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ABSTRACT

Conversational agents provide powerful opportunities to in-
teract and engage with the users. The challenge is how to
create naturalistic behaviors that replicate the complex ges-
tures observed during human interactions. Previous studies
have used rule-based frameworks or data-driven models to
generate appropriate gestures, which are properly synchro-
nized with the underlying discourse functions. Among these
methods, speech-driven approaches are especially appealing
given the rich information conveyed on speech. It captures
emotional cues and prosodic patterns that are important to
synthesize behaviors (i.e., modeling the variability and com-
plexity of the timings of the behaviors). The main limitation
of these models is that they fail to capture the underlying
semantic and discourse functions of the message (e.g., nod-
ding). This study proposes a speech-driven framework that
explicitly model discourse functions, bridging the gap be-
tween speech-driven and rule-based models. The approach
is based on dynamic Bayesian Network (DBN), where an
additional node is introduced to constrain the models by
specific discourse functions. We implement the approach by
synthesizing head and eyebrow motion. We conduct percep-
tual evaluations to compare the animations generated using
the constrained and unconstrained models.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User
Interfaces— Conversational Agent
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1. INTRODUCTION

Conversational agents (CAs) provide powerful opportu-
nities to better interact and engage with the users. They
can communicate verbal and nonverbal information, which
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can be close to natural human interactions. CAs with nat-
uralistic behaviors can be used in mobile interfaces, devices
for the hearing impaired, animated movies, animations, in-
telligent tutoring systems, and entertainment industry. The
challenge is to generate avatars with appropriate naturalis-
tic nonverbal behaviors, responding to the underlying flow
of the interaction.

Nonverbal behaviors are expressed through the body pos-
ture, hand gestures, head movements, eyebrow movements,
facial expression and gaze [15]. People use these behaviors to
highlight their emotional state, portray their thoughts, re-
fer to concrete objects, illustrate abstract ideas, and clarify
the intended semantic content. In order to create believable
CAs, a precise and deep understanding of the relationship
between speech and gestures is required. McNeill [20] men-
tioned that 90% of gestures occur when people are speaking.
Moreover, speech and gestures are synchronized at differ-
ent levels (i.e., phonemes, words, phrases, sentences) [10].
Gestures such as raising the eyebrows, nodding the head,
shaking the head and frowning are timely aligned with their
underlying verbal message. A CA should capture this com-
plex coupling between gestures and speech.

Previous work on CAs are mainly divided into two cat-
egories: rule-based systems [2,10,15,19], and data-driven
systems [3,5,9,16-18]. Rule-based systems usually define
rules about the behaviors based on the contextual informa-
tion during the dialog. Data-driven systems rely on recorded
data to synthesize behaviors. An appealing approach to
drive the animation is speech. Speech conveys rich infor-
mation that a CA can leverage to synthesize naturalistic be-
haviors. Prosodic information conveyes the intonation and
emphasis which is important to model the variability and
complexity of the timings of the behaviors. However, when
only speech is used to drive the animation, the behaviors
may not capture the contextual information, ignoring the
discourse functions of the gestures (nodding for affirmation,
shaking head for negation, frowning for disapproval). This
study addresses this limitation by proposing a framework
for speech-driven animations that explicitly models the un-
derlying discourse functions.

This paper presents our preliminary attempt to bridge the
gap between speech-driven approaches and rule-based sys-
tems, exploiting the advantages of both methods. The paper
proposes to constrain a speech-driven animation system by
the underlying discourse function of the message, providing
more appropriate behaviors. The models are built upon the
dynamic Bayesian network (DBN) proposed in Mariooyiad
and Busso [18], which captures the relationship between



head movements, eyebrow movements and speech prosody
features. We propose to add an extra variable reflecting
the discourse function, which constrains the synthesized be-
haviors. We present perceptual evaluations to compare the
constrained and unconstrained speech driven models.

2. RELATED WORK

Some of the frameworks for CA proposed in previous stud-
ies depend on carefully designed rules to synthesize appropri-
ate gestures. Cassell et al. [10] designed a system with spe-
cific rules to generate facial expressions, head movements,
and hand gestures, which were synchronized with speech
[10]. In their follow up work, they designed the behavior
expression animation toolkit (BEAT), which receives text
as input to generate appropriate gestures and speech for
the animation [11]. Kopp et al. designed a unified frame-
work named behavior markup language (BML), for gener-
ating animations based on rules [15]. This effort allows
other researches working on embodied conversational agents
(ECAs) to use this language to combine various rules to
generate behaviors (gaze, facial expression, head and hand
movements). Marsella et al. [19] designed a system to syn-
thesize animations that relies on speech and its transcrip-
tion. They conducted acoustic and syntactic analysis on the
inputs, generating animations based on some predefined be-
havior mapping. After synthesizing the gestures, they pro-
posed heuristic rules to remove conflicting behaviors. They
showed that animations generated using their approach are
perceived more appropriate than prosody driven beats.

Studies have shown the relationship between head move-
ments, eyebrow movements and speech [8,13]. Graf et al. [13]
showed that head movements and facial expressions are cor-
related with speech prosody features. They showed that
despite variations of amplitude and direction of head move-
ments, the timing of these movements are correlated with
prosodic features. They also identified correlation between
the rise of eyebrows and prosodic features. These studies
have motivated us to drive facial animations using speech as
an alternative approach to rule-based methods [5-7,12].

Brand [3] proposed a mapping approach from HMMs to
generate animations from speech. Cao et al. [9] designed
a framework based on a generative model to synthesize fa-
cial expression with appropriate lip synchronization using
speech prosody features. Busso et al. [5,6] synthesized head
movements, using HMMs and vector quantization to gen-
erate head movements based on speech prosody features.
Mariooryad and Busso [18], proposed a framework based on
DBNs to model the relationship between head movement,
eyebrow movement, and speech. This generative model syn-
thesized head and eyebrow movements using prosody fea-
tures. Le et al. [16] proposed a live speech-driven head, gaze,
and eyelid motion synthesis framework. They designed a
Gaussian mizture model (GMM) to capture the static kine-
matic properties of head movement and speech prosody fea-
tures. Then, they used a gradient descent scheme to find
the optimum mapping for head motion synthesis. Levine
et al. [17] designed a framework based on conditional ran-
dom fields (CRFs) to use speech prosody features to find the
kinematic properties of joint movements.

Rule-based systems define certain predefined behaviors
which are not likely to capture the rich and complex rela-
tionship and variability between modalities. If we rely solely
on rule-based systems, the animation will tend to display

repetitive behaviors, with desynchronization between ges-
tures and speech. Data-driven systems have the potential
to capture variations of behaviors observed in the corpus,
and to produce gestures that are timely synchronized with
speech. Several studies have used speech prosodic features
to generate facial behaviors. Although prosody is directly
affected by emphasis, and emotional state of the speaker,
the generated behaviors may not properly respond to the
underlying discourse function in the dialog (e.g., nodding
for affirmation, shaking head for negation, frowning for dis-
approval). This study proposes a systematic framework to
incorporate the benefits of rule-based systems and speech-
driven animation by constraining the models with appropri-
ate discourse functional classes.

3. DATABASE AND ANNOTATION

The study relies on the interactive emotional dyadic mo-
tion capture (IEMOCAP) corpus [4]. This database com-
prises dyadic interactions between two actors (a female and
a male), during improvisation and scripted scenarios. The
scenarios are designed to evoke different emotional reactions
from the actors. The corpus consists of five sessions (10 ac-
tors), and includes motion capture data, videos, and audio
recordings of the interactions. This study only uses the im-
provisation scenarios for the first session.

The study aims to constrain speech-driven models by the
underlying discourse functions. For this purpose, it is im-
portant to annotate the data with discourse function classes.
The annotation was conducted with ANVIL [14], which is
a flexible tool to annotate multiple events in the video. We
started with the segmentation boundaries of the speaking
turns available in the IEMOCAP corpus. Some segments
were split to better localize the behaviors. The discourse
function classes selected for the study were inspired by pre-
vious studies [19,22]. Instead of a full semantic analysis of
the input transcription, Marsella et al. [19] considered only
semantic classes that tend to generate gestures. In our study,
we also restrict the set to discourse function classes which we
expect to produce nonverbal behaviors. The toolkit GRETA
lists an extensive set of mappings between discourse function
rules and distinct configurations for facial expressions and
head movements [22]. From the list, we select the follow-
ing discourse function classes for annotation: affirmation,
negation, question, statement (opinion-statement), contrast,
uncertain, appreciation, request, command, suggest, warn,
and inform. However, we did not have enough samples
for all of these classes. Therefore, this study only consid-
ers four dialog act classes: affirmation (90 turns), negation
(53 turns), question (112 turns), and statement (158 turns).
These classes are prone to generate gestures, and therefore
provide the perfect starting point to study the role of dis-
course functions in the synthesis of behaviors for CA.

4. STATISTICAL ANALYSIS

We conduct a statistical analysis on the data, before con-
straining the speech-driven models by the four discourse
function classes selected in Section 3. The purpose of the
analysis is to identify whether the behaviors observed for
each discourse function class present characteristic patterns.
The study focuses on head and eyebrow motion, so this
analysis considers only these gestures. For head motion,
we study pitch, yaw, and roll movements and their circular
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Figure 1: The movements analyzed in this paper.

Table 1: Features that are significantly different for

each discourse function class (ANOVA). Figure 1

describes the features for head and eyebrow motion.
Question vs. Non-Question

Pitch F(1,452) = 8.58, p = 0.004

Roll F(1,452) = 7.05, p = 0.008

Pitch Velocity F(1,452) = 7.05, p = 0.008

Affirmation vs. Non-Affirmation

F(1,464) = 7.87, p = 0.005
F(1,464) = 10.42, p = 0.001
F(1,464) = 6.74, p = 0.0097

LBRO3
RBRO3
Pitch Velocity

Negation vs. Non-Negation

Yaw F(1,419) = 5.17, p = 0.023
Pitch Velocity F(1,419) = 4.99, p = 0.026

Statement vs. Non-Statement
F(1,470) = 4.30, p = 0.038

Pitch Velocity

velocity. For eyebrow motion, we study the position and
velocity of the markers placed on the eyebrows: LBRO1,
LBRO2, LBRO3, RBRO1, RBRO2, and RBRO3 (see Fig.
1).

The analysis separately considers the four discourse func-
tion classes. For a given class (e.g., question), we group
all the turns that do not belong to that class (e.g., non-
questions). The patterns on the features for these two groups
are then compared (question versus non-question). Table 1
reports the one way analysis of variance (ANOVA) results
for the features that are found significantly different for each
discourse function class. We assert significance when p <
0.05. Since the features have different dynamic ranges, we
also estimate the standard deviation of the features. This
measure characterizes changes in the dynamic range of the
features induced by a discourse function class. Then, we es-
timate a one-way ANOVA over these values and we report
the results in Table 2.

The results show that there are significant differences be-
tween the mean and standard deviation of Yaw for nega-
tion versus non-negation. This result is expected since peo-
ple tend to shake their head for disagreement. Likewise,

Table 2: Features in which their standard deviations
are significantly different for each discourse function
class (ANOVA). Figure 1 describes the features for
head and eyebrow motion.

Question vs. Non-Question

Pitch F(1,452) = 7.33, p = 0.0071
Roll F(1,452) = 5.37, p = 0.0210

Affirmation vs. Non-Affirmation
Yaw F(1,464) = 9.45, p = 0.0022

Roll F(1,464) = 19.94, p = 107>
LBRO1 F(1,464) = 6.47, p = 0.0113
LBRO3 F(1,464) = 5.69, p = 0.0174
RBRO1 F(1,464) = 6.95, p = 0.009
RBRO3 F(1,464) = 7.84, p = 0.005

Pitch Velocity F(1,464) = 21.36, p = 4.93 x 107°
Yaw Velocity F(1,464) = 12.74, p = 3.94 x 1074

Negation vs. Non-Negation

Yaw F(1,419) = 7.42, p = 0.0067
Roll Velocity F(1,419) = 8.75, p = 0.0033
Yaw Velocity F(1,419) = 53.21, p = 1.51 x 107 *2
RBRO3 F(1,419) = 6.19, p = 0.0132

Statement vs. Non-Statement
F(1,470) = 4.46, p = 0.0351

Roll Velocity

there are significant differences in Pitch Velocity for affir-
mation vs. non-affirmation. People tend to nod their head
for agreement. Also, features describing head movements
present statistical differences when people ask questions.

There are few differences in the features for statement.
Therefore, we expect that models constrained by this dis-
course function class may not produce perceptive changes
on the behaviors. Therefore, we exclude this class for the
analysis. Likewise, we exclude the class negation since we
only have 53 turns which are not enough to train the DBN
models (Sec. 5).

S. SPEECH-DRIVEN ANIMATION

This section introduces the acoustic and visual features
used to synthesize the behaviors from speech. It also de-
scribes the framework to synthesize the CA.

5.1 Mapping between Facial Markers & FAPs

We use the toolkit Xface [1] to generate the animations
using the facial markers. Xface is an open source software
complying with the MPEG-4 standard. Xface accepts facial
animation parameters (FAPs) as input. There are 68 FAPs
defined in the MPEG-4 standard, where two of them corre-
spond to high-level parameters (visemes and emotions), and
the others are low-level parameters. The FAPs are defined
in terms of displacement of facial feature points (FPs) with
respect to their reference position [23]. Most of the facial
markers in the IEMOCAP database were selected following
the locations of the FPs. Therefore, it is possible to estab-
lish a linear transformation from facial markers to FAPs.
In particular, we use the approach described in Mariooryad
and Busso [18].



5.2 Acoustic Features

The acoustic features to drive the facial animation cor-
respond to prosodic features: fundamental frequency (F0)
and the RMS energy. We also include their first and sec-
ond derivatives forming a 6D feature vector. FO0 contours
have discontinuities during unvoiced regions, which intro-
duce undesired breaks in the input signal. We address this
problem by interpolating the FO contour. Another challenge
in modeling acoustic and facial features is the differences in
the time resolution. The sampling frequency for the speech
signal is 16 KHz, where the acoustic features are extracted
from short-time windows every 16.67 ms (60 frames per sec-
ond). The sampling rate for the motion capture data is 120
Hz. We address this problem by upsampling the acoustic
features to 120 Hz. Therefore, the acoustic and facial fea-
tures are aligned.

5.3 Speech-Driven Models using DBN

The baseline system to model the relationship between
facial behaviors and speech correspond to one of the ap-
proaches proposed by Mariooryad and Busso [18]. They de-
signed three DBNs, which make different assumptions on
the relationship between speech and facial features (eye-
brow and head motions). The study demonstrated that
the jJDBN3 model, described in Figure 2(a), achieved the
best performance using both objective and subjective eval-
uations. Therefore, we selected this model as our baseline
system (i.e., unconstrained models). The node Speech rep-
resents the acoustic features. The node Headé& FEyebrow cor-
responds to a joint variable describing the configuration of
head and eyebrow positions. These two nodes are connected
to the parent node Hpge, which is a discrete state space
variable defining possible speech-gesture configurations (i.e.,
codebook). During training, all the variables are provided
to the system. During synthesis, only the Speech variable is
available, and the Hjge node is estimated from the model.

We build upon the jDBNS model to incorporate con-
straints on discourse function classes. We propose to add
an extra observation node, Discourse_ Function, which is
a binary variable indicating the presence or absence of a
given discourse function class. Figure 2(b) describes this
model, which is referred to as C-jDBN3. The addition of this
variable provides a novel framework to effectively constrain
the model by the underlying discourse function. The Dis-
course_Function node affects the distribution of the hidden
states. During inference, introducing evidences about the
presence of the discourse function will constrain the model
by increasing the posterior probability of appropriate hidden
states associated with that discourse class.

Notice that separate models are used to model each of the
discourse function classes. The reason for not modeling all
of the discourse classes together is the limited data available
for the evaluation. The framework is implemented with the
Bayes Net Toolbox for MATLAB [21].

5.3.1 Inference

Inference in the C-jDBNS3 is based on Forward-Backward
algorithm. The observation variables during learning and
inference are different. During learning, we have full ob-
servation which includes Speech, Head&FEyebrow, and Dis-
course_Function. During synthesis, the observation is lim-
ited to Speech and Discourse_Function. The learning in-
ference uses full observation probability (Equation 1), and

Head &
Eyebrow

Discourse!
Function

Discourse
Function

Figure 2: Illustration of (a): jDBNS3, and (b): C-
JDBNS3. Hpg. represents a single, hidden state space
variable, Speech represents the prosodic features ex-
tracted from speech, Head& Eyebrow represents the
head and eyebrow features, and DiscourseFunction
represents the constraint applied to the model.

Head &
Eyebrow

t-1 t

the synthesis inference uses partial observation probability
(Equation 2).

OtF(z) =P(Speech|Hpge, = 1)
-P(Head& Eyebrow:|Hpge, = 1) (1)

-P(Discourse_Functioni|Hpge = 1)

Of (i) =P(Speechi|Hnge, = 1)

-P(Discourse_Function:|Hpge = 1)

5.3.2  Synthesis

After inference with partial observation, the expected val-
ues of head and eyebrow features are derived according to
Equation 3. These trajectories are used to synthesize the
movements using either the unconstrained models (JDBN3)
and the constrained models (C-jDBN3). (i) is the poste-
rior probability of the i*" state generating the observation,
and prge(i) is the mean of head and eyebrow features for
the i*" state.

(2)

E [Head& Eyebrow|Speech, Discourse_Function] =
- Lo (3)
3 aneee (900
i=1

With the C-jDBN8& model, the Discourse_Function node
changes the posterior probability of the hidden states given
the observation, affecting in a principled manner the ex-



Model Constraint ~ States# Params# Train
Turns#
C-jDBN3  Question 6 527 95
jDBN3 Question 6 521 95
C-jDBN3  Affirmation 6 527 74
jDBN3 Afirmation 6 521 74

Table 3: This table shows the specifications for
training the two models, constrained and uncon-
strained one, for (affirmation and question).

pected value of head and eyebrow movements. The model
generates appropriate movements according to the specific
discourse function class.

After finding the expected value for head and eyebrow
motion, we implement an interpolation scheme to remove
abrupt transitions or jerky movements. The approach se-
lects key points, which are used to interpolate the trajec-
tory. More details about this smoothing approach are given
in Mariooryad and Busso [18].

Notice that we synthesize the expected eyebrow and head
movements given the observation. Therefore, the behaviors
synthesized using these models do not produce movements
spanning the same dynamic range as the original behaviors
in the database. As a result, some of the movements are
not visually perceived in Xface. We address this problem
by scaling the behaviors to recover the original standard
deviation observed over the training data. The calculated
scaling factor is then downscaled by 0.4, since a test data
might not include the whole range of movements appeared in
the training set. This constant factor is selected empirically.
Note that this process only scales the trajectories. It does
not interfere with the correlation between the synthesized
and original behaviors.

6. EXPERIMENTS AND RESULTS

To assess the performance of the constrained model C-
JDBNS3, we demonstrate that the model can create natural-
istic behaviors. We compare the results of the C-jDBN3
models with the videos synthesized with the jDBNS3 model.
For comparison, we also create animations with the actual
sequences directly extracted from the motion capture data.
We refer to these videos as original. The videos for C-jDBN3
and jJDBNS are created as follows. First, we implement a
five-fold cross-validation scheme, where in each fold four par-
titions are used to train the models, and one partition is
used to create the animations. This scheme maximizes the
usage of the data, preserving separate partitions for training
and testing the models. Second, we balance the number of
samples used for training the C-jDBN3 models (e.g., same
number of samples for question and non-question classes).
Notice that there are more samples not belonging to the dis-
course function class. Therefore, we randomly select sam-
ples to balance the number of samples for both conditions.
Third, we use the same set of sentences to train C-jDBN3
and jDBN8 models. Table 3 reports the configuration set-
tings for the models.

6.1 Subjective Evaluation of the results

Our aim is to analyze how the synthesized animation using
the C-jDBNS& models are perceived in comparison with the
ones generated with the unconstrained jDBN3 models. We
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Which Video do you prefer?

O Video 1 O Video 2

Which Video looks more natural?
o Video 1 © Video 2

In which Video do the behaviors of the avatar look more
appropriate with respect to the context?
O Video 1 O Video 2

Figure 3: The interface used for the perceptual eval-
uation.

define a perceptual evaluation task in which each evaluator
watches two videos with the same audio file, but with dif-
ferent animations. We consider three conditions: C-jDBNS3,
jDBN3 and original. Therefore, the task requires 3 evalua-
tions per sentence (C-jDBN3 versus jDBNS, C-jDBNS ver-
sus original, and JDBN3 versus original). After watching a
pair of videos, the evaluator is asked to answer three pref-
erence questions: (1) which video do you prefer? (2) which
video looks more natural? (3) in which video do the behav-
iors of the avatar look more appropriate with respect to the
context?

For each discourse function class (question, affirmation),
we selected 20 different sentences for the evaluations. There-
fore, the evaluations consider 60 comparisons per discourse
function class. To reduce fatigue, we split these 60 compar-
ison into three sets with 20 comparisons. Each evaluator
completes one of these sets. We rely on crowdsourcing for
the perceptual evaluation — Mechanical Turk (MT). Figure
3 shows the graphical user interface (GUI) to evaluate the
people’s preference in pairwise comparisons. We recruit 60
different evaluators. Each comparison is evaluated by 10
evaluators. The position of the videos (left or right) are
randomized for each evaluator. The agreement between the
evaluators is low given the subtle differences between the
generated videos (it is a difficult task).

A common problem observed when using crowdsourcing
is noisy data provided by cheaters (evaluators interested in
the payments who do not care about the task). We address
this problem by setting a threshold on the duration of the
evaluation of each pair of videos (see Equation 4). If the
duration of the task is less than T, we discard the evalua-
tions, since it is unlikely that the evaluators watched both
videos before providing their preferences (the evaluation is
not reliable). This threshold discarded 6% of the compar-
ison pairs for Question, and 10.1% of the comparisons for
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(a) Which video do you prefer?

5%
Original

43% 36% 35%
jDBN3 ‘DBN3 'iDBN3
64% 65%
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(b)Which video looks more natural?

41% 37% 34%
jDBN3 ‘DBN3 jDBN3
59% 63% 66%
C-jDBN3 Original Original

(c) Which video is more appropriate given the context?

Figure 4: The result of perceptual evaluation for
the pairwise comparison tasks where the constraint
is Question.

Affirmation. For consistency, we recollected the perceptual
evaluations for these pairs.

T = 2 x durationyideo + 3(seconds) (4)

To evaluate the results from MT, we conducted an infor-
mal evaluation with two evaluators from our laboratory fol-
lowing the same approach. The inter-evaluator agreement in
controlled conditions was similar to the ones achieved with
MT. Therefore, we conclude that the data from MT is reli-
able.

Figure 4 and 5 shows the results of the perceptual eval-
uation. These figures gives the preference for each pair-
wise comparison. Figure 4 gives the results when C-jDBN3
is constrained by question, and Figure 5 gives the results
when C-jDBNS is constrained by Affirmation. In these two
figures, the first, second and third rows correspond to the
results of the first, second and third questions, respectively.

For the discourse function class question, Figure 4(a) shows
that in 56% of the times the evaluators preferred the anima-
tions generated with C-jDBNS over the ones generated with
jDBNS3. There is a 95.5% probability that this proportion
is greater than chances (50%). From the second question
(Fig. 4(b)), the evaluators considered 57% of the times the
animations generated with the C-jDBN3 model more natu-
ral than the ones generated with the unconstrained jDBN3
model. There is a 97.6% probability that the proportion for
this comparison is greater than chances. Finally, the evalua-
tors considered in 59% of the time that the C-jDBN3 model
was more appropriated than the ones generated with jDBNS3.
There is a 99.45% probability that the proportion for this
comparison is greater than chances. Figure 4 also shows
that the C-jDBN3 model is more selected than the uncon-
strained models when they are compared with the original
sequences (indirect comparison).

57% 40%

jDBN3 ‘DBNI}
60% 67%

Original Original

33%

‘JBNI*

35%
jDBN3

(a)Which video do you prefer?

57% 40%

jDBN3 ‘DBN3
60% 65%

Original Original
(b)Which video looks more natural?

56% 42% 35%
jDBN3 ‘DBN.@ jDBN3
44% 58% 65%
C-jDBN3 Original Original

(c) Which video is more appropriate given the context?

Figure 5: The result of perceptual evaluation for
the pairwise comparison tasks where the constraint
is Affirmation.

For the discourse function class affirmation, the results
are not conclusive. Figure 5(a) shows that the evaluators
preferred C-jDBN3 43% of the times over the animations
generated with jDBNS3. Similar results are observed for the
question about naturalness (Fig. 5(b)) and appropriateness
(Fig. 5(c)). These results are not consistent with the indi-
rect evaluations, where we compare the synthesized models
with the animations generated with the original data. This
indirect comparisons indicate that the constrained models
are selected more frequently than the unconstrained mod-
els. Our future work will continue to explore the benefits of
using constrained models for affirmation.

7. CONCLUSIONS AND DISCUSSION

This paper proposed to constrain speech-driven anima-
tion models by the underlying discourse functions. We fo-
cus on head and eyebrow motion. The statistical analysis
demonstrated significant changes in these behaviors across
discourse function classes (affirmation, negation, question,
and statement). This analysis implies that, in addition to
speech, other important factors should be included to syn-
thesize natural behaviors. Then, we proposed a DBN, where
a variable was added to constrain the behaviors. Perceptual
evaluations for the discourse function class question showed
that the animations with constrained models are perceived
more preferable, natural and appropriate than the anima-
tions with the unconstrained models. For the class affirma-
tion, the results are not conclusive. Although in the direct
comparison the evaluators preferred the unconstrained mod-
els over the constrained models, indirect comparisons with
the original videos reveal a different trend. When evalua-



tors compared the synthesized animations with the original
animations, the constrained models were selected more of-
ten than the unconstrained models. This result may be due
to lack of samples to train the DBN models. The statisti-
cal analysis revealed that patterns for eyebrow movements
change for affirmation. However, the perceptual contribu-
tion of eyebrow movements in the synthesized animations
is less dominant than the perceptual contribution of head
motion [18]. Furthermore, eyebrows have subtle movements
which can be captured by increasing the number of param-
eters. We expect that a better parametrization of eyebrows
may help in producing distinctive behaviors that evaluators
can perceive.

This study validates the idea of constraining speech-driven
models by the discourse function. We need more data to fur-
ther explore this research direction. We are currently col-
lecting motion capture recordings where the scenarios are
carefully designed to elicit specific discourse functions. The
corpus will play a key role in extending the proposed con-
strained speech-driven models. It will offer the opportunity
to consider other relevant discourse function classes such
as contrast, negation, warn, and uncertain. The perceptual
evaluation reveals that the raters preferred the animation
with the original sequences over the ones synthesized with
the DBN models (see Fig. 4 and 5). We expect that future
improvements on the proposed models can help in reducing
this gap.
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