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Abstract— In this paper we address improvements to our
multimodal system for tracking of meeting participants and
speaker segmentation with a focus on the microphone array
modality. We propose an algorithm that uses Directions-of-
Arrival estimated for each microphone pair as observations and
performs tracking of an unknown number of acoustically-active
meeting participants and subsequent speaker segmentation. We
propose modified mixture particle filter (mMPF) for tracking of
acoustic sources in thetrack-before-detection (TbD) framework.
Trajectories of sound sources are reconstructed by the optimal
assignment of posterior mixture components produced by mMPF
in consecutive frames. Further, we propose a sequential optimal
change-point detection algorithm which discovers speech seg-
ments in the reconstructed trajectories i.e., performs speaker
segmentation. The algorithm is tested on a multi-participant
meeting dataset both separately and as a part of the multimodal
system. On the task of speaker detection in the multimodal setup
we report significant improvement over our previous state ofthe
art implementation.

I. I NTRODUCTION

Audio-visual monitoring in multi-participant environments
is often used to extract features describing participants’inter-
action for content annotation. Further processing of the ob-
tained features can provide significant information for content
retrieval [1], meeting type classification [2]–[4] and meeting
summarization [5].

Our vision is to enable identification and tracking of the
dynamics and engagement of participants in meetings [6].
Features of interest for this task are relative positions ofmeet-
ing participants, speaker identification, and speaker activity
and audio event segmentation. In previous work [7] we have
presented our smart room system that performs fusion of
four different information modalities: a ceiling multi-camera
tracking system, a360◦ camera face detection system, a
microphone array, and a speaker identification system. In this
setup the circular microphone array (see Fig. 1) is the only
modality that can link the active speaker identity obtained
through speaker identification modality to the participantloca-
tion obtained by tracking from video. In addition to providing
complementary information to the other modalities, it alsopro-
vides redundancy for video localization. Therefore, the overall
system performance in identification and localization depends
strongly on the quality of the microphone array tracking of
sound sources locations and segmentation of speech intervals,
the topic of this paper.

Following our previous work [6] we note that the accuracy
of the microphone array data fusion method represents a
bottleneck for the performance of multimodal tracking of user
dynamics. In this work we address this issue by focusing on
two problems related to the microphone array modality: track-
ing of an unknown number of acoustically active participants
and active speaker segmentation.

Contribution that we propose is placed in context in Fig.2.
Speaker localization, segmentation, and identification all rely
heavily on accurate speaker tracking and segmentation of the
microphone array output.

We employ a modifiedMixture Particle Filter (mMPF),
based on work by Vermaak et al. [8], to track an unknown
number of acoustic sources. The mMPF employs as obser-
vations the angular estimates of source locations obtained
using theFractional Lower Order Statistics Phase Transform
(FLOS-PHAT) method [9] forTime Difference Of Arrival
(TDOA) estimation for each microphone pair. The nature
of the observations is such that it is difficult to design a
robust frame level detector of acoustic source appearances
and disappearances. For that reason two modifications on
the original MPF algorithm are proposed: First, the particle
re-clustering step is modified to take into the account both
spatial position and weights of particles; and second, MPF
is placed within theTrack-before-Detection (TbD) framework
[10] where sources are detected by accumulation of acoustic
evidence over time and source trajectories are reconstructed by
the optimal two-index [11] assignment of mixture components
in consecutive frames. In this formulation the disappearance
of acoustic sources is detected when trajectory discontinuity
occurs.

In order to discriminate trajectories that belong to active
speakers (dominant acoustic sources) from the other acoustic

Fig. 1. On the left is the instrumented conference room and onthe right is
the 16-microphone array with the omni-directional camera above it.
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Fig. 2. a) Multimodal system architecture (parts discussedin this work are
denoted by bold letters) b) Steps of the proposed microphonearray algorithm
for speaker tracking and segmentation (proposed algorithmis represented by
the mMPF+SOCPD box in multimodal architecture scheme 3a.)

sources (e.g. noise produced by other participants such as
paper rattling, coughing etc. as well as sound reflections
on surfaces such as the projection screen - see Fig. 1) we
apply aSequential Optimal Change Point Detection (SOCPD)
algorithm [12] on each reconstructed trajectory. As proposed
in Kligys et al. [13], we use separate likelihood statistics
for detection of speaker appearances and disappearances and
propose a method to compute these statistics from the particle
representations of trajectories.

Although MPF interpretation of Vermaak et al. [8], implic-
itly falls into the TbD category, no particular solution for
the trajectory reconstruction was discussed. Other tracking
applications of the MPF, such as in [14], do not follow
the TbD framework and employ heuristics for detection of
appearances and disappearances. For the optimal Bayesian
filtering setup, Kligys et al. [13] present a more elaborate
treatment of the detection of appearances and disappearances
than [15], which proposes an optimal detection method for
the particle filtering task. Our method preserves the desirable
properties of both frameworks, MPF and TbD, and offers a
consistent treatment of trajectory reconstruction and speaker
appearnace/disappearance detection.

We test the proposed algorithm in our multi-modal smart
room [7]. The proposed 16-microphone, 120-channel data
fusion technique, combined with the other modalities brings
significant improvement to the overall performance of the
smart-room system on speaker tracking and segmentation
tasks.

II. PROPOSEDMETHOD

The algorithm we propose can be summarized in four main
steps (see Fig. 2b): (i) obtain the posterior distribution of
the source locations at each time-frame through the update
equations of the mixture particle filter (MPF) (Section II-
B); (ii) extract modes of the posterior distribution using the
patient rule induction algorithm (PRIM) to (Section II-C);
(iii) reconstruct source trajectories by assignment of modes
discovered in consecutive time-frames. For this purpose we
apply the two index assignment algorithm (Subsection II-C);
and (iv) perform speaker segmentation using theSequential
Optimal Change-Point Detection (SOCPD) algorithm on each

x

yz

m

mj

Π ΠS

S

i

xt

tβ
o

(x )

ty

c

ij

Fig. 3. Microphone array.xt - position of sourceS; ≺ (micS) - true angle
between sourceS and microphone pair(mi, mj); β(xt) - angle that defines
source position in the XoY plane;yi,j

t - Direction of Arrival estimated by
microphone pair(mi, mj)

reconstructed trajectory (Subsection II-E).
The statistical model used is described in the following

subsection.

A. Statistical Model

We assume that the acoustically active source is represented
by its locationxt in the quantized 3-D meeting room space.

Our analysis is based on time delay estimates derived by
the algorithm described in [9]. Pair-wise delays betweenM
microphones (m1, ..., mM ) are estimated and transformed to
Direction of Arrival Angles (DoAA) producing aM(M−1)/2-
dimensional observation vectory

t
every time-frame. Given a

16-channel microphone array in our smart room this results
in a 120-dimensional observation vector. As shown in Fig. 3
observation coordinateyi,j

t ∈ [0, π] denotes DoAA for the
microphone pair(mi, mj). Let us denotet-tuple of all obser-
vation vectors up to timet asy

1:t
.

We assume that the Markovian assumption holds and de-
scribe active source kinematics by the transition distribution
p(xt|xt−1) and the initial state distributionp(x0). We com-
pute the observation likelihoodp(y

t
|xt) as:

p(y
t
|xt) =

1

|R(xt)|

∑

(mi,mj)∈R(x
t
)

p(yi,j
t |xt), (1)

whereR(xt) denotes the set of all microphone pairs(mi, mj)
(i > j) for which the distance from the source locationxt

to the DoAA yi,j
t (see Fig. 3) is smaller than some limit-

ing distance. Both the transition distribution and observation
likelihood are learned from a supervised training dataset (see
Section III).

Since the goal is to track multiple acoustically active par-
ticipants, the posterior distribution of interestp(xt|y1:t

) will
contain encoded information on the position of each sound
source, and hence it is natural to represent it with a mixture
model. This approach preserves the low dimensionality of
the state space and has clear computational advantages over
methods that employ concatenation of the position vectors
of the different sources [16]. A computationally efficient
approximation of the optimal Bayesian solution is obtained
by formulating the tracking problem in the sequential Monte
Carlo framework [17], particularly using the mixture particle
filter [8] method.



B. Mixture Particle Filter

In this subsection we give a brief overview of the MPF
method and describe our choice of the sampling distribution.
Vermaak et al. [8] proposed mixture particle filters (MPF)
to enable maintaining the multi-modality of the posterior
distribution:

p(xt|y1:t
) =

Mt∑

c=1

αc,tpc(xt|y1:t
),

whereαt,c represents the weight of thecth mixture component
at time t. The setMc

t = {(xi
t,c, w

i
t,c) : i = 1..Nc} defines a

particle approximation of the distributionpc(xt|y1:t
) where

Nc, x
i
t,c and wi

t,c denote respectively number of particles,
position of ith particle and its weight.

MPFs show an elegant way to update particle representation
of different mixture components by separate particle filters
where the only interaction between different components ap-
pears in the particle weight update equations. For more details
see Vermaak et al. [8].

A key aspect of all sequential Monte Carlo algorithms is the
choice of an appropriate sampling distribution. Particularly, in
multi-source tracking scenarios the sampling distribution has
to drive particles towards regions where the new sources occur.
Therefore, the transition distributionp(xt|xt−1) does not
represent a good choice since it captures only the kinematics
of the existing target. In order to overcome this difficulty we
use a sampling distribution in the form of linear combination:
p(xt|xt−1, yt

) = γp(xt|xt−1)+(1−γ)q(xt|yt
). Distribution

q(xt|yt
) is constructed based on agreement between DoAA

estimates from different microphone pairs. Note that the
triplet (mi, mj, y

i,j
t ) defines a conic surface which contains

all possible source locations which are indistinguishablefrom
the perspective of the microphone pair(mi, mj). For eachxt

we count how many conic surfaces pass sufficiently close to
it and compute distributionq(xt|yt

) by normalization of the
obtained counts.

C. Particle Reclustering

In order to avoid incorrect identification of particle-mixture
pairings we perform particle reclustering. In the MPF algo-
rithm [8] reclustering is performed by a combination of the
k-means clustering algorithm and split-merge heuristics.The
k-means approach performs clustering based on the positions
of particles. This approach suffers since particles are drawn
from the sampling distribution and therefore their positions
do not follow the true posterior distribution. This problemcan
not be overcome by resampling on the full particle set because
it would undermine preservation of multi-modality as the main
principle of MPF.

We propose to solve this problem and determine the number
of mixture components without split-merge heuristics by the
Patient Rule Induction Method (PRIM) [18] briefly described
in Table I. Our idea is to use PRIM to detect regions in
which the particle approximation has high probability density
and adopt these regions as mixture components. This way
reclustering is done using both spatial properties of particles

and their weights. We define mixture component as a set of
particles in the interior of the 3D bounding box with sides
parallel to coordinate planes and proceed according to the
algorithm in Table I.

TABLE I

BRIEF DESCRIPTION OF THEPRIM ALGORITHM

1. Initalize bounding 3D box with sides parallel to coordinate planes so that
it contains all particles

2. Repeat steps 2a and 2b while there is more than N1 particles in the box.

2a. Cut off ǫ percent of total number of particles in the box by the plane
parallel to one of the box’s sides. Choose the side in a way that probability
density in the remaining part is the biggest possible.

2b. If the new density is smaller than the old one goto 3

3. Repeat steps 3a and 3b while there is less than N2 particles in the box.

3a. Expand the box along one side so that total number of particles increases
for ǫ percent. Choose the side in a way that probability density in the
remaining part is the biggest possible.

3b. If the new density is smaller than the old one goto 4.

4. Particles in the obtained box define one mixture component, remove
them from the tracking region and repeat steps 1-3 with remaining
particles.

D. Trajectory Reconstruction Algorithm

Without the particle reclustering step, MPF performs tra-
jectory maintenance implicitly – a mixture componentMm

t

is obtained by propagation of the particles from a mixture
componentMm

t−1. The reclustering step interferes with this
natural trajectory evolution and redefines mixture components
in a way that a componentMm

t can contain particles obtained
by propagation from different components at timet−1. There-
fore an additional mechanism for trajectory reconstruction is
required.

We propose to reconstruct trajectories of acoustic sources
by assignment of mixture components in consecutive time-
frames. For this purpose we define a metric that describes a
similarity between two components. We pose assignment as
an optimization problem where the goal is to maximize total
similarity between assigned mixture components. This prob-
lem can be solved within the integer programming framework.
If a mixture component at timet (t − 1) is not assigned to a
component fromt−1 (t) we initialize (terminate) a trajectory.

Since particle approximations of mixture components’ pos-
terior distributions do not necessarily have identical support
sets, it is hard to find a good measure of similarity between
them. In order to overcome this problem we fit the Gaussian
distribution on each mixture component and use obtained
Gaussians to compute inter-component distances.

Letss(t, k, m) denote symmetrized Kullback-Leibler diver-
gence [19] between Gaussian distributions fitted on mixture
componentsMk

t andMm
t+1. We definegoodness of assign-

ment for these components as:

d(t, k, m) = exp−(αk
t −αm

t+1)
2−λs(t,k,m) .

The cost of not assigning components is defined as
d(t, 0, m) = d(t, k, 0) = C. The second term in the exponent
favors assignment of components similar in position and shape
while the first term favors assignment of components with



similar probability mass. Constantsλ and C are determined
empirically to fit the application.

Let link variableck,m for componentsk andm take value
1 if components are assigned and value0 if they are not
assigned. The optimal assignment is the one that maximizes
the total

arg max
ck,m

Mt∑

k=0

Mt+1∑

m=0

d(t, k, m)ck,m,

under the constraint that each mixture component at timet
can be assigned to maximally one other component at time
t − 1 and vice versa.

This problem is solved by integer programming technique.
Details on how the integer programming algorithms work can
be found in Wolsey [11].

E. Detection of Speaker Appearances and Disappearances

Reconstructed trajectories have three possible origins: an
active sound source (meeting participant), a temporary fluc-
tuation in the posterior probability caused by reflections or
just a reclustering artifact. Our goal is to determine which
trajectories belong to meeting participants and segment these
trajectories in order to discover intervals that correspond to
verbal activity of participants, i.e. to perform speaker segmen-
tation.

For this purpose we propose to apply SOCPD algorithm
on each trajectory. A high likelihood that a certain segment
of the reconstructed trajectory is produced by a large amount
of acoustic evidence (many microphone pairs point in that
direction) indicates that such a segment corresponds to the
dominant acoustic activity – speech. Further, we conclude
that the trajectory on which a speech segment is detected
corresponds to a meeting participant. The proposed SOCPD
algorithm acts as an additional logic that sequentially discov-
ers start and endpoints of speech segments on reconstructed
trajectories. We use separate likelihood statistics for detection
of speaker appearances and disappearances (see Klygis et al.
[13]) and propose a way to compute these statistics from
particle representations of mixture components obtained by
the mMPF-TbD tracking algorithm.

Let us assume that the trajectory is represented as a se-
quence of particle setsMt = {(xm,t, wm,t) : m = 1 . . .Nt}
for t = 1 . . . Tmax. Note that for notational simplicity we drop
the mixture component indices.

We define a log-likelihood ratio at timet as:

lt := log
p(y

t
|Mt−1)

p0(yt
)

. (2)

This ratio measures how likely is that observationsy
t

are
produced by the sound source atMt−1. Since particles
from Mt−1 are independent, likelihoodp(y

t
|Mt−1) can be

computed as:

p(y
t
|Mt−1) =

Nt−1∑

m=1

wm,t−1p(y
t
|xm,t−1) (3)

wherep(y
t
|xm,t−1) is defined by Equation (1). Distribution

p0 represents a uniform distribution on the observation space.
Note that we condition on theMt−1 instead ofMt which
is dependent on the observationy

t
. This does not represent a

problem in our scenario since the time sampling rate is high
enough.

The generalized likelihood ratioADt−1 represents the like-
lihood that a speaker becomes active at timet1 and stops his
activity at timet2 < t:

ADt := max
t1,t2≤t

log
p(y

t1:t2
|Mt1:t2)

p0(yt1:t2
)

= max
t1<t2

t2∑

t=t1

lt.

The statisticAt = maxt1<t

∑
τ=t1:t

lτ represents the likeli-
hood that the speaker becomes active at some timet1 < t and
is still active at timet. Therefore statisticDt = ADt−1 − At

is a measure of the likelihood that a speaker is not active at
the timet. The notation used is:Dt - disappeared before time
t, At - active at timet andADt - appeared and disappeared
up to timet.

Recursive update rules are given as:

ADt = max(ADt−1, At) = max(At, At−1, . . .)

At = lt + max(0, At−1)

where AD0 = A0 = 0. According to [12] moments of
speaker appearance and disappearance can be determined by
application of appropriate thresholds on statisticsADt andDt

respectively.
To summarize, speaker appearance is detected at the mo-

ment t1 at which statisticsAt goes over the first threshold.
Speaker disappearance is detected at the timet2 > t1 at
which Dt becomes greater than the second threshold. After
a disappearance is detected statisticsADt2 is set to zero and
the algorithm is ready to detect a new speech interval.

III. E XPERIMENTAL RESULTS AND DISCUSSION

We tested the proposed algorithm on the dataset collected
in the University of Southern California smart room [6].
Four sessions with approximate length of 15 minutes each
were monitored with multiple modalities: A ceiling 4-camera
tracking system, a360◦ camera, a single microphone for
speaker ID, and a circular 16-microphone array. Microphones
were placed in the center of the meeting desk on a ring with
15 cm radius as shown in Fig. 1.

The participants were given multiple topics on which to
debate. While they were completely free to follow their beliefs,
they were also given a list of arguments to help them along
if they needed them. Mostly the interaction ended up being
very spontaneous with people seriously believing and arguing
for their points of view. This induces frequent changes in the
speaker activity i.e., dynamic turn-taking. Monitoring started
immediately prior to the people entering the conference room.
The average turn duration was6.727 seconds and in9.7% of
the total speech, different speakers overlapped. More details
on the meeting dynamics can be found in Busso et al. [6].



The participants’ positions obtained through human an-
notation from the ceiling multi-camera tracking system are
accepted as the reference. Note that the accuracy in geometric
space is limited due to the non-point source nature of the hu-
man speech production system. The audio data was annotated
manually in order to get accurate speaker segmentation. Di-
rections of arrival extracted by processingTime Difference of
Arrival for each microphone pair are used as observations. We
partitioned the dataset in testing (3 sessions) and training (1
session) sets and learned observation likelihoods and transition
distributions from the training set.

a) Tracking performance:: In the first experiment we
evaluated the tracking performance on intervals on which
participant speaks. For this experiment we use mMPF-TbD
algorithm. All reconstructed trajectories were analyzed and
one closest to the reference trajectory of a participant was
assigned to that participant. Average angular error between
projections of estimated and true participant’s position on the
XoY plane (see Fig. 3) on speech intervals was7.46◦. Note
that the nature of observations (120 DoA’s) makes it difficult
to design a reliable frame level detector of active speaker’s
position in this scenario. As the relatively low angular er-
rors show, the proposed mMPF-TbD algorithm accumulates
evidence through consecutive frames, discovers and maintains
tracks for both acoustically dominant and inferior speakers (in
9.7% of total speech time, more than one speaker was active).

b) Speaker segmentation:: In the second experiment
we evaluate the performance of the SOCPD algorithm on
the speaker segmentation task. Since in our dataset speech
represents the most prominent acoustic activity, it was pos-
sible to manually determine appropriate threshold values that
enable the SOCPD algorithm to recognize speech segments
on reconstructed trajectories. In Table II we present statistical
properties of the speaker segmentation algorithm which give
insights into the behavior of the algorithm in terms of the
meeting dynamics.

TABLE II

STATISTICAL PROPERTIES OF THE MMPF-TBD-SOCPDALGORITHM

avg. duration of speech interval [sec] 6.727

avg. appearance detection delay [sec] 0.421

avg. disappearance detection delay [sec] 0.426

avg. duration of false appearance [sec] 0.545

avg. duration of false disappearance [sec] 0.531

no. of false disapp. per speech interval [overlapping speakers] 0.307

no. of false disapp. per speech interval [non-overlapping] 0.011

avg. duration of non-detected interval [sec] 1.056

total no. of non-detected intervals [overlapping speakers] 45

total no. of non-detected intervals [non-overlapping] 5

Note that 90% (45/50) of non-detected speech intervals
take place in segments when multiple participants speak at
the same time. Also, average duration of the non-detected
speech intervals (1.056sec) is significantly shorter than the
overall average (6.727sec), which implies that most speech
segments are lost in situations when multiple sources compete
for detection. The same holds for false disappearances (non-

existing pauses detected within longer speech segments) which
are approximately30 times more likely to occur in intervals
where speakers overlap. Values for average delays in detection
of start/endpoints of speech intervals as well as the average
duration of the falsely detected speech segments are given in
the Table II.

c) Multimodal Fusion:: In the third experiment we ex-
plore the benefits derived by the proposed algorithm on the
performance of our multimodal system [7] on the multi-
modal speaker segmentation task. We introduce two criteria
for judging speaker segmentation quality on1sec intervals: the
strong decision criterion where speaker detection is considered
correct if the speaker is active in at least50% of the 1sec
time interval; and the weak decision criterion where speaker
detection is considered correct if the speaker is active in any
part of the1sec interval.

Our multimodal system employs a ceiling 4-camera system
providing visual hulls of the participants, a360◦ camera for
face tracking, a speaker identification system providing the
identities of the current speaker(in this case, equivalentto the
seating arrangement), and the 16-microphone array system.In
the fusion algorithm (see Fig. 2a) the ceiling cameras and the
360◦ camera system are used to detect number of meeting
participants and their locations. In the previous implementa-
tion [6] the microphone array system was providing angular
position of the active speaker estimated as the mode of the
distribution obtained by projecting the directions of arrival
for each microphone pair on theXoY plane at each time-
frame. In the new implementation we provide estimates of
angular active speakers positions in XoY plane obtained by
mMPF-TbD algorithm only on intervals in which speakers
were actually detected by the SOCPD algorithm. Therefore,
the new algorithm introduces two types of improvement:
First, on intervals on which multiple speakers were detected
it provides multiple angles; and the second, estimates of
angular positions of speakers are provided only on intervals
on which speakers were actually detected. Speaker detection
and localization is performed by probabilistic assignmentof
angular speakers’ positions obtained by the microphone array
algorithm to participants locations obtained by video tracking
system. Fusion of outputs from microphone array algorithm
and the speaker identification system allows multimodal sys-
tem to learn identities of participants and perform speaker
segmentation and localization in parallel. Overview of the
multimodal fusion algorithm is presented in Fig. 2a. For more
details see [7] and [6].

Performance improvements for both multimodal configura-
tions, Mic.Array + Video andMic.Array + Video + SID, and
for both performance criteria are presented in Tables III and
IV. It is evident that the proposed microphone array algorithm
have significant impact on the overall system performance.

Even though performance of the separate speaker iden-
tification (SID) system on the speaker detection task (for
known assignment of participant identities to spatial locations)
is relatively low, 60.10% for strong and67.85% for the
weak detection criteria (see [7]) it provides complementary



TABLE III

PERFORMANCE ON SPEAKER DETECTION TASK: STRONG DECISION

Old system New system relative

detection detection gain

Mic. Array+Video 81.97% 83.70% 9.60%

Mic. Array+Video+Speaker ID 83.25% 86.36% 18.57%

TABLE IV

PERFORMANCE ON SPEAKER DETECTION TASK: WEAK DECISION

Old system New system relative

detection detection gain

Mic. Array+Video 88.48% 90.22% 15.10%

Mic. Array+Video+Speaker ID 90.57% 93.81% 34.36%

information to the microphone array algorithm and improves
overall segmentation performance. This is due to the fact
that SOCPD and SID algorithms detect active speaker in
different manners: SOCPD does that by monitoring process
of competition for observations between different acoustic
sources while SID recognizes spectral differences between
different speakers and silence. This complementarity addsa
new aspect to the multimodal fusion algorithm.

IV. CONCLUSIONS ANDFUTURE WORK

In this work we presented improvements in our multimodal
system for tracking of meeting participants and speaker seg-
mentation. We achieved these improvements by fusing infor-
mation obtained by the 16 acoustic channels. We proposed
an algorithm that can perform tracking of the acoustically
active participants and extraction of speech intervals using
Directions-of-Arrival estimated for each microphone pair as
observations.

Tracking of acoustically active sources was done by use
of the modified mixture particle filter (mMPF) in theTrack-
before-Detection (TbD) framework. We modified the original
MPF and applied the patient rule induction method (PRIM)
to discover mixture components in the posterior distribution.
Trajectories were reconstructed by the optimal assignmentof
discovered mixture components in consecutive time frames.
We formulated the optimal mixture component assignment as
an integer programming problem and proposed a metric that
describes the distance between mixture components. Tracking
performance on segments with multiple overlapping speakers
shows that mMPF-TbD algorithm can successfully maintain
multiple trajectories.

We proposed a novel way to address the speaker seg-
mentation problem by the sequential change-point detection
(SOCPD) method. We presented a way to compute statistics
used in SOCPD from a particle representation of a recon-
structed trajectory. With appropriately tuned threshold values,
the SOCPD algorithm applied on particular trajectory discov-
ered time intervals of dominant acoustic activity (speech).

Application of the proposed algorithm in the multimodal
setup brought relative speaker detection improvement of
18.57% according to the strong decision criterion and34.36%
according to the weak decision criterion.

The goal for our future research is to augment participant
state vector by his/her identity and perform lower level fusion
of the observations from the microphone array and speaker ID
systems in the SOCPD algorithm by modeling and computing
joint likelihoods. Further developments on the tracking side
will include analysis of different hierarchical representations
of the posterior distribution in the mMPF-TbD and testing the
universality of the obtained algorithms on different datasets.
Also, we plan to work on the new fusion algorithm which
discards inconsistent incoming observations in order to avoid
deterioration of the accumulated knowledge on participant
identities.
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