Retrieving Target Gestures Toward Speech Driven Animation with Meaningful Behaviors

Najmeh Sadoughi and Carlos Busso

Multimodal Signal Processing (MSP) lab
The University of Texas at Dallas
Erik Jonsson School of Engineering and Computer Science

Nov. 11th, 2015
Motivation

• Creating naturalistic nonverbal behaviors is important for conversation agents (CAs)
 • Animations
 • Entertainment
 • Virtual reality

• More than 90% human gestures occur while speaking

• Complex relationship between gestures and speech
 • Cross modality interplay
 • Synchronization
Previous studies on co-verbal gesture synthesis

- Rule based frameworks [Cassell et al., 1994; S. Kopp 2006]
 - Define rules based on the semantics
 - Synchronization is challenging
 - The variation is limited

- Speech prosody driven systems [Levine et al., 2010; Busso et al. 2007]
 - Learn movements and their synchronization from recordings
 - Capture the variation in the data
 - Disregard the context

- Combination of data driven and rule based methods [Stone et al. 2004, Marsella et al. 2013, and Sadoughi et al. 2014]
 - Utilizing the advantages and overcoming the disadvantages
Previous studies using both approaches

• Stone et al., [2004]
 • Search for combination of speech and motion units with similar meaning to speech and planned behaviors

• Marsella et al., [2013]
 • Create appropriate gestures depending on the communicative goal of the utterance
 • Use speech prosody features to capture the stress and emotional state of the speaker

• Sadoughi et al., [2014]
 • Constrain a speech driven animation model based on semantic labels (e.g., Question and Affirmation)
Our Vision

• Creating a bridge between rule based systems and data driven framework

• SAIBA framework [Kopp et al., 2006]:

 Intent Planning → Behavior Planning → Behavior Realization

• Considering the target gesture for synthesis is known

 • Synthesizing behaviors that are **timely aligned and coordinated with speech**

 • Synthesizing behaviors that **convey the right meaning**
Objective of This Study

Annotating few samples of a prototypical gesture

Retrieving similar gestures to the examples

Training the Behavior Realization model

Goal: Retrieve examples of prototypical gestures
Gesture Segmentation and Classification

- Kovar et al. [2004]
 - Find gestures similar to a target gesture using DTW and use retrieved samples to expand the training samples

- Joshi et al. [2015]
 - Train a random forest model using video and depth map of the joints
 - They use a multi-scale window sliding for new data (forward search).

- Zhou et al. [2013]
 - Hierarchical aligned cluster analysis (HACA) to dynamically segment and cluster motion capture data into movement primitives
MSP-AVATAR Corpus

- Multimodal database comprising:
 - Motion capture data
 - Video camera
 - Speech recordings

- Four dyadic interaction between actors
 - We motion captured one of the actors

- Database rich in terms of discourse functions
Discourse Functions in MSP-AVATAR corpus

- Discourse functions that elicit specific gestural behaviors
- Selection guided by previous studies
 - Poggi et al [2005]
 - Marsella et al. [2013]
- 2-5 scenarios per discourse function
- We used the recordings from one of the actors (66 mins)
Prototypical Behaviors

- **So-What**
- **To-Fro**
- **Regress**

Nods

Shakes

<table>
<thead>
<tr>
<th>So-What</th>
<th>To-Fro</th>
<th>Regress</th>
<th>Nods</th>
<th>Shakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples_{train}</td>
<td>14</td>
<td>27</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>Samples_{test&developing}</td>
<td>21</td>
<td>29</td>
<td>73</td>
<td>138</td>
</tr>
</tbody>
</table>
Gesture Retrieval Framework
Overview

• Temporal reduction
 • The data is captured by 120 fps, and may have redundant information

• Gesture segmentation
 • Gestures can happen with arbitrary durations

• Gesture detection
 • Binary decision per segment
Temporal Reduction

- Reduce the complexity of the system
 - Inspired by Zhou et al. [2013]
- Non-uniform downsampling
 - Based on Linde-Buzo-Gray vector quantization (LBG-VQ)
 - Discard consecutive frames up to 5 frames if they are in the same cluster
Gesture Segmentation

- Window size (L_w)
- Minimum length of search segment (L_{min})
- Maximum length of search segment (L_{max})
- Increment frames between iterations
 - $\Delta = (L_{max} - L_{min})/30$
- One winner per window
Gesture Detection

- One-class SVMs
 - Efficiently reduce the number of candidates
- Dynamic time alignment alignment kernel (DTAK)
 - To increase precision
One-Class SVMs

- Only positive samples
- Limited number of training instances
 - Train separately for different features
 - Fuse the classifiers using the AND operator
- Feature selection by cross-validation
 - Sort features according to accuracy
 - Remove one by one to get accuracy > 0.85

\[
\text{STD(Joint 1-x)} \rightarrow \text{One-Class SVMs} \\
\text{STD(Joint 1-y)} \rightarrow \text{One-Class SVMs} \\
\text{STD(Joint 1-z)} \rightarrow \text{One-Class SVMs} \\
\text{STD(Joint 2-x)} \rightarrow \text{One-Class SVMs} \\
\text{STD(Joint 2-y)} \rightarrow \text{One-Class SVMs} \\
\text{STD(Joint 2-z)} \rightarrow \text{One-Class SVMs} \\
\vdots \\
\text{STD(Joint n-x)} \rightarrow \text{One-Class SVMs} \\
\text{STD(Joint n-y)} \rightarrow \text{One-Class SVMs} \\
\text{STD(Joint n-z)} \rightarrow \text{One-Class SVMs}
\]
DTAK by Zhou et al. [2013]

- DTAK finds similarity between two segments regardless of their length in term of a kernel (Gaussian)

\[K_{i,j} = \exp\left(-\frac{\|x_i - y_j\|^2}{2\sigma^2}\right) \]

\[\tau(X, Y) = \frac{u_{l_x,l_y}}{l_x + l_y}, u_{i,j} = \max\left\{ u_{i-1,j} + K_{i,j}, u_{i-1,j-1} + 2K_{i,j}, u_{i,j-1} + K_{i,j} \right\} \]

- Final score: the median of the similarity measure to the training examples

- Find a threshold by maximizing the F-score on the developing set
Evaluation of Retrieved Gestures

- Precision in head gestures > 0.85
- Precision in hand gestures > 0.59

Head vs. hand gestures:
- Less complex

<table>
<thead>
<tr>
<th>Gesture</th>
<th>19 Sessions</th>
<th>Precision [%]</th>
<th>Test & Developing Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Shake</td>
<td>91.32</td>
<td></td>
<td>Head Shake 95.65 42.31</td>
</tr>
<tr>
<td>Head Nod</td>
<td>85.04</td>
<td></td>
<td>Head Nod 87.10 61.36</td>
</tr>
<tr>
<td>To-Fro</td>
<td>59.52</td>
<td></td>
<td>To-Fro 67.86 67.86</td>
</tr>
<tr>
<td>So-What</td>
<td>76.68</td>
<td></td>
<td>So-What 76.92 47.62</td>
</tr>
<tr>
<td>Regress</td>
<td>71.77</td>
<td></td>
<td>Regress 78.85 57.75</td>
</tr>
</tbody>
</table>
The histograms of the discourse functions vs. behaviors

- Different gestures appear with different frequencies across different discourse functions
- Shakes happen in Negation more than in Affirmation
- Nods happen in Affirmation more than in Negation
- So-What happens more in Question than other discourse functions
Modeling the gestures

• Gesture retrieval \(\rightarrow\) more samples to train the models

• Assumptions
 • Target gesture is known
 • Speech prosody features are known

• How to model the gesture?
 • Speech driven models
 • Training: \textit{speech prosody features, motion capture data}, and \textit{prototypical gesture}
 • Testing (synthesis): \textit{speech prosody features}, and \textit{prototypical gesture}

<table>
<thead>
<tr>
<th>Gesture</th>
<th>#Retrieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Shake</td>
<td>287</td>
</tr>
<tr>
<td>Head Nod</td>
<td>535</td>
</tr>
<tr>
<td>To-Fro</td>
<td>223</td>
</tr>
<tr>
<td>So-What</td>
<td>114</td>
</tr>
<tr>
<td>Regress</td>
<td>262</td>
</tr>
</tbody>
</table>
Speech driven animation

• Dynamic Bayesian Network
• Shared hidden variable between speech and head/hand
• Constrained on gestures
• Add the constraint node as parent of the hidden state:
 • More robust to unbalanced data
 • Learns separately:
 • Prior probabilities of the gestures
 • The affect of gestures on transition matrices
HEAD Synthesis

For illustration gesture is always “on”
HAND Synthesis

For illustration gesture is always “on”

To-Fro

So-What

Regress
Conclusions

- This paper proposed a framework to automatically detect target gestures
 - Using few examples in a motion capture database
 - The advantage of this framework is its flexibility to retrieve any gesture
- The approach jointly solved the segmentation and detection of gestures
 - Multi scale windows
 - Two-step detection framework
- We used the retrieved samples to synthesize novel realizations of these gestures
 - Speech-driven animations constrained by these target behaviors
Future Work

• Explore the minimum number of examples per gesture to achieve acceptable detection rates

• Using adaptation to generalize the models to retrieve similar gestures from different subjects
 • With more data, more restrictive threshold can be considered

• Explore the effects of detection errors on the performance of the speech driven models
Multimodal Signal Processing (MSP)

• Questions?

http://msp.utdallas.edu/
HEAD Synthesis

For illustration gesture is always “on”
HAND Synthesis

For illustration gesture is always “on”

To-Fro

So-What

Regress
HEAD Synthesis

For illustration gesture is always “on”

Nods

Shakes
HAND Synthesis

For illustration gesture is always "on"

To-Fro

So-What

Regress