and samples from
uncoupled recordings from the original database where the
audio does not match the lip motion sequence. While the
first type of fake samples guides the generator to create lip
motions with the correct distribution, the second type of
fake samples provides more diverse training examples for
the discriminator to explicitly learn the temporal relation
between speech and lip motions. When the discriminator
learns these errors, it helps the generator to improve the
coupling between speech and lip motion. As the generator
learns to create realistic sequences to fool the discriminator,
our method generates realistic samples which are timely
coupled with the audio. To the best of our knowledge, this is
the first time that adversarial training is used to synthesize
lip motion. By using conditional GAN, we effectively model
the relationship between emotion, speech and orofacial
movements. This approach does not require transcriptions
as most previous studies, opening opportunities for cases
where transcriptions are not available (e.g., real time appli-
cations, spontaneous dialogs, virtual meetings, and visual
displays for hearing impaired individuals to enhance phone
conversations). This framework departs from deep learning
approaches used by previous studies, providing a system-
atic strategy to generate emotional lip sequences.

3 RESOURCES

3.1 The IEMOCAP Corpus
This study uses the IEMOCAP corpus [21]. This database
comprises video, audio, and motion capture recordings from
10 actors in improvised and script-based scenarios. The
scenarios were designed such that they elicited different
emotions from the actors. We use the data from all the
subjects, where 60% of the data is used for training, 20%
for validation and 20% for testing. The database is anno-
tated with categorical emotions by three annotators at the
speaking turn level. They annotated the emotional content
using ten classes: neutral state, anger, happiness, sadness,
surprise, fear, frustration, excitement, disgust, and other.
Similar to previous studies relying on the IEMOCAP corpus,
we merge the turns labeled with excitement and happiness
[22, 23]. We calculate the consensus labels for each turn by
estimating the majority vote across the annotations. This
approach creates hard emotional classes for each sentence.
While the IEMOCAP corpus was annotated with ten classes,
the data recording protocol targeted scripts and improvisa-
tion scenarios to elicit only happiness, anger, sadness, and
frustration. As a result, there are few turns labeled as sur-
prise, fear, disgust or excited. The frequencies of emotional
categories for the consensus labels are 605 (neutral state),
621 (anger), 882 (happiness), 653 (sadness), 1 (disgust), 20
(fear), 998 (frustration), 31 (surprise), and 2 (other). The
evaluators do not reach agreement in 1,228 segments. Due
to the sparsity of the classes disgust, fear, and surprise, we
merge all these segments with the speaking turns without
consensus, assigning them to the class other. Consensus la-
bels such as majority vote discard information provided by
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(a) Markers - IEMOCAP
corpus

(b) Markers used by Xface

Fig. 1. The location of the 15 markers from the IEMOCAP corpus con-
sidered in this study. These markers are used to render the animations
using Xface.

individual evaluations (see study by Lotfian and Busso [24]).
Therefore, we also rely on soft assignments by considering
the individual annotations (three annotations per turn). The
frequencies of the emotional classes assigned to the turns
when we consider individual annotations are: 2,538 (neutral
state), 2,108 (anger), 3,795 (happiness), 2,047 (sadness), 55
(disgust), 138 (fear), 3,961 (frustration), 200 (surprise) and
281 (other). For consistency, we restrict the analysis to the six
classes neutral state, anger, happiness, sadness, frustration,
and other. The soft labels are created by estimating the
distribution of the labels assigned to the speaking turn. For
example, if there are two annotations for anger and one for
frustration, we consider a 6D vector with 0.66 for anger, 0.33
for frustration and 0.0 for the remaining categories.

3.2 Audiovisual Features
We extract two sets of features from the audio. The first set of
features are 25 MFCCs extracted with Praat [25] over 25ms
windows every 8.33 ms. We choose 25 MFCCs, because
Taylor et al. [3] evaluated their models for predicting lip
movements with a different number of MFCCs, finding that
25 MFCCs gives the best result. By moving the analysis
window in increments of 8.33ms, we create 120 feature
vectors per second, matching the sampling rate of the mo-
tion capture recordings. We also extract the fundamental
frequency and intensity with Praat using the same window
and step size. Moreover, we extract 17 additional low level de-
scriptors (LLDs) from the extended Geneva minimalistic acoustic
parameter set (eGeMAPS) [26], which is a feature set carefully
selected for paralinguistic tasks. The eGeMAPS features are
extracted with OpenSmile [27]. The fundamental frequency,
intensity and eGeMAPS set are collectedly referred to as
emotional speech features, and the 25 MFCCs are referred to as
spectral features.

From the motion capture recordings, we use the
(X,Y, Z) locations of 15 markers around the mouth area
(Fig. 1). The sampling rate is 120 fps. Busso et al. [21]
describes the steps to derive the motion capture data.

3.3 Xface
We rely on Xface [28] for rendering the VA. Xface uses
facial action parameters (FAPs) to animate the face. FAPs are
directly tied to facial action units (AUs) in FACS [29], making
them a suitable representation for emotional facial move-
ments. FAPs control facial points (FPs) on the face which are
based on the MPEG-4 standard. Most of the facial markers
in the IEMOCAP corpus follow the locations of FPs in the
MPEG-4 standard (Fig. 1(b)), so it is possible to linearly
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Fig. 2. Proposed CSG model. Figure 4 provides more detailed diagrams.

map the markers and FAPs. This mapping is achieved by
mapping a neutral pose of the recording of each subject as
the reference pose. Then, we map the range of movements
for each marker to the range of movements allowed by the
FAPs in Xface. More details about this mapping is provided
by Mariooryad and Busso [30]. This study uses a female
character for all the subjective evaluations.

While there are other sophisticated rendering toolkits,
Xface allows us to easily animate the motion capture data
in our corpus. As a result, we can directly focus on the
modeling part of the lip motion generation, which is the
focus of this study.

4 METHODOLOGY

The study proposes to generate lip motion driven by speech
using adversarial training. The proposed framework cor-
responds to a conditional GAN for generating orofacial
movements from audio features. Figure 2 shows the over-
all framework for this model, which is called conditional
sequential GAN (CSG). The figure demonstrates how the
generator and the discriminator are trained using the real
and fake samples. The discriminator is trained to distinguish
between the real and fake samples, where the real samples
are the lip sequences aligned with the input audio, and the
fake samples are either the lip sequences synthesized by
the generator or the real lip samples which are not aligned
with the input audio (i.e. mismatched). The generator is
trained to fool the discriminator (i.e., the target label is
real). Two strengths of the approach are that (1) it does not
require any lexical label, since it directly learns the mapping
between speech and lip motion, and (2) it can be adapted to
synthesize expressive behaviors when the intended emotion
is provided as input. This section presents our proposed
speech-driven framework for lip synthesis, describing the
required building blocks and their roles in solving this
problem.

4.1 Bidirectional Long Short-Term Memory (BLSTM)

Incorporating future frames as well as the past frames can
help the model to make better predictions. Therefore, our
models are built with bidirectional LSTMs (BLSTMs). These
models consist of forward and backward paths of LSTMs,
duplicating the number of hidden states (Fig. 3). While this
model can be used in real time using a short delay, we
assume that we have the entire sequence of audio features,
generating the sequences offline.
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Fig. 3. Illustration of BLSTM composed of forward and backward layers.
The layer takes input xt creating output yt

4.2 Generative Adversarial Network (GAN)

GANs are proposed as a generative model for learning
the distribution of the data [31]. The training in GAN is
a min-max game between two players, a generator (G)
and a discriminator (D). The role of the discriminator is to
distinguish between the samples generated by the generator
(fake samples labeled as 0), and the samples from the
original data (real samples labeled as 1). The role of the
generator is to create samples given the input noise (z),
which resemble the real data, fooling the discriminator. This
game can be achieved by the loss function in Equation 1,
where L is the loss function, E represents the expected
value, x represents the real samples, z represents the input
noise to the generator, D(.) represents the discriminator
function, and G(.) represents the generator function.

min
G

max
D
L(D,G) =Ex∼pdata(x) [logD(x)]

+Ez∼pz(z) [log (1−D (G (z)))]
(1)

4.3 Conditional Sequential GAN (CSG)

Our proposed model is different from a simple GAN [31].
We aim to drive the lip motion with acoustic features.
Therefore, we propose to use a conditional GAN model,
where the constraints to the discriminator and the gener-
ator are acoustic features (see Fig. 2). The input to our
model is composed of a window of speech features (i.e.,
xi, where i is the frame number) plus a random noise (i.e.,
z) tied across the frames. The model maps the distribution
of noise conditioned on the time-varying speech features
to the distribution of original lip movements conditioned
on speech features. We call our model conditional sequential
GAN (CSG), which is shown in Figure 4(a). Previous studies
have proposed different sequential GAN models to capture
dynamics in videos [32, 33]. However, previous conditional
sequential GANs are implemented with static conditions
tied across the input sequence [33]. A key feature of our
CSG model is that the input variable that conditions the
GAN models is a time-varying signal (i.e., speech features).

Since we aim to learn the relationship between time-
continuous signals (i.e., speech and lip movements), we
build our cGANs with two layers of BLSTMs, where each
“forward layer” and “backward layer” constitutes one
BLSTM layer in Figure 4(a). We consider a linear output
layer tied across all frames for the generator. We consider
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Fig. 4. The proposed frameworks to generate expressive lip motion
sequences driven from speech, where t represents the time frame
index, x represents speech features, p represents the output of the
generator, x′ represents the orofacial pose, y represents the output of
the discriminator, and e represents the vector with soft emotional labels.

a sigmoid layer tied across all frames for the discrimina-
tor, as the output layer (variables [. . . ,yt−1,yt,yt+1, . . .]
in Fig. 4(a)). We condition the generator and discrimina-
tor on the input features extracted from speech (variables
[. . . ,xt−1,xt,xt+1, . . .] in Fig. 4(a)).

Note that the errors happening in the generated lip
movements can be of two types: 1) the lip movements may
not look realistic, 2) the lip movements may not correlate
well with the input speech signal. To address this obser-
vation and inspired by the matching-aware discriminator
training strategy proposed by Reed et al. [34] for text-to-
image synthesis, our learning strategy includes two kinds
of fake samples during the training of the discriminator:
samples generated by the generator, and original samples
with lip motion and speech features extracted from different
recordings. The first type of fake samples forces the gen-
erator to create realistic lip movements by decreasing the
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difference between the synthesized and actual lip trajecto-
ries. This approach is common in GAN. The second type
of fake sequences forces the generator to explicitly capture
the temporal relationship between lip motion and speech. It
provides more diverse training examples for the discrimina-
tor to learn cases where speech is not properly coupled with
lip motion. With the adversarial training, the discriminator
teaches the generator to avoid these mistakes. Notice that
for the second type of fake sequences, it is unlikely that the
phonetic content in the speech and lip movements are the
same, since we are randomly combining speech segments
with lip motion sequences. In the IEMOCAP corpus, the
probability for randomly mismatched sequences of having
the same lexical content is around 3%. By jointly learning
these two types of fake samples, the discriminator helps the
generator to create lip motion sequences which are not only
realistic, but also strongly coupled with the audio features.
Although a conditional GAN model should theoretically
learn these two types of fake samples by itself using only
samples from the generator (i.e., type one), using fake
samples with uncoupled audio and lip motion emphasizes
the importance of the temporal relationship between the
modalities, which expedites the learning process (i.e., type
two).

Equation 2 shows how our loss function is used to train
the discriminator and the generator in the proposed CSG
model. The vector x is the speech segment, x′ is the lip
trajectory segment, pdata(x,x′) represents the distribution of
the aligned audio and lip trajectories, pdata(x̂) represents
the distribution of the audio distribution, x̂ represents the
misaligned audio segment, and z represents the noise dis-
tribution. This formulation is different from regular GAN
(Equation 1), since (1) this is a conditional GAN where
we add the variable x, and (2) the optimization process
considers two sets of fake samples (second and third terms
in Equation 2) as opposed to one set of fake samples as done
in GAN (second component in Equation 1).

min
G

max
D
L(D,G) =E(x,x′)∼pdata(x,x′) [logD(x, x′)] +

Ez∼pz(z) [log (1−D (G (x, z)))] +

Ex̂∼pdata(x̂) [log (1−D(x̂, x′))]

(2)

The proposed CSG model needs to generate smooth
trajectories for lip movements. Therefore, we use the same
noise, z, across all the input frames. It represents the global
variations of conditional lip movements. To capture the
dynamics of the movements, the CSG relies on the time-
varying speech features provided across the frames as evi-
dence for the dynamics of the orofacial movements, which
is captured by the LSTM units. The success of the sequential
generator depends on two factors: each orofacial configu-
ration generated at each frame needs to look realistic with
respect to the speech features, and the sequence generated
by the generator needs to have realistic dynamics [33].
Therefore, we use fake/real labels not only on the final
frame, but also on all the intermediate frames from the
discriminator. This approach allows us to minimize the loss
function not only on the final frame of the sequence, but also
on all the intermediate frames. Figure 4(a) highlights that the
discriminator considers the outputs across all the frames of

the sequence. Our preliminary experiments demonstrated
that this approach expedites learning. Note that we train
our model by considering a fixed window length for both
the generator and the discriminator.

4.4 Expression-Dependent CSG Models
The last building block in our proposed approach is to con-
strain the models on the target categorical emotion intended
for the sentence, which is assumed to be an input for the
model. We propose two expression-dependent models as
extensions of CSG, which utilize the categorical emotional
labels during training and testing the models.

4.4.1 Emotionally Adapted Conditional Sequential GAN
(CSG-Emo-Adapted)
Figure 4(b) illustrates the first proposed approach to model
emotion. After training the CSG model with all the data,
we separately adapt this model using the data associated
with four emotions (i.e., the data with consensus labels for
anger, happiness, sadness and frustration). Yosinski et al.
[35] showed that the lower layers of DNNs are more gen-
eralizable than higher layers, which become more specific
towards the primary task they are trained on. Therefore, we
freeze the weights of the generator in the CSG on the first
BLSTM layer, and fine tune the rest of the model, including
the discriminator with the data associated with a given
emotion. Freezing the weights is important to reduce the
number of parameters to be learned given the reduced size
of the data belonging to each emotion. We repeat this pro-
cess for each emotion, creating emotion dependent models.
The discriminator is the teacher of the generator. Therefore,
it is important that the discriminator is fine-tuned with the
adaptation data, so that the errors which correct the gen-
erator’s mistakes are actually learned from the adaptation
data. We hypothesize that this model helps the generator to
synthesize more expressive lip motion sequences.

The CSG-EMO-Adapted model starts with the CSG
model. In total, we have 2.8M parameters to learn when
training the models from scratch (0.61M parameters for
the discriminator, and 2.2M parameters for the generator).
However, we only fine-tune the discriminator and the last
layer of the generator during adaptation (i.e., 0.64M param-
eters). The number of learnable parameters for adaptation
is only 22% of the parameters of the CSG model, which is
important since we are using only a portion of the data for
each emotion.

4.4.2 Emotion-aware Conditional Sequential GAN (CSG-
Emo-Aware)
Figure 4(c) illustrates the second proposed approach. This
model conditions both the generator and the discrimina-
tor in the CSG model on the soft emotional labels of the
speaking turn parametrized with the 6D vector explained in
Section 3.1 (see variable e in Fig. 4(c)). Compared with the
CSG-Emo-Adapted model, this model better utilizes the IE-
MOCAP corpus, since all the segments are used, including
the turns without consensus. The relationship between emo-
tion and orofacial movements are assumed to be captured
by the discriminator. We use real lip trajectories which are
uncoupled with the acoustic and emotional speech features
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as fake samples. This approach helps the discriminator to
learn this kind of fake instances, forcing the generator to
create orofacial sequences that not only are coupled with
speech, but also convey the emotional state of the speaker.

4.5 Implementation Details

Our generator and the discriminator have two layers of
BLSTMs. We set the number of nodes for the BLSTMs to
256 for the generator, and 128 for the discriminator. We
implement our models using Keras with Theano as backend.
We use adaptive moment estimation (ADAM) [36] as our
optimizer. ADAM relies on the history of the gradient, in
terms of its first and second moments, scaling the gradient
to make the steps invariant to the gradient magnitude.
This approach helps adapting the learning rate according
to the changes in the loss at each iteration. For ADAM, we
tried several learning rates [0.001, 0.0001, 0.00001], selecting
0.0001, which gave the best loss reduction on the validation
set. We set our batch size as 128 sequences with a fixed
window size. We use the same window size as the one
selected by Sadoughi and Busso [37, 38] which is 71 frames
(591.7ms). This window size is also close to the the window
size selected by Karras et al. [4], which is 520ms.

We noticed that pre-training the generator is very helpful
and expedites the training of the GAN. The pre-training
process relies on a DNN trained with BLSTM using con-
cordance correlation coefficient (CCC). This framework is the
BLSTM-CCC baseline used in the experimental evaluation
(Sec. 5.1.3). We pre-train the generator for 200 epochs. After
the generator is pre-trained, we pre-train the discriminator
by freezing the weights of the generator. We train the
discriminator for 100 epochs. After pre-training the models,
we alternately train the generator and the discriminator on
each batch. This scheme freezes the generator’s weights, and
updates the discriminator’s weights on the current batch.
Then, it freezes the discriminator’s weights, and updates
the generator’s weights with the goal of fooling the dis-
criminator. This goal is achieved by switching the labels of
the fake samples when training the generator to fool the
discriminator (i.e., switching the labels from 0 to 1). With
this approach, the weights of the generator are updated
with the objective of classifying the synthesized samples as
real by the discriminator. We train all the CSG models for
50 epochs, alternating at each batch between updating the
discriminator and updating the generator. All the adapted
CSG models are also fine-tuned using this adversary scheme
for 50 epochs.

The CSG models are pre-trained by maximizing the
CCC. Equation 3 defines the CCC between two continuous
variables y (output) and t (target), where ρ is the Pearson’s
correlation coefficient between the two variables, µy and
µt are the means of y and t, and σ2

y and σ2
t represent the

variances of y and t. This loss function (`) favors high
correlation between the predictions and the true values,
while reducing the shift in the predicted values compared
with the original ones. Optimizing this loss function not
only reduces the mean squared error (MSE), but also increases
the Pearson correlation. It also increases the variance of the
generated movements avoiding over smoothed trajectories.

CCC =
2ρσyσt

σ2
y + σ2

t + (µy − µt)2

` = 1− CCC
(3)

5 EXPERIMENTAL EVALUATION

5.1 Baselines

We compare our model with three competitive baseline
systems. Recent studies have shown that DNN-based ap-
proaches are more effective than HMM-based systems for
this task [3, 11, 14]. Therefore, we do not consider HMM-
based solutions.

5.1.1 Sliding Window Deep Neural Network (SWDNN)

Taylor et al. [3] proposed a model composed of three layers
of rectified linear units (ReLUs), with 2,000 nodes per layer,
and a linear output layer to convert the input audio features
to orofacial movements over a smaller window centered at
the middle frame of the input window. This model is trained
to minimize the MSE between the predictions and real
samples. During testing, the average of the predicted output
frames are selected as the orofacial pose of the middle frame,
moving one frame at a time to generate the entire sequence.
We implemented the model following the description of the
model, with the same input (340ms ∼41 frames) and output
(100ms ∼13 frames) window sizes. Similarly, we use batch
normalization on the layers to speed up the training, and
we use a dropout p = 0.5 on all the ReLU layers. We refer to
this model as sliding window deep neural network (SWDNN).

5.1.2 Bidirectional LSTM with MSE Objective (BLSTM-
MSE)

Fan et al. [14] proposed to use BLSTMs for learning the
relationship between speech and orofacial movements, by
minimizing the MSE between the predictions and the orig-
inal movements. We implemented a model composed of
two layers of 256 BLSTM units and a linear output layer,
relying on the same objective (i.e., MSE). Fan et al. [14]
implemented this model with varying length sequences. In
our preliminary evaluation, we followed this approach by
varying the length of the sequences, using the entire ut-
terances. However, this approach generated over-smoothed
trajectories that were not very appealing. Therefore, we
train this framework with fixed window lengths, which
generated more realistic sequences. We refer to this model
as BLSTM-MSE.

5.1.3 Bidirectional LSTM with Concordance Correlation
Objective (BLSTM-CCC)

This model is composed of two layers of 256 BLSTM units
and a linear output layer (i.e., same as BLSTM-MSE). We de-
fine the loss function of this model based on CCC, inspired
by the study of Sadoughi and Busso [13], which investigated
facial movement prediction from speech. This model has
the same loss function as our CSG models. This model is
trained using a fixed window length. We refer to this model
as BLSTM-CCC.
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5.2 Implementation Details for the Baselines

We implement the baseline models using Keras with
Theano as backend. The weights are initialized with the
approach proposed by Glorot and Bengio [39] (W ∼
U

[
−

√
6√

ni+ni+1
,−

√
6√

ni+ni+1

]
, where U is the uniform distri-

bution, W is the weight between layers i and i + 1 and ni
is the number of states for the ith layer). We use ADAM
as our optimizer, selecting a learning rate of 0.0001, since
it gave the best loss reduction on the validation set for the
baseline models. We set our batch size as 128 sequences with
a fixed window size of 71 frames (591.7ms). We train all
the baseline models for 200 epochs, except for the SWDNN
model, which we train for an additional 800 epochs (the
results on the validation set indicated that increasing the
number of epochs reduced the error).

5.3 Evaluation Metrics

The models are compared with objective and subjective
evaluations. This section describes the metrics and proce-
dure that are consistently used in the experimental evalua-
tion.

5.3.1 Objective Evaluation
Objective evaluations of the results generated by GAN are
usually provided by fitting a distribution to the generated
samples, and getting the likelihood of the test samples
in that distribution [31]. This value shows how well the
distribution of the generated samples matches the real sam-
ples. We use the Parzen window-based density estimation
[31]. Since we use conditional GANs, we provide the input
features from the test set, and get the samples from the
generator. To estimate the distributions, we treat each frame
as one sample. To avoid the curse of dimensionality and
increasing the error in the Parzen estimator, we use principal
component analysis (PCA) on the original samples to reduce
the dimension of the samples from 45 to 15. A 15D vector
preserves more than 95% of the variance of the original
orofacial data. We use cross validation to set the bandwidth
of the Parzen estimator on the samples generated by the
generator. We estimate the log-likelihood of the test sam-
ples (Sec. 3.1) from the estimated distribution, reporting
their average values and standard deviations. While we
can always draw more samples from the CSG models by
sampling different values from the noise distribution, we
only generate one trajectory for each speaking turn, since
the baseline systems can generate only one value per speech
signal.

5.3.2 Subjective Evaluation
The trajectories that we generated not only need to have
a similar distribution as the original sequences, but also
need to be perceived as realistic. Therefore, we conducted
subjective evaluations. People are more consistent in per-
forming relative assessments than absolute ratings [40, 41].
Therefore, we perform subjective evaluations by asking for
preference between two sequences generated with compet-
ing approaches. We ask “which video looks more natural?”
in all the evaluations, except the evaluations in Section 6.3,
where we additionally asked for the expressiveness of the

Which video looks more natural?

Definitely Video 1

Video 1

Moderately Video 1

Slightly Video 1

Both look similar

Slightly Video 2

Moderately Video 2

Video 2

Definitely Video 2

Video 1 Video 2

Fig. 5. Interface used for our subjective evaluations using AMT.

videos. Figure 5 shows the interface. We define naturalness
as the degree of realism of the facial movements in the
animation, which includes closeness to the original trajecto-
ries, smoothness and lack of jittery movements. We provide
multiple options to allow evaluators to convey their degree
of certainty in the annotations ranging from “definitely video
1” to “definitely video 2”. To report the results, we convert the
selected options into percentage. For instance, the option
“definitely video 1” is mapped to 100% for Video 1 and 0%
for Video 2, and the option “moderately video 1” is mapped
to 75% for Video 1 and 25% for Video 2.

We perform two different statistical tests on the compar-
ison results. First, we compare the soft comparison assign-
ments using a two way t-test with the null hypothesis that
the two models being compared are perceived as similar
(i.e., h0 : MEAN = 50%). Second, we convert the soft assign-
ment labels into hard assignments, by using Equation 4. The
variable i represents the ith sample, n is the total number of
samples, and ri is the ith evaluation. The function 1() is
one when the argument of the function is true, otherwise it
is zero. For ties (i.e., 50%-50%), we assign one vote to each
video. The correction

∑i=n
i=1 1 (ri = 50) in the denominator

takes in consideration the ties. This approach allows us to
compare the two models using a statistical proportion test
on the hard assignments.

p =

∑i=n
i=1 1 (ri > 50)

n+
∑i=n

i=1 1 (ri = 50)
(4)

All our subjective evaluations are conducted on Amazon
mechanical turk (AMT). We decided to focus the animations
only on the orofacial area so the evaluators could focus
on the lip movements. Adding the rest of the face would
introduce extra variations not related to the lip motions
that would affect the analysis. For subjective evaluations,
we randomly select five turns per emotion (i.e., 20 videos
in total), and rendered their videos using the trajectory
generated by the models. We consider the three baseline
models (i.e., SWDNN, BLSTM-MSE and BLSTM-CCC), the
three proposed CSG methods (i.e., CSG, CSG-Emo-Adapted,
and CSG-Emo-Aware), and the original trajectories from
the motion capture data. Therefore, we have 20 videos for
each of the seven conditions. We also render 10 videos per
emotional class as explained in Section 6.3.
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The evaluators compare two videos at a time created
for the same sentence. The placement of the videos and
the ordering of the pairs are randomized throughout each
task. They complete 20 comparisons per human intelligent
task (HIT). The question is shown after the annotator plays
the two videos, reducing the chance of evaluators answering
the questions before watching the videos. We use the Cron-
bach’s alpha to quantify the agreement between evaluators.
We limit the pool of annotators to people who (1) partic-
ipated on previous crowd-sourcing perceptual evaluations
conducted by our laboratory, and (2) their annotations had
high agreement with labels from gold standard sets. These
studies included the annotation of emotional labels [42, 43]
and dialog acts [44]. In total, we invited 150 evaluators,
where the reported evaluations consider scores provided by
this pool of raters.

6 RESULTS

6.1 Noise Dimension
An important parameter of our model is the dimension of
the noise. We use an m-dimensional Gaussian noise with
diagonal covariance matrix and zero mean. To choose the
dimension of the noise, we used the CSG model, changing
m ∈ {1, 10, 40, 80, 150}. We performed subjective evalu-
ations on 10 videos generated by each model from the
validation set. Each video is compared with the video ren-
dered with the original lip motion sequences. The results
provide indirect comparisons between the models with dif-
ferent noise dimensions. We use the protocol described in
Section 5.3.2 for AMT. We recruited 15 evaluators for this
evaluation, each comparing 10 pairs of videos, resulting in
three evaluations per video. The Cronbach’s alpha between
the annotators are α1 = 0.72, α10 = 0.65, α40 = 0.78,
α80 = 0.50 and α150 = 0.73 (the subscript of α indicates
the noise dimension). We discarded the evaluations of two
raters whose average pairwise Cronbach’s alpha was less
than zero, repeating the HIT with other raters.

Before we explain the results, we describe the charts
in Figures 6 to 12, which describe preference between two
conditions labeled at the extremes. For example, the first
chart in Figure 6 compares the original sequences with the
sequences created with the proposed CSG model trained
with m = 150. The charts give the distributions for the
preferences, where the bars show the first and third quartiles
of the preferences, the vertical gray lines indicate the median
values, the target signs show the mean values, and the
dashed lines show extremes values (i.e., min and max). The
horizontal axis represents the preference in terms of percent-
age, where 50% implies that the models are equally selected
by the evaluators. Shifts of these markers toward one ex-
treme indicate higher preference for one option. Depending
on the distributions of the preferences, we include red
dots representing outliers, which are values above or below
thresholds. The upper threshold is set to q3+1.5(q3−q1), and
the lower threshold is set to q1 − 1.5(q3 − q1), where q1 and
q3 represent the first and third quartiles, respectively. The
points identified as outliers are considered in the calculation
of mean, median, q1 and q3, but they are excluded from the
calculation of minimum and maximum values used for the
dashed lines.

100 (0) 50 (50) 0 (100)

Preference [%]: left (right)

1

10

40

80

150

ORIGINAL

ORIGINAL

ORIGINAL

ORIGINAL

ORIGINAL

Fig. 6. Comparison of the CSG models for different dimensions of
the noise. The bars represent the first and third quartiles. The circle
represents the mean values for each condition, the dash lines represent
the minimum and maximum values, the vertical gray lines represent the
medians, and the red dots represent outliers.

TABLE 1
Comparing the results generated with the CSG and the baseline

models in term of log-likelihood of the test samples in the estimated
distribution by the Parzen estimator. All the pairwise comparison are

statistically significant (p-value < 0.0001)

model log-likelihood
MEAN (STD)

SWDNN -207.412 (268.452)
BLSTM-MSE -190.642 (318.110)
BLSTM-CCC -143.234 (317.674)

CSG -125.797 (241.979)

Figure 6 gives the results for the optimal noise dimen-
sion. As expected, the average of the preferences are shifted
towards the original sequences. The results suggest that
m = 10 and m = 80 are the most competitive models (i.e.,
the bars are shifted toward the center). We select m = 10 as
the dimension for the noise for the rest of the experimental
evaluation.

6.2 Comparing the CSG Model with the Baselines
This section compares the CSG model with the three base-
line models: the SWDNN, BLSTM-MSE, and BLSTM-CCC
approaches. We compare these models with objective and
subjective evaluations.
Objective Evaluation: We estimate the distribution of syn-
thesized samples generated by the CSG and baseline models
using the Parzen window density estimator. We generate
555K samples per model. Table 1 gives the mean and stan-
dard deviations of the log-likelihood of the test samples
in the fitted distributions. The proposed CSG model is
significantly better than all other alternative baselines. Note
that all the pairwise comparisons in this table are statisti-
cally different (t-test: p-value < 0.001). The results demon-
strate higher log-likelihoods for the CSG model compared
with the baselines. Interestingly, BLSTM-CCC outperforms
BLSTM-MSE showing the benefit of using CCC as a cost
function.
Subjective Evaluation: Before we present the subjective
evaluation, we evaluated the level of naturalness of the
generated videos using Xface. We asked four evaluators to
rate the naturalness level of 20 videos using the original lip

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAFFC.2019.2916031

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, MAY 2019 10

100 (0) 50 (50) 0 (100)

Preference [%]: left (right)

SWDNN

BLSTM-MSE

BLSTM-CCC

CSG

ORIGINAL

ORIGINAL

ORIGINAL

ORIGINAL

Fig. 7. Comparison of the CSG model and the baseline models with
videos generated with the original lip motion sequences. The bars
represent the first and third quartiles. The circle represents the mean
values for each condition, the dash lines represent the minimum and
maximum values, the vertical gray lines represent the medians, and the
red dots represent outliers.

movements. They used a 10-point Likert-type scale (1 very
unnatural, 10 very natural). The average of these ratings
is 6.16, with standard deviation of 1.9. The result shows
that the videos are perceived with an adequate level of
naturalness.

The first phase of the subjective evaluations com-
pares the animation synthesized by each of the mod-
els (CSG, SWDNN, BLSTM-MSE and BLSTM-CCC) with
videos generated with the original motion capture record-
ings. We recruited 16 evaluators who annotated 20 pairs
of videos, resulting in four evaluators per comparison.
Figure 7 shows the result of these comparisons, where
the agreement between evaluators in terms of the Cron-
bach’s alpha are αSWDNN =0.88, αBLSTM−MSE =0.91 and
αBLSTM−CCC =0.83, and αCSG =0.82. The t-test shows
that the means of all these ratings are not equal to 50%
(p-value < 1e−11), indicating that the original sequences
are preferred. Notice that these approaches are speech-
driven models that do not rely on transcriptions, so the
synchronization of the lips is not perfect. Therefore, it is
expected that videos generated with original trajectories will
be preferred by the evaluators. By creating strategies that
can better model the lip and speech synchronization, our
models aim to reduce this gap. We estimate the proportion
of preference for the original motion capture data with each
of these models using Equation 4. The original sequences
are preferred 87% over the SWDNN model, 92% over the
BLSTM-MSE model, 78% over BLSTM-CCC model, and 76%
over the CSG model. While the annotators preferred the
videos with the original sequences (all these proportions
are statistically significant –p-value < 0.01), the CSG and
BLSTM-CCC models are the approaches where the prefer-
ences are closer to 50%.

Figure 7 provides indirect comparisons between the
models. The second phase of the subjective evaluations di-
rectly compares our proposed CSG model with the BLSTM-
CCC model, which was the most competitive baseline
model in the indirect comparisons. We use 20 videos synthe-
sized by the CSG and BLSTM-CCC approaches. We recruit
four raters for this task, who evaluated the 20 videos using
the approach described in Section 5.3.2 (four evaluations
per comparison). Figure 8 shows the results, where the
Cronbach’s alpha between the annotators is α =0.61. The

100 (0) 50 (50) 0 (100)

Preference [%]: left (right)

CSGBLSTM-CCC

Fig. 8. Comparison of the CSG model with the baseline (BLSTM-CCC).
The figure follows the same convention used in Figure 7.

box plot in Figure 8 shows that the mean of the preference
for the CSG model is 60% over the best baseline (BLSTM-
CCC). This level of preference is statistically higher than
50% (p-value < 1e− 4). After dichotomizing the labels with
equation 4, the evaluation shows that the preference for the
CSG model is 68% (also statistically significant with p-value
< 0.01). These results show that the CSG model is clearly
preferred over the BLSTM-CCC baseline.

Objective and subjective evaluations clearly show better
performance for the CSG model over the baseline methods.
The next section evaluates the benefits introduced by con-
sidering emotion in the expression-dependent CSG models.

6.3 Expression-Dependent CSG Models
This section evaluates the CSG-Emo-Aware and CSG-Emo-
Adapted models. The objective evaluations consider the log-
likelihood estimations (Sec. 5.3.1), and the accuracy of emo-
tion classifier trained on the original data and tested on the
synthesized results. The subjective evaluations consider the
preference and expressiveness of the expression-dependent
models.
Objective Evaluation: We estimate the distribution of the
samples using the Parzen window density estimator. The
number of the test samples (i.e., frames) across emotional
classes are 62K for anger, 107K for happiness, 92K for
sadness and 106K for frustration. We generate the same
number of samples using each of the models. Table 2 gives
the log-likelihood of the test samples evaluated on the dis-
tribution of the generated samples. All the pairwise compar-
isons between the CSG model and each of the expression-
dependent CSG models are statistically significant (t-test: p-
value< 0.05), with two exceptions: the comparison between
CSG and CSG-Emo-Adapted for sadness and the compari-
son between the CSG and CSG-Emo-Aware for frustration.
These results indicate that adding emotion in the models
help in generating samples that are closer to the original
sequences. Table 2 shows that the CSG-Emo-Adapted model
constantly achieves better results than the CSG-Emo-Aware
model. All the pairwise comparisons between the CSG-
Emo-Aware and CSG-Emo-Adapted models are statistically
significant (p-value < 0.05). Adapting the top layers is an
effective method to create expressive-dependent models for
lip motion.

We evaluate whether the generated lip movements con-
vey emotional cues by training an emotion classifier. Using
the same train, test and validation partitions used for the
models, we train a categorical emotion classifier on the
original motion capture data. The classification tasks use
lip motion sequence to recognize anger, happiness, sadness,
and frustration. Since the emotional labels are assigned to
each speaking turn, we extract sentence-level features by
extracting statistics from the 45D orofacial pose param-
eters. The statistical features include mean, median, first
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TABLE 2
Comparing the CSG model with the two expression-dependent CSG models for each emotional category. The values correspond to the

log-likelihood of the test samples in the estimated distribution by the Parzen estimator. Asterisks indicate when the expression-dependent CSG
models are significantly better than the CSG model (*: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001).

model log-likelihood: MEAN (STD)
ang hap sad fru

CSG -76.410 (130.751) -77.139 (183.269) -162.832 (208.430) -148.145 (239.602)
CSG-Emo-Adapted -72.495 (119.353)*** -75.365 (168.302)* -163.679 (229.455) -136.634 (226.355)***

CSG-Emo-Aware -74.201 (116.977)** -81.103 (189.359)*** -179.041 (245.666)*** -147.291 (232.307)

quartile, third quartile, minimum, maximum and standard
deviation, resulting in a 315D feature vector (45 parameters
× 7 functionals). We have 1,898 training samples across
anger (359), happiness (525), sadness (390) and frustration
(624). The validation set has 624 speaking turns (anger-132,
happiness-187, sadness-111, and frustration-194), and the
test set has 617 speaking turns (anger-129, happiness-169,
sadness-152, and frustration-167). We train a SVM classifier,
maximizing the F1-score (i.e., F1-score= 2× precision×recall

precision+recall )
on the validation set to determine the kernel function and
the soft margin parameter. The best result on the validation
set was obtained with a linear kernel and a soft margin
equals to c = 0.8. We evaluate this model on the test set,
using the original motion capture recordings and the lip
trajectories generated by the CSG models. Table 3 shows
the results in terms of accuracy, recall, precision, and F1-
score. The classifier tested with the original data achieves
an F1-score of 61.5%. The same classifier tested with the
samples generated by the CSG model achieves an F1-score
of 37.7%. These results show that the CSG model does not
preserve the emotional cues in the lip motion trajectories.
This problem is overcome by the expression-dependent
CSG models. The same classifiers tested with the samples
generated by the CSG-Emo-Aware and CSG-Emo-Adapted
models achieve F1-scores of 62.5% and 70.8%, respectively.
These results are statistically significantly better than the F1-
score achieved when using samples generated by the CSG
model (p-value < 1e−8). Even though we train with the
original data and test with synthesized data, the emotion
classifiers are able to recognize emotions with similar or
better accuracy than when we test with the actual lip motion
trajectories. These results demonstrate that the proposed
expression-dependent CSG models generate lip motion tra-
jectories conveying expressive cues similar to the original
recordings.

Subjective Evaluation: We also perform subjective eval-
uations on the results, starting with indirect comparisons
where the original sequences are used as reference. We re-
cruited eight evaluators for the expression-dependent mod-
els, who were asked to evaluate 20 pairs of videos (four eval-
uators per task). Figure 9 shows the results, where we repeat
the results obtained for the CSG model presented in Figure
7. The agreements between the evaluators in terms of Cron-
bach’s alpha are αCSG =0.82, αCSG−Emo−Adapted =0.79,
and αCSG−Emo−Aware =0.85. The t-test shows that the
evaluators prefer the original models, as expected (p-value
< 10−9). According to Equation 4, the proportions of prefer-
ences for the original motion capture data with each of the
models are 76% over the CSG model, 80% over the CSG-
Emo-Adapted model and 70% over the CSG-Emo-Aware

100 (0) 50 (50) 0 (100)

Preference [%]: left (right)

CSG

CSG-Emo-Adapted

CSG-Emo-Aware

ORIGINAL

ORIGINAL

ORIGINAL

Fig. 9. Comparison of the CSG model and expression-dependent CSG
models with videos generated using the original lip motion sequences.
The figure follows the same convention used in Figure 7.

model. All these proportions are statistically greater than
50% (p-value < 0.01), which is not surprising.

We also perform subjective evaluations to directly com-
pare two options where one of the lip motions was gener-
ated by the CSG model and the other with the expression-
dependent models. We generate 20 videos for the CSG-
Emo-Adapted model and 20 videos for the CSG-Emo-Aware
model, creating 40 video pairs. We recruit eight evaluators
who compare 20 pairs of videos, resulting in four evalu-
ations per comparison. Figure 10 gives the results of this
evaluation. The Cronbach’s alpha between the annotators
are αCSG−Emo−Adapted =0.48 and αCSG−Emo−Aware =0.63.
While the mean of the preferences are slightly toward
the expressive-dependent models, the differences are not
statistically significant (t-test, p-value = 0.48 for CSG-
Emo-Adapted, and p-value = 0.29 for CSG-Emo-Aware).
We directly compare the CSG-Emo-Aware and CSG-Emo-
Adapted models. We recruited four evaluators to compare
the 20 videos generated by these models, resulting in four
evaluations per comparison. The Cronbach’s alpha between
the annotators is α =0.70. Figure 11 shows the results,
the preference for the CSG-Emo-Adapted model compared
to CSG-Emo-Aware is not statistically significant (t-test, p-
value = 0.27). We estimate the proportion preference using
Equation 4, which shows that 55% of the evaluations prefer
the CSG-Emo-Adapted model. The proportion test shows
that the preference is not statistically significant (p-value
= 0.25).

The results on Figures 10 and 11 evaluate preference in
terms of the level of naturalness. We conclude the subjective
evaluation by assessing the perceived expressions elicited
by the different lip motion sequences. Note that the ability
to convey emotional cues in the videos is constrained by the
expressiveness of the rendering toolkit Xface (see discussion
in Section 6.4). We only consider the CSG-Emo-Adapted
model, which is the emotionally dependent CSG model
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TABLE 3
Emotion recognition results over the synthesized orofacial movements by the models in terms of accuracy (Acc.), precision (Prec.), recall (Rec.)
and F1-score on the four emotions of ang (angry), hap (happy), sad, and frustrated. Accuracy is calculated on the whole data, and for precision,

recall and F1-score we have provided the average of the result across the four classes (ave).

Orofacial Source Acc. [%] Prec. [%] Rec. [%] F1-score [%]
ang. hap. sad. fru. ave. ang. hap. sad. fru. ave. ang. hap. sad. fru. ave.

Original 62.6 70.8 78.7 70.5 46.3 66.6 35.7 76.3 59.9 71.9 60.9 47.4 77.5 64.8 56.3 61.5
CSG 39.9 58.6 41.9 50.8 32.0 45.8 13.2 41.4 43.4 55.7 38.4 21.5 41.7 46.8 40.6 37.7
CSG-Emo-Adapted 70.5 78.4 85.7 83.2 51.8 74.8 53.5 67.5 81.6 76.6 69.8 63.6 75.5 82.4 61.8 70.8
CSG-Emo-Aware 62.2 64.8 75.2 66.7 48.8 63.9 54.3 66.3 64.5 62.3 61.8 59.1 70.4 65.6 54.7 62.5

100 (0) 50 (50) 0 (100)

Preference [%]: left (right)

CSG-Emo-Adapted

CSG-Emo-Aware

CSG

CSG

Fig. 10. Comparison of the CSG model with the two expression-
dependent models. The figure follows the same convention used in
Figure 7.

100 (0) 50 (50) 0 (100)

Preference [%]: left (right)

CSG-Emo-AdaptedCSG-Emo-Aware

Fig. 11. Comparison of the two expression-dependent CSG model. The
figure follows the same convention used in Figure 7.

with better results according to the objective comparisons
(Table 2). We compare the expressiveness of the CSG-Emo-
Adapted sequences with the original and CSG sequences.
We define expressiveness as the degree of effectiveness
of the animation in conveying the intended emotion. For
this evaluation, we render 10 randomly selected videos per
emotional categories (i.e., consensus label). We recruit eval-
uators, resulting in four evaluations per comparison. For
the evaluations, we rely on pairwise comparisons using the
same interface shown in Figure 5. The only difference with
the previous evaluations is the question, which is rephrased.
For example, for happiness, we ask “Which video looks
happier?” We ask similar questions for anger, sadness and
frustration. Similar to the subjective evaluation in Section
6.2, we only show the orofacial area in the animation.
This setting is particularly important for the evaluation of
emotions, where the upper face region conveys important
emotional information. This paper only focuses on the emo-
tional perception elicited by the lip movements. By adding
expressive movements on the entire face, the perception of
emotions could not be completely attributed to the lip move-
ments. By keeping a neutral face, the perception of emotion
from the lip motion would be masked by the neutral pose
of the rest of the face, affecting the analysis. Figure 12
gives the results of this evaluation. The results consistently
indicate that the lip motion sequences created by the CSG-
Emo-Adapted model are selected as more emotional than
the CSG model. The preference is statistically significant for
happiness (t-test: p-value = 0.016). According to Equation

4, we observe that the sequence of the CSG-Emo-Adapted
model are selected over the ones from the CSG model 56%
for anger, 65% for happiness, 57% for sadness and 48%
for frustration. When we compare the CSG-Emo-Adapted
sequences with the original sequences, we observe that the
proportion of the preferences for the original sequences
estimated with Equation 4 are 54.4% for anger, 40.4% for
happiness, 46.7% for sadness, and 72.1% for frustrated. The
proportion test only finds the proportion of preferences for
frustration to be statistically higher than 50%. This result
shows that the CSG-Emo-Adapted model created videos
for anger, happiness and sadness where the differences
in expressiveness compared to the original videos are not
statistically significant.

6.4 Discussion

Overall, the experimental evaluations demonstrate that the
proposed CSG models perform better than the competitive
baselines used in this study. The objective evaluations using
log-likelihood of the models reveal the superiority of the
expression-dependent CSG models over the CSG model,
which show the flexibility of the proposed framework to in-
corporate expressive lip motions. The results using emotion
classifiers also show that the expression-dependent CSG
models are able to generate lip motion sequences conveying
emotional cues.

The results also suggest that the model can be improved.
While the subjective evaluations show a clear trend across
emotional classes, the preference toward the expression-
dependent CSG models are statistically significant only for
happiness. An important observation is that some emotions
may have a stronger effect on the orofacial area. For ex-
ample, there is a clear relationship between happiness and
the lip configuration. For other emotions, the relationship
may be more subtle. We hypothesize that the lack of expres-
siveness in Xface and the lip parametrization used in this
study are the main reasons for not obtaining more decisive
results in the subjective evaluation. Xface is a simple toolkit
that allows us to render an animation by parametrizing the
lip shape using motion capture data, which simplifies our
modeling setting. The fact that the emotional cues on the
expression-dependent CSG models are not clearly perceived
by the evaluators suggest that a more sophisticated render-
ing toolkit is needed. Furthermore, the IEMOCAP database
does not have information for the inner part of the lips, so
the lip shape is exclusively defined by the outer lip markers.
Therefore, our framework may not capture important lip
details that are important to convey the target emotion.
We are currently working to address these problems. Even
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CSG-Emo-Adapted
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(a) ang: “Which looks angrier?”

100 (0) 50 (50) 0 (100)

Preference [%]: left (right)

CSG
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CSG-Emo-Adapted

CSG-Emo-Adapted

(b) hap: “Which looks happier?”

100 (0) 50 (50) 0 (100)

Preference [%]: left (right)

CSG
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CSG-Emo-Adapted

CSG-Emo-Adapted

(c) sad: “Which looks sadder?”

100 (0) 50 (50) 0 (100)

Preference [%]: left (right)

CSG
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CSG-Emo-Adapted

CSG-Emo-Adapted

(d) fru: “Which looks more frustrated?”

Fig. 12. Comparison of the perceived target emotional category elicited
by the CSG-Emo-Adapted models. The comparison includes the original
sequences and the CSG model. The figure follows the same convention
used in Figure 7.

with these limitations, the study clearly demonstrates the
modeling potential of the CSG framework, creating exciting
opportunities for lip motion generation with speech-driven
methods.

7 CONCLUSIONS

This paper proposed the CSG model, a conditional GAN
that generates orofacial movements from acoustic features.
This model learned the conditional distribution of the data
with an adversarial training objective, using a generator
and a discriminator. The discriminator has to distinguish
between real data and samples created by the generator.
This adversary training forces the generator to create lip
motion trajectories that are realistic. To capture the complex
coupling between lip motion and speech, we also presented
samples with real audio and motion capture data from
different recordings. This type of fake samples presented
to the discriminator imposes special emphasis on the tem-
poral dynamic of the lip motion sequences created by the
generator. We compared this model with three competitive

baselines. The objective and subjective evaluations of the
results demonstrated better performance for our model.

A BLSTM model can be easily implemented with a look-
ahead buffer to generate the movements during real-time
applications. Therefore, the use of BLSTM does not necessar-
ily prevent real-time use of the algorithm. If latency is an im-
portant factor, the CSG models can always be implemented
with unidirectional LSTM units. One of the strengths of
the CSG model is its flexibility to constrain the trajectories
by the underlying emotion content, creating expressive lip
motion sequences. We proposed two emotion-dependent
extensions of our model, where we know the target cate-
gorical emotion during testing: the CSG-Emo-Adapted, and
CSG-Emo-Aware models. The CSG-Emo-Adapted model
adapts the network by using the partitions associated with
each emotion. The CSG-Emo-Aware model explicitly adds
the target emotion as an extra input vector. The results
demonstrated that the testing data is better represented by
the distribution of the samples generated by the expression-
dependent CSG models than the ones from the CSG model.
The emotion classification evaluation using the generated
sequences also indicated that both expression-dependent
CSG models can generate emotional cues observed in nat-
ural recordings. The subjective evaluation showed that the
CSG-Emo-Adapted model is perceived as more emotional
across emotional classes, especially for happiness where the
preference was statistically significant.

The experimental evaluation demonstrated the benefits
of the proposed CSG models, opening new opportunities
to improve the models. The current study focuses on the
orofacial area, since this area presents a stronger interplay
between articulatory and emotional content. A direct exten-
sion of the proposed framework is to generate facial expres-
sions for the entire face, where the emotion can be controlled
by specifying the target category. A second extension of
the approach is to increase the resolution of the parameters
describing the lips. The IEMOCAP corpus does not include
inner mouth markers. The inner mouth markers contain
subtle differences across emotional categories, which we
currently ignore. Using a more dense representation for the
lip configuration will help us to generate more expressive
and naturalistic animations. Likewise, Xface is not a very
expressive toolkit. We expect to create better animations by
relying on better rendering toolkits. Furthermore, the selec-
tion of the emotional classes in this paper was determined
by the emotional labels in the IEMOCAP corpus. However,
our proposed solution is flexible. If we have data for a
given emotion, we can easily create models that replicate
the expressive behaviors associated with the emotion using
our data-driven framework. Finally, the current version of
the framework is exclusively driven by speech, without
the need for phonetic information. This is one of the key
features of our approach. However, if the target application
requires better synchronization between lip motion and the
phonetic content, the current framework can be extended by
constraining the models with the underlying lexical content.
For example, we can incorporate lexical content by adding
phonemes as additional constraints in the CSG models. This
approach can be implemented with an automatic speech recog-
nition (ASR) system that estimates automatic transcriptions.
The drawback of using ASR, is the extra computation and
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delay in the prediction of lip movements. We will address
these research directions in our future work.
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