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Abstract—The orofacial area conveys a range of information, in-
cluding speech articulation and emotions. These two factors add con-
straints to the facial movements, creating non-trivial integrations and
interplays. To generate more expressive and naturalistic movements
for conversational agents (CAs) the relationship between these factors
should be carefully modeled. Data-driven models are more appropriate
for this task than rule-based systems. This paper provides two deep
learning speech-driven structures to integrate speech articulation and
emotional cues. The proposed approaches rely on multitask learning
(MTL) strategies, where related secondary tasks are jointly solved when
synthesizing orofacial movements. In particular, we evaluate emotion
recognition and viseme recognition as secondary tasks. The approach
creates shared representations that generate behaviors that not only
are closer to the original orofacial movements, but also are perceived
more natural than the results from single task learning.

Keywords-Lip movement driven by speech, expressive lip movements,
multitask learning.

I. INTRODUCTION

The orofacial area plays an important role in human inter-

action, conveying traits associated with personality, gender, and

emotion. The information is conveyed at various temporal reso-

lutions creating nontrivial interplays between the communicative

goals. In addition, the orofacial area conveys speech articulation

information [1], which improves speech intelligibility [2]. Listeners

unconsciously decode the information, inferring the verbal and

nonverbal cues conveyed by the speaker. This complex process

has to be considered to create more believable facial movements

for conversational agents (CAs).

Several studies have relied on storing predefined parameters

for lip movements associated with articulatory units [3]–[5] (e.g.,

phonemes). A natural extension for expressive speech is to use a

predefined set of lip parameters per emotion and per articulation

unit (e.g., each phoneme in angry emotion). However, discretizing

the expressive lip configurations into a reduced set of emotional

categories may result in very caricature-like expressions, over-

emphasizing the emotional state. Using the same set of parameters

may also result in repetitive movements which may affect the

naturalness perception of the animation. Furthermore, these models

will not be appropriate for subtle or ambiguous emotions, which are

common during human interactions. Speech driven systems are an

alternative approach to handle these issues, providing a principled

method to incorporate expressive speech [6], [7].

The lower face region is affected with articulatory and emotional

cues [1], [8]. Although verbal content is the primary channel while

speaking, emotional content will modulate the speech articulation

process creating expressive speech. Although there are differences

between the time resolutions of emotional cues and articulatory

cues, the relationship between speech and emotional orofacial

movements can be exploited toward automating the process of

generating more expressive and naturalistic lip movements from

speech. The advantage of using features that are related to the

emotional content of the message is that it will automatically

broaden the emotional spectrum conveyed by the CA, which is

not possible with rules for discrete emotional categories.

This paper provides deep learning solutions to integrate the

articulatory and emotional features from the input speech. The

intrinsic relationship between speech articulation and emotional

content is directly exploited in the model by performing multitask
learning (MTL). The primary task of predicting lip movements

is complemented with two secondary tasks: viseme recognition,

and emotion recognition. This model creates shared representations

across these related tasks, increasing the robustness and accuracy of

the regression task. These secondary tasks are relevant to variations

in the orofacial movements. Emotion modulation is different under

different phonetic units (e.g., pronouncing /b/ and /a/ with a

smile). Therefore, features extracted for viseme recognition and

emotion recognition can help in learning orofacial movements.

Objective and subjective evaluations of the predicted lip movements

demonstrate the advantages of adding these auxiliary tasks to the

model (i.e. multitask learning).

II. RELATED WORKS

Approaches to generate lip movements can be categorized into

unit selection [3], [5], [7], generative model [6], [9], [10], and

discriminative model [11].

The unit selection strategy relies on defining units of articula-

tions. For expressive lip motion, the units also consider emotional

articulations. One of the early works in this area was conducted by

Cao et al. [7]. They defined anime nodes comprising phonemes,

emotions, speech features and motion capture features to index

their training data. During testing, the input speech is segmented

based on its phonetic content, searching the database for the most

suitable segments sharing similar emotions. The search minimized

the differences between the speech features, while penalizing non-

smooth movements. The selected segments are then time warped

and concatenated to generate the final facial trajectory. Deng et al.

[5] proposed a method to model speech coarticulation. They defined

canonical shapes for the lips which were blended with different

weights to generate arbitrary configurations. They used motion

capture recordings of an actor while speaking, finding the weights

associated with each canonical shape during different diphones,

and triphones. Xu et al. [3] proposed a similar approach, where

they defined canonical shapes, which were combined using artist-

produced weights. These approaches require phoneme alignment

409

2018 13th IEEE International Conference on Automatic Face & Gesture Recognition

0-7695-6381-3/18/$31.00 ©2018 IEEE
DOI 10.1109/FG.2018.00066



of the testing utterances. To incorporate expressive lip movements,

the weights of the canonical shapes need to be defined for each of

the target emotions.

The second approach uses generative models to implicitly model

speech coarticulation. Choi et al. [9] proposed to use hidden
Markov models (HMM) inversion to predict lip movements from

speech. Speech and visual features are jointly modeled for each

phoneme with three state HMMs. During testing, they relied on the

Baum-Welch algorithm to estimate the visual parameters. Xie and

Liu [10] proposed to use coupled HMMs (CHMMs) to explicitly

model the differences and dependencies between audio and visual

streams, such as their asynchrony, different number of classes,

and their temporal coupling. They use the Baum-Welch algorithm

to find the maximum likelihood estimates of the visual features.

Anderson et al. [6] proposed to use an extension of HMMs called

cluster adaptive training (CAT) to model expressive audiovisual

speech. In their system, CAT models emotion dependent informa-

tion by using decision trees to cluster the data, and learning the

weights associated with each cluster for the target emotions from

the data.

The third approach uses discriminative models which directly

learn the mapping between the input audio and lip movements

eliminating the need for their joint modeling. For instance, Fan

et al. [11] proposed a deep structure with bidirectional long
short-term memory (BLSTM) units to learn the mapping between

triphonemes (i.e., the previous, current, and next phones) and lip

movements. Objective and subjective evaluations showed better

results for their approach compared with an HMM-based approach.

Taylor et al. [12] proposed to use a feedforward neural network, and

a sliding window to generate lip movements using Mel-frequency
cepstral coefficients (MFCCs). Objective and subjective evaluations

showed improvements when using their approach compared with

the HMM inversion approach proposed by Choi et al. [9]. Li et

al. [13] evaluated several structures to generate emotional facial

movements from speech using a small emotional corpus. Their best

result was achieved with a two-model approach. The first model

learns the mapping between neutral speech and facial movements.

This model is evaluated with emotional speech. The predictions

of this model are concatenated with speech features as the input

of the second model that learns emotional facial movements. The

approach of Li et al. [13] assumes that emotional labels are

available during testing. However, our approach does not have

this requirement, since it directly infers this information from

speech. Sadoughi and Busso [14] investigated separate versus joint

modeling of facial regions using models built with BLSTMs. They

used MTL to explore the dependencies across facial features,

where the secondary tasks corresponded to facial movements in

other facial regions. They achieved better objective performance

by jointly modeling the three facial regions. While our proposed

approach also relies on MTL, our goal is radically different,

creating an important distinction between the studies. Sadoughi and

Busso [14] explored the local dependencies across facial features.

Our study uses MTL to improve lip-motion by predicting visemes

and emotions. Both secondary tasks are crucial for lip appearance.

By choosing these secondary tasks, we can create more realistic

lip motion sequences.

This paper proposes speech-driven models for expressive lip

movements. The model relies on BLSTMs, trained with segment

level spectral features (MFCCs), and sentence-level statistics of

spectral and prosodic features, which are commonly used in speech

emotion recognition. We propose novel structures for adding the

emotional features, in a principled manner, leveraging the advances

in MTL with deep learning. By considering emotion recognition

and viseme recognition as secondary tasks, we incorporate nuances

that are important for the face appearance while speaking. This

formulation is truly novel, compared with previous studies on this

area. To the best of our knowledge, this is the first MTL study

focusing on lip-motion generation, which is the key novelty of

this study. MTL prevents over-fitting the models by providing

data-driven regularization during training. Regularization becomes

particularly important in learning expressive facial movements, as

the data size for emotional audiovisual corpora is currently limited.

III. RESOURCES

A. Corpus

This study uses the interactive emotional motion capture (IEMO-

CAP) corpus [15]. The IEMOCAP corpus includes audio, video,

and motion capture recordings of dyadic interactions between ten

actors. The database is recorded with spontaneous and script-based

scenarios designed to elicit renditions of different emotions. All

the speaking turns are annotated by three annotators in terms of

ten emotional categories: anger, disgust, excited, fear, frustrated,

happiness, neutral, sadness, surprised, and other. Similar to pre-

vious studies on this corpus, we merge the classes excited and

happiness [16], [17]. The consensus label per speaking turn is

estimated using the majority vote rule. Lip movements conveying

emotions are very subject dependent, so limiting the study to a

single speaker reduces the need to compensate for idiosyncratic

differences. Therefore, this study only considers the recordings

from the first female subject (418 speaking turns), where the

distribution of emotions is 66 (neutral), 72 (anger), 57 (happiness),

42 (sadness), 0 (disgust), 3 (fear), 68 (frustrated), 4 (surprised),

and 0 (other). There are 106 sentences without consensus label. The

classes with few samples (i.e., disgust, fear, surprise and other), and

sentences without consensus are grouped together. The IEMOCAP

corpus also includes the transcripts and phoneme alignments of

the recordings. We group the phonemes into 14 viseme categories

using the mapping proposed by Lucey et al. [18] listed in Table I.

More information about this corpus is given in Busso et al. [15].

B. Audio and Visual Features

We extract features relevant to speech and emotion production

in our speech-driven models. The speech production features are

MFCCs. We extract 25 MFCCs, following the results shown by

Taylor et al. [12], which demonstrated that 25 MFCCs gives the

best result in predicting lip movements. We use Praat with 25ms

windows shifted by 8.33ms to get the same frames per second as

the motion capture data (i.e., 120).

For emotional features, we use the extended Geneva minimalistic
acoustic parameter set (eGeMAPS) [19], which was carefully

selected as a reduced set for paralinguistic problems. This feature

set comprises 88 statistics extracted over 23 low-level descriptors
(LLDs). We extract these features over each speaking turn, follow-

ing common practice in emotion recognition (note that emotional

labels are also assigned per speaking turn).
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Table I
THE PHONEME TO VISEME MAPPING. COUNTS CORRESPOND TO THE

FREQUENCY OF OCCURRENCES OF THE VISEMES FOR THE FIRST

FEMALE SUBJECT IN THE IEMOCAP CORPUS.

Phoneme Viseme Count

B
P 13531M

P
F

F 6225
V
T

T 42607

TD
TH
D

DD
DX
DH
TS
S
Z

CH

CH 3202
SH
ZH
JH
EY

EY 15553
EH
AE
AW
ER ER 1163
SIL SIL 64865

Phoneme Viseme Count

IY
IY 16984

IH
W

W 14144R
F

AO

X 9392
OY
IX

OW
UH

UH 10064UW
AXR
AH

AH 26317AY
AX
AA AA 4063
K

K 42180

G
N
L

HH
Y

NG
KD

(a) Markers (b) Mapping to Xface

Figure 1. The location of the 15 markers from the IEMOCAP recordings
used in this study, and their mapping to FAPs in Xface.

From the motion capture recordings, we focus on 15 markers

in the orofacial area, shown in Figure 1(a). We use the (X,Y, Z)
values for each marker resulting in a 45D feature vector, which

our models aim to predict. We z-normalize all the features across

the entire data.

C. Data Augmentation

Since we are using only 418 speaking turns for training the

models, during training we augment our samples. We consider a

sliding window of fixed length, w, for training the models. We shift

the window by Δ, creating overlapped windows (see Fig. 2). This

process generates new samples for training. We set Δ = 4 frames

for training the models.

D. Objective Metrics

The focus of this study is on predicting the location of markers

in the orofacial area, so we formulate the task as a regression

problem. Previous studies have mostly relied on minimizing the

mean squared error (MSE) between the predictions and true values

[12], [13], [20], or maximizing ρc, the concordance correlation
(CCC) [14], [21]. The definition of ρc between two inputs x and y
is given in Equation 1, where ρ is the Pearson correlation between

x and y, σx and σy are the standard deviations of x and y, and μx,

and μy are the means of x and y. Since the goal is to maximize

ρc, we use the loss function � = 1 − ρc and the goal during

training is to minimize �. This loss function has resulted in higher

Δ

Figure 2. Using overlapped windows to augment the training set.

ρc compared to using a loss function based on MSE [21]. Moreover,

our preliminary evaluation showed that using a loss function based

on ρc increases the range of movements for the lips, resulting in

more appealing animations. Therefore, our loss function is set to

1 − ρc. However, we report the performances of the models in

terms of MSE and ρc after concatenating all the predictions.

ρc =
2ρσxσy

σ2
x + σ2

y + (μx − μy)2
(1)

E. Rendering the Animations

We use Xface [22] for rendering the lip movements. Xface

animates the face by using facial action parameters (FAPs) which

are defined over facial points (FPs). The FPs in Xface follow the

MPEG4 standard. Most of the markers in the IEMOCAP corpus

also follow the MPEG4 standard, so finding a mapping is possible.

We follow the mapping process proposed by Mariooryad and Busso

[23]. First, we find the position of the markers for the neutral pose

of the actor, and map that to the neutral pose of the face in Xface in

term of FAPs. Then, the range of movements of the actor is scaled

to the range of movements of FAPs allowed by Xface. Figure 1(b)

illustrates the positions of the markers in the orofacial area that are

mapped into FAPs.

IV. PROPOSED APPROACH

This section describes the methods used to generate expressive

lip movements. We propose two multitask learning structures to

integrate the spectral and eGeMAPS features, where our goal is to

learn the best shared representation that optimizes the prediction

of facial movements. These models are built with BLSTMs, which

are suitable to capture the temporal dependencies between speech

and movements on the orofacial area.

A. Bidirectional Long-short Term Memory

Recurrent neural networks (RNNs) use temporal connections

between consecutive frames for the hidden layers to encode the

temporal dependencies in the time continuous signals. However,

the RNNs suffer from the problem of vanishing or exploding

gradients during training [24]. Hence, extensions of RNNs such

as LSTMs are proposed to address this issue [24]. LSTMs utilize

cell units to selectively keep track of past content. LSTMs use

three gating mechanisms: input, output, and forget gates. The input

gate determines the amount of input content being used to update

the cell, the forget gate determines the amount of previous content

being retained in the cell, and the output gate determines how much

of the cell content to be used as the output of the hidden layer.

411



The LSTMs used in this study are implemented with Keras [25]

using Theano as backend.

Bidirectional LSTMs utilize the future frames as well as the

previous ones. They use forward and backward paths. At each time

frame, the hidden units of the forward and backward paths are

concatenated resulting in twice the number of hidden states for the

layer. Our proposed frameworks use BLSTMs trained and tested

over a fixed window length (Sec. III-C).

B. Multitask Learning for Lip Synthesis

Our approach relies on multitask learning (MTL). MTL jointly

solves related problems creating shared representations for the

tasks. We consider the prediction of orafacial movements as the

primary task and the prediction of the triviseme and emotion as

the auxiliary tasks. Triviseme recognition consists of three separate

problems where we predict the previous, current and next visemes

(i.e., three × 14-class problems). Emotion recognition is a six-class

problem that consists of predicting the emotion associated with

the speaking turn (anger, happiness, sadness, frustration, neutral,

and other). Since the orofacial area is affected by both emotion

and speech articulation, we hypothesize that adding these auxiliary

tasks helps the network to learn more predictive features to syn-

thesize orofacial movements. From a machine learning perspective,

the auxiliary tasks can be considered as regularizes for the network

to learn more robust features that generalize better for unseen data.

We build our models by stacking multiple layers including

ReLUs and BLSTMs (the specific structures are described later).

ReLU is a nonlinear function which facilitates better flow of in-

formation, and avoids over-fitting by sparse representation. ReLUs

have been successfully used in previous studies for lip movement

synthesis [11], [12]. The output of the primary task (i.e., orofacial

movement) corresponds to a linear layer, since the goal is to predict

continuous variables. The loss function for the primary task is the

function � described in Section III-D. For the recognition tasks,

the output is a softmax layer of length n, where n is the number

of categories (i.e. n = 6 for emotions, n = 14 for visemes). The

objective function is the categorical cross entropy given in Equation

2, where p is the true distribution and q is the predicted distribution.

H(p, q) =
n∑

i=1

p(xi)log(q(xi)) (2)

The objective functions for the primary and auxiliary tasks

are combined with their corresponding weights to form the loss

function. Equation 3 gives the loss function: xi is the input feature

vector for the ith input sample; �p denotes the loss function of

primary task; W p denotes the weights associated with the primary

task; yai is the target output of the primary task for the ith sample;

N is the total number of samples; �a is the loss function of the

auxiliary task a; A is the set of all auxiliary tasks, W a is the

weights associated with the auxiliary task a; yai is the target output

of the auxiliary task a for the ith sample; f and ga denote the

neural network paths for the primary task and the auxiliary task a;

λp is the weight considered for the loss function of the primary

task; and λa is the weight associated with the loss function of the

auxiliary task a. We set λp = 1 for all the experiments, and vary

the auxiliary weights maximizing performance on the validation set

(i.e., λtv for triviseme recognition and λe for emotion recognition).

128 RELUs

128 BLSTMs

45 LINEAR

MFCCs eGeMAPS

LIP POSES EMOTIONTRIVISEME

6 SOFTMAX3x14 SOFTMAX

Figure 3. The MTL structure 1. Both hidden layers are shared between
primary and secondary tasks.

128 RELUs

128 BLSTMs

45 LINEAR

MFCCs

LIP POSES

eGeMAPS

256 RELUs

6 SOFTMAX

EMOTION

TRIVISEME

3x14 SOFTMAX

Figure 4. The MTL structure 2. The emotion recognition task is evaluated
early, providing six softmax outputs as input of the second structure.

Notice that setting λa = 0; ∀a, reduces the multitask learning to

single task learning (STL), focusing only on the primary task. We

consider this setting as one of our baselines.

� =
N∑

i=1

λp�p (ypi , f (xi;W
p)) +

N∑

i=1

∑

a∈A

λa�a (yai , g
a (xi;W

a))

(3)

1) Structure 1: Figure 3 shows the first MTL structure, which

we refer to as structure 1. This model has a ReLU layer and a

BLSTM layer. Both hidden layers are shared between the tasks. The

input of the models are the MFCCs and the eGeMAPS features.

Note that the eGeMAPS features are extracted per speaking turn.

Since the models operate frame-by-frame, we repeat the eGeMAPS

vector multiple time so they have the same length as the MFCCs

features. This structure assumes that the input features can be fused

without any pre-processing step.

2) Structure 2: Figure 4 shows the second model, which ad-

dresses the difference in time resolution between MFCCs (frame-

by-frame features) and eGeMAPS features (speaking turn level).

The model has two connected steps, where the goal is to recognize

emotions early, so that the output of its softmax layer can be used

as input of the MTL structure. The first part of the model receives

the eGeMAPS features as input. It has a hidden layer implemented

with ReLU (256 nodes) and a softmax layer as output (six nodes).

The output of this structure is concatenated with MFCCs, serving as

the input of a second structure with two hidden layers implemented

with ReLUs and BLSTMs, respectively. The secondary task of

this structure is the triviseme recognition. We refer to this model

as structure 2. A nice property of this structure is the smaller

dimension of the input, reducing the 88 features in the eGeMAPS

to six softmax outputs. Having less features prevents the second

network from over-fitting. The model is jointly trained with back

propagation.

V. EXPERIMENTAL EVALUATION

We divided the data into five folds, where three folds are used

for training, one fold for validation, and one fold for testing.

We initialize the weights with the Glorot approach [26]. All the

layers use dropout of 0.2 for regularization. We use a maxnorm
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of 2.0 on the ReLU nodes (i.e. the norm of each weight vector

connecting all its inputs to the current node is constrained to this

value). To optimize the parameters of the model during training we

use stochastic gradient descent (SGD) with a momentum of 0.95

applied on each batch. For SGD, we set the initial learning rate (η)

equal to 0.1, decreasing its value as a function of the number of

epochs (Eq. 4, where decay is set to 0.01, and ne is the number

of previous epochs). All these hyper-parameters for SGD are set

by using the validation set. We set the fixed window size (w in

Section III-C) for LSTMs as 71 frames (591.7ms), since this is the

value after which the performance of the model on the validation

set saturates. We set the batch size as 256 (i.e., each batch contains

256 samples with 71 frames). We use the validation set for early

stopping with a patience of 10 epochs for the primary task, and 3

epochs for each of the auxiliary tasks. We set λa = 0 when we

want to stop the training on the auxiliary task a. During testing,

we set Δ = 1.

η =
η

1 + decay ∗ ne
(4)

A. Objective Evaluations

1) Comparison of STL with MTL: This section reports the

evaluation with objective metrics. Table II gives the performance

of the models for lip movements prediction over the validation

and test sets. We perform MTL by varying the weights associated

with the auxiliary tasks with a random grid search, which have

shown to be more effective than a uniform grid search [27]. We

select the coefficients that give the best lip movement prediction

on the validation set. Table II shows that we improve performance

for MTL over STL methods (higher ρc, lower MSE). The results

demonstrate the benefit of jointly solving triviseme and emotion

recognition while predicting orofacial movements.

The validation set gives the best result for structure 1 when

λtv = 1.0, and λe = 0.1, and for structure 2 when λtv = 0.3, and

λe = 0.1. With these weights we get improvements on the test set

for both models. Structure 2 obtains better results. However, the

relative improvements over the corresponding baselines is higher

for structure 1. Since the ratio of emotional features to articulatory

features is 3.52, structure 1 is more prone to overfit the emotional

features. Structure 2 extracts more abstract features from emotional

features before concatenating them with MFCCs, reducing the

chances of over-fitting. We hypothesize that this is the reason that

structure 2 obtains better results, and structure 1 obtains higher

relative improvements over the baselines by using regularization

with MTL.

Although our primary task is learning the lip movements from

speech, the table also reports the accuracies for the auxiliary tasks

over the test set (i.e., emotion recognition and viseme recognition).

Viseme recognition accuracy denotes the accuracy for the middle

viseme predictions in the triviseme output. Although the weights

are optimized to maximize the performance of the primary task,

the accuracies for emotion recognition and viseme recognition are

all above chances. These results show that the proposed structures

are learning features that are also discriminative for the auxiliary

tasks.

If we consider the models trained with different weights for

the auxiliary tasks as different ensembles, we can also aggregate

their predictions by simply averaging their outputs. These results

are given in the row “7 Ensembles” in Table II. Combining the

models shows improvements for MSE for both the validation and

test sets, suggesting that the models are diverse enough that their

combinations can boost performance.

2) Comparison with Baselines: We also compare our proposed

approach with two previous studies: the studies by Sadoughi and

Busso [14], and Taylor et al. [12].

We replicated the Joint2-512 model which was the best frame-

work proposed by Sadoughi and Busso [14]. This model has four

layers and learns the facial movements across three facial regions

(lower, middle and upper facial regions). The first two layers of the

model are shared across the three tasks, and the last two layers are

task specific. Similar to their study, we use the data from all the

subjects in the IEMOCAP corpus for training this model, excluding

the training set from the test set. We implement the training details

described in that study. Table III reports the results for the Joint2-

512 model. We also trained this model with our training partition,

which has a smaller set. We reduced the number of nodes to

64 to avoid over-fitting on the validation set, since the number

of samples is approximately five time smaller. We refer to this

models as Joint2-64, showing the results in Table III. This model

does not benefit from our data augmentation approach (Sec. III-C).

We also implemented the framework proposed by Taylor et al.

[12], following the provided description. This model takes as input

concatenated frames of acoustic features (e.g., MFCCs), providing

concatenated frames of lip movements. The average of the output

predictions across the frames is considered as the prediction for the

middle frame. Similar to their study, we consider an input window

of 340ms (∼41 frames), and an output window of 100ms (∼ 13

frames). Table III also reports the results for this model.

The results on Table III show clear improvements by using

the proposed MTL approach in terms of MSE and ρc. For the

subjective evaluations, we focus on our models, comparing the STL

and MTL settings, which is the key research question addressed in

this paper.

B. Subjective Evaluations

We also evaluate our models with subjective evaluations. We

rely on the objective evaluations to limit the conditions for the

subjective evaluations, selecting only the best MTL settings (struc-
ture 1: λtv = 1.0, λe = 0.1; structure 2: λtv = 0.3, λe = 0.1).

We also evaluate the STL cases for both structures where λtv =
λe = 0, and the results from the ensembles. As a reference, we

generate movements using the original motion capture recordings.

We randomly selected 10 videos from the test set and rendered

their animations with Xface. For all the seven conditions, we

used the original motion capture recording to animate the upper

region of the face (eyebrows and eyelids). The evaluation relies

on crowdsourcing using Amazon mechanical turk, where we asked

the raters to assess the naturalness of the videos using a 10 point

Likert scale from 0 (low naturalness) to 9 (high naturalness). To

avoid fatigue, each rater is given five videos in the seven conditions

(i.e. 35 videos). The order of the videos is randomized for each

rater, presenting one video at a time. To reduce the chance of

raters answering the questions without watching the full video, the

questionnaire is displayed only after the video is played.

We asked 24 evaluators to rate 35 videos, resulting in 12

annotations for each of the 70 videos (10 videos × 7 conditions).
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Table II
EVALUATION OF THE PROPOSED MODELS WITH STL AND MTL (S1: structure 1 AND S2: structure 2).

S Mode λtv λe Validation Test Test
ρc MSE ρc MSE Viseme Acc. Emotion Acc.

S1

STL 0 0 0.374 1.326 0.311 1.024 - -

MTL

1 0 0.383 1.272 0.323 0.964 0.493 -
0 1 0.323 1.486 0.273 1.055 - 0.396
1 1 0.380 1.368 0.328 0.969 0.500 0.414
1 0.1 0.385 1.240 0.343 0.937 0.501 0.430

0.5 0.05 0.351 1.342 0.315 0.943 0.514 0.333
0.3 0.1 0.347 1.406 0.340 0.924 0.505 0.314

S2

7 Ensembles - - 0.391 1.192 0.347 0.856 - -

STL 0 0 0.374 1.266 0.353 0.933 - -

MTL

1 0 0.408 1.189 0.361 0.881 0.518 -
0 1 0.391 1.322 0.315 1.037 - 0.415
1 1 0.411 1.246 0.322 0.962 0.507 0.385
1 0.1 0.421 1.172 0.346 0.921 0.525 0.397

0.5 0.05 0.419 1.172 0.369 0.869 0.520 0.384
0.3 0.1 0.423 1.130 0.357 0.904 0.518 0.366

7 Ensembles - - 0.427 1.112 0.362 0.860 - -

Table III
THE TABLE COMPARES OUR MTL MODELS WITH PREVIOUS STUDIES.

Model ρc MSE

Joint2-512 by Sadoughi and Busso [14] 0.350 0.908
Joint2-64 by Sadoughi and Busso [14] 0.194 1.170
Taylor et al. [12] 0.158 0.990
Proposed (Best MTL) 0.357 0.904
Proposed (Best MTL-Ensembles) 0.362 0.860

The Cronbach’s alpha between the raters is 0.5498. To remove

annotator and video biases, we normalize the scores given by each

rater to each video by dividing the sum of the scores assigned

to its seven conditions. Figure 5 gives the average of these nor-

malized ratings across all the evaluators. The analysis of variance
(ANOVA) shows that the means for conditions are statistically

different (F (6, 833) = 9.5680, p < 1e− 9). We evaluate pairwise

comparisons using Tukey’s multiple comparisons test asserting

significance at p-value=0.05. The color coded asterisks in Figure 5

shows the result (i.e., a bar with an asterisk is significantly higher

than the bar indicated by the color of the asterisk). The pairwise

comparisons demonstrate higher scores when we use the original

movement, as expected. The best result for the generated orofacial

movements is with MTL using structure 1, which has significantly

higher score than its STL version. For structure 2, the average of

the naturalness scores are higher for the MTL condition, but the

difference with the STL condition is not statistically significant.

Although the ensembles gave the lowest MSE (Table II), the

naturalness scores are not as high, which may suggest that the

movements are over smoothed.

VI. CONCLUSIONS

Although several studies have modeled orofacial movements

for neutral speech, expressive lip movement synthesis is still

challenging. This study proposed a novel multitask framework to

generate expressive lip movements for CAs. We explored predictive

models with BLSTMs for lip movement, integrating spectral and

eGeMAPS features as the input. The secondary tasks in the

multitask framework correspond to viseme recognition and emotion

recognition. Objective and subjective evaluations demonstrate the

advantages of using MTL, obtaining shared representations that

0 0.05 0.1 0.15 0.2 0.25
Naturalness

7 Ensembles, S2

7 Ensembles, S1

MTL, S2

MTL, S1

STL, S2

STL, S1

Original

Figure 5. Average of the normalized perceptual evaluations. The color-
coded asterisk denotes that a bar with an asterisk is significantly higher
than the bar with the color of the asterisk (p < 0.05).

generate lip movements closer to the original sequences, increasing

the perceived naturalness of the animations.

Using effective regularization in deep learning is especially

important when modeling expressive facial movements, as the

emotional audiovisual corpora are usually limited in size [13]. In

this paper, the secondary tasks are carefully selected to improve the

performance of the primary task (e.g., lip movement prediction). An

important strength of our framework is that we can train MTL using

datasets with partial information, without requiring one dataset to

have all the required labels. Therefore, our MTL approach is useful

for practical applications.

The evaluation considered data from a single speaker. We are

interested in studying idiosyncratic differences between speakers

that can be directly added to our models to create personality traits.

We are also planing to evaluate whether the emotional content

conveyed over the orofacial area is preserved in the generated

movements.

ACKNOWLEDGEMENT

This work was funded by US National Science Foundation grant

IIS-1718944.

REFERENCES

[1] C. Busso and S. Narayanan, “Interrelation between speech and
facial gestures in emotional utterances: a single subject study,”
IEEE Transactions on Audio, Speech and Language Processing,
vol. 15, no. 8, pp. 2331–2347, November 2007.

414



[2] W. Sumby and I. Pollack, “Visual contribution to speech intelli-
gibility in noise,” Journal of the Acoustical Society of America,
vol. 26, no. 2, pp. 212–215, March 1954.

[3] Y. Xu, A. W. Feng, S. Marsella, and A. Shapiro, “A practical and
configurable lip sync method for games,” in Motion in Games
(MIG 2013), Dublin, Ireland, November 2013, pp. 131–140.

[4] M. M. Cohen and D. W. Massaro, “Modeling coarticulation in
synthetic visual speech,” in Magnenat-Thalmann N., Thalmann
D. (Editors), Models and Techniques in Computer Animation,
Springer Verlag, Tokyo, Japan, 1993, pp. 139–156.

[5] Z. Deng, J. Lewis, and U. Neumann, “Synthesizing speech
animation by learning compact speech co-articulation models,”
in Computer Graphics International (CGI 2005), Stony Brook,
NY, USA, June 2005, pp. 19–25.

[6] R. Anderson, B. Stenger, V. Wan, and R. Cipolla, “Expressive
visual text-to-speech using active appearance models,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR
2013), Portland, OR, USA, June 2013, pp. 3382–3389.

[7] Y. Cao, W. Tien, P. Faloutsos, and F. Pighin, “Expressive speech-
driven facial animation,” ACM Transactions on Graphics, vol. 24,
no. 4, pp. 1283–1302, October 2005.

[8] S. Mariooryad and C. Busso, “Feature and model level com-
pensation of lexical content for facial emotion recognition,” in
IEEE International Conference on Automatic Face and Gesture
Recognition (FG 2013), Shanghai, China, April 2013, pp. 1–6.

[9] K. Choi, Y. Luo, and J. Hwang, “Hidden Markov model inversion
for audio-to-visual conversion in an MPEG-4 facial animation
system,” The Journal of VLSI Signal Processing, vol. 29, no. 1-2,
pp. 51–61, August 2001.

[10] L. Xie and Z.-Q. Liu, “A coupled HMM approach to video-
realistic speech animation,” Pattern Recognition, vol. 40, no. 8,
pp. 2325–2340, August 2007.

[11] B. Fan, L. Wang, F. K. Soong, and L. Xie, “Photo-real talking
head with deep bidirectional LSTM,” in International Conference
on Acoustics, Speech, and Signal Processing (ICASSP 2015),
Brisbane, Australia, April 2015, pp. 4884–4888.

[12] S. Taylor, A. Kato, I. Matthews, and B. Milner, “Audio-to-visual
speech conversion using deep neural networks,” in Interspeech
2016, San Francisco, CA, USA, September 2016, pp. 1482–1486.

[13] X. Li, Z. Wu, H. Meng, J. Jia, X. Lou, and L. Cai, “Expressive
speech driven talking avatar synthesis with DBLSTM using
limited amount of emotional bimodal data,” in Interspeech 2016,
San Francisco, CA, USA, September 2016, pp. 1477–1481.

[14] N. Sadoughi and C. Busso, “Joint learning of speech-driven
facial motion with bidirectional long-short term memory,” in
International Conference on Intelligent Virtual Agents (IVA 2017),
ser. Lecture Notes in Computer Science, J. Beskow, C. Peters,
G. Castellano, C. O’Sullivan, I. Leite, and S. Kopp, Eds. Stock-
holm, Sweden: Springer Berlin Heidelberg, August 2017, vol.
10498, pp. 389–402.

[15] C. Busso, M. Bulut, C. Lee, A. Kazemzadeh, E. Mower, S. Kim,
J. Chang, S. Lee, and S. Narayanan, “IEMOCAP: Interactive
emotional dyadic motion capture database,” Journal of Language
Resources and Evaluation, vol. 42, no. 4, pp. 335–359, December
2008.

[16] A. Metallinou, C. Busso, S. Lee, and S. Narayanan, “Visual
emotion recognition using compact facial representations and
viseme information,” in International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2010), Dallas, TX, USA,
March 2010, pp. 2474–2477.

[17] S. Mariooryad and C. Busso, “Factorizing speaker, lexical and
emotional variabilities observed in facial expressions,” in IEEE
International Conference on Image Processing (ICIP 2012), Or-
lando, FL, USA, September-October 2012, pp. 2605–2608.

[18] P. Lucey, T. Martin, and S. Sridharan, “Confusability of phonemes
grouped according to their viseme classes in noisy environments,”
in Australian International Conference on Speech Science &
Technology (SST 2004), Sydney, NSW, Australia, December 2004,
pp. 265–270.

[19] F. Eyben, K. Scherer, B. Schuller, J. Sundberg, E. André,
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