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Abstract—Driving anomaly detection is important for advanced
driver assistance systems (ADAS) to increase driving safety and
avoid traffic accidents. However, driving anomaly detection faces
many challenges such as numerous and uncertain abnormal
patterns observed on the road, sparsity of real anomaly cases
documented with accurate labels, and rigid existing systems that
rely on manually set thresholds and rules. Previous studies have
proposed unsupervised methods for driving anomaly detection
in the driver’s behaviors or the road condition by identifying
deviations from normal driving conditions. A challenge with
unsupervised models is the lack of interpretability, where the
cause of the anomaly is not always clear. We address this
problem with an example-based query method that combines
unsupervised anomaly detection methods with the multi-label k-
nearest neighbors (ML-KNN) algorithm to interpret the detected
driving anomalies by identifying their possible causes (e.g.,
surrounding objects or driver’s errors). Our approach relies
on a few manually labeled driving segments that are efficiently
used as anchors to retrieve the causes of driving anomalies in
a given driving segment. These anchors are projected into the
embedding created by unsupervised driving anomaly detection
systems. The experimental results show that this method can
effectively identify the causes of driving anomalies, even for
abnormal driving segments triggered by multiple causes. The
evaluation shows the flexibility of our proposed solution, where
we successfully implement the ML-KNN approach with three
alternative feature representations.

Index Terms—Unsupervised learning, anomaly detection and
classification, model interpretability

I. INTRODUCTION

The identification of abnormal driving conditions plays an
important role in improving road safety. Various rule-based
and pattern-based driving anomaly detection methods have
been proposed, such as identifying aggressive or dangerous
driving patterns [1]-[10], detecting drunk driving styles [11],
quantifying driver distractions [12], [13], monitoring driver’s
fatigue [14], [15], or determining abnormal road conditions
[16]-[18]. These driving anomaly detection methods face
several important challenges:

o Abnormal patterns are uncertain. The variability across
driving scenarios makes it difficult to maintain consistent
criteria for determining abnormal driving events under differ-
ent driving situations. This issue makes rule-based methods
unreliable for some scenarios.
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e Lack of real driving anomaly examples with accurate
labels. Most driving scenarios do not include anomaly events.
Therefore, it is hard to obtain a labeled database with enough
abnormal driving events to train supervised models. The num-
ber of positive and negative samples is extremely unbalanced,
challenging conventional machine learning formulations.

o Manually labeling is very difficult and time-consuming.
The data collected in real driving environments usually do
not have accurate normal or abnormal annotations. Creating
these labels is very difficult given the potential size of data
collected on the roads (e.g., SHRP2 data [19]).

As an appealing alternative formulation, studies have pro-
posed unsupervised methods and contrastive learning ap-
proaches to identify driving anomalies [20]-[25]. The un-
supervised methods formulate driving anomaly detection as
a binary classification task (i.e., abnormal versus normal)
by quantifying the deviations from normal patterns (e.g.,
outlier detection). A drawback of these approaches is that
they cannot easily classify the detected abnormal driving
events into specific anomaly classes. This drawback limits their
interpretability and applicability.

This study explores the use of a few labeled examples to
increase the interpretability of unsupervised driving anomaly
detection methods. Our approach consists of an example-
based query method that identifies possible causes of driving
anomalies (e.g., surrounding objects or driver’s errors). The
formulation combines the embedding created by unsupervised
driving anomaly models with the multi-label k-nearest neigh-
bors (ML-KNN) algorithm. The assumption in our formula-
tion is that similar anomalies are represented close to each
other in the feature embedding of the unsupervised driving
anomaly models. Therefore, we can project examples of target
anomalies into the embedding, and use these samples as
anchors. When a driving anomaly event is detected during
the evaluation, we can directly compare its projection into
the embeddings with the anchors. While this formulation is
general and can be used with different unsupervised algo-
rithms, we demonstrate the potential of this approach with
two start-of-the-art multimodal unsupervised driving anomaly
detection methods proposed by Qiu et al. [25] and Zhou et
al. [26]. These models are trained with physiological data, the
controller area network bus (CAN-Bus) data, and distances to



nearby vehicles, pedestrians, and bicycles. Overall, the main
contributions of this work can be summarized as:

o We introduce an example-based query method for inter-
preting causes of driving anomalies that are detected by an
unsupervised method that can only identify anomalies from
normal events. This example-based query method makes the
results of the unsupervised driving anomaly detection model
more interpretable.

o We interpret the driving anomalies by retrieving the possi-
ble causes (e.g., pedestrians, bicyclists, and vehicles), rather
than defining particular abnormal driving styles. This method
can respond to the anomalies that are not seen by the system
during training using a few labeled samples as anchors.

o We present experimental results to show that the proposed
example-based query model manages to identify the causes
of driving anomalies with only a few labeled samples, which
saves significant labor efforts.

II. RELATED WORK
A. Driving Anomaly Detection and Classification

Identifying driving anomalies is important for traffic safety.
Studies have proposed driving anomaly detection methods
based on either predefined rules or patterns. Zhao et al. [27]
detected aggressive driving events by setting thresholds on
the vehicle’s acceleration signal under different steering wheel
angles (e.g., tuning lower thresholds for high steering wheel
angles). While the model based on predefined rules can work
well for cases like fast U-turn and swerving, the set of anomaly
driving scenarios captured by the system is very limited.
The pattern-based approaches detect anomalies with specific
features or patterns, utilizing machine learning algorithms.
Chen et al. [28] extracted statistical features of the acceleration
and orientation of the vehicle from the inertial measurement
unit (IMU) readings of a smartphone to train a support
vector machine (SVM) classifier that identifies six types of
abnormal behaviors: weaving, swerving, sideslipping, fast U-
turn, turning with a wide radius and sudden brakes. However,
due to the complexity and diversity of driving scenarios, it is
quite difficult and time-consuming to exhaustively define all
kinds of driving anomalies and design a pervasive and effective
classification-based solution.

Studies have used contrastive learning and unsupervised
learning algorithms to discriminate abnormal driving events,
building more general driving anomaly detection methods
[20]-[25]. Kopiiklii et al. [24] proposed a contrastive learning-
based neural network approach to differentiate between
anomalous and normal driver behaviors. They collected a
dataset using a driving simulator environment with normal
and anomalous driving behaviors. They trained their model
by drawing close pairs of normal driving video clips in an
encoding embedding space, while pushing the anomalous clips
away from the normal pairs. After training, they averaged
the embedding of all the normal clips as a template. During
inference, they computed the cosine similarity between the
encoded embedding of the video and the normal template
embedding, creating an anomaly score for that recording. Su et

al. [29] proposed a convolutional neural network (CNN) and
bidirectional long short-term memory (BLSTM) based model,
utilizing infrared and depth videos facing the driver and the
steering wheel to detect the driver’s distraction as a binary
classification task. They also conducted a multi-class action
recognition task by classifying the detected driver’s distraction
into 16 classes, including writing messages using the right/left
hand, talking to a passenger, and drinking using the right/left
hand. Qiu et al. [21] proposed an unsupervised approach for
driving anomaly detection based on conditional generative
adversarial networks (GANs). They defined driving anomalies
as driving events that deviate from expected driver behaviors.
The generator of the GAN model is trained to generate a
prediction for the upcoming data conditioned on the previously
observed signals. An anomaly event is defined when the
generator incorrectly predicts the event based on previous
recordings. These approaches can detect anomalies even when
the anomalies are unknown or unseen as long as they deviate
from normal driving patterns. This approach is appealing given
that anomaly driving detection is a long-tailed problem with
infrequent and unexpected events that are not guaranteed to
be represented in the data. We propose an example-based
query system using the multi-label k-nearest neighbors (ML-
KNN) algorithm to further broaden the interpretability of
unsupervised driving anomaly detection models.

B. K-Nearest Neighbor Classifier

One of the components of our proposed approach is the
k-nearest neighbor (KNN) algorithm. KNN is a supervised
machine learning algorithm used mostly for classification
tasks. It creates a feature representation where the training
samples are projected. A sample in the test set is then projected
into this feature representation. Then, its label is determined
by the classes of the kth closest training samples.

Zhang et al. [30] proposed the ML-KNN algorithm, extend-
ing the KNN algorithm for multi-label classification tasks.
For each test instance, they selected the k nearest neighbor
samples. They used a Bayesian rule to calculate the probability
of each class. The final label for the test sample is determined
with the maximum a posteriori (MAP) principle. There may
be more than one potential cause of driving anomaly due to
the variety and complexity of real-life driving scenarios (e.g., a
pedestrian and a bicycle crossing a street). Therefore, the ML-
KNN formulation is suitable for identifying causes of driving
anomalies that can be triggered by more than one factor.

III. PROPOSED EXAMPLE-BASED APPROACH

We formulate the driving anomaly interpretation problem as
a multi-label classification task. We build an example-based
query method for identifying causes of driving anomalies
using the ML-KNN algorithm. The proposed approach is
flexible and can be implemented with any deep learning
unsupervised driving anomaly detection approach. We present
alternative approaches in Section III-A. Then, Section III-B
presents our proposed example-based approach to increase the
interpretability of the unsupervised system.
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Fig. 1: Proposed formulation to increase the interpretabil-
ity of the detected anomalous segments by an unsupervised
multimodal model. The left side of the figure shows the
unsupervised driving anomaly detection approach proposed
by Qiu et al. [25]. The right side of the figure shows the
implementation of the ML-KNN model that efficiently uses
a few labeled samples as anchors, which are projected into
the feature embedding provided by the unsupervised approach.
The selected anchors are annotated with a single label.

A. Unsupervised Driving Anomaly Detection System

We present three alternative approaches to extract feature
representation from unsupervised driving anomaly detection
systems. The first two approaches use the scalable, multimodal
framework proposed by Qiu et al. [25]. Figure 2(a) shows a
diagram of the approach. The model consists of conditional
generative adversarial networks (GANs) and attention mech-
anism, trained with the triplet loss function. The conditional
GAN acts as a feature extractor and follows the principle
presented in Qiu et al. [21]. The approach implements five
different conditional GAN models using different modalities:
CAN-Bus signals, physiological signals, distance to nearby
pedestrians, distance to nearby vehicles, and distance to nearby
bicycles (see description of the database in Sec. IV-A). By con-
sidering these five modalities, the unsupervised approach iden-
tifies anomalies not only from the maneuvers and reactions of
the driver, but also from anomalies associated with the driving
environment (e.g., a pedestrian crossing the street). The con-
ditional GAN models are trained to generate upcoming data
conditioned on previously observed signals. The discriminator
determines if the signal is real or created by the generator.
The generator and discriminator are implemented with CNNs
and long short-term memory (LSTM) to extract discriminative
feature representations that consider temporal relationships.
The model extracts the intermediate layer of the discriminators
as the embedding for each modality (highlighted in yellow
in Fig. 2(a)). The attention mechanism [31] fuses the five
modalities into a joint embedding, creating weights depending
on their correlations. The embedding of each modality is
first projected to the query and key vectors. The attention
weights are obtained by calculating the dot product of the
query vector of one modality and the key vectors of the
other modalities. The attention weights are normalized using
the Softmax function. Finally, the triplet loss function draws
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Fig. 2: The unsupervised model considered in this work.
Alternative feature representations are obtained from the self-
attention embedding and self-attention weights of the model
proposed by Qiu et al. [25], and the bottleneck representation
z of BeatGAN [26].

the joint embedding of the generated data close to the joint
embedding of the corresponding real data, while pushing away
the joint embedding of the generated data from a randomly
selected driving segment. The difference between the joint
embedding of real data and generated data is computed as the
final anomaly score. We use two feature representations from
this model. The first representation is the output embedding
of the attention module, highlighted in a red box in Figure
2(a). This embedding produces a 64-dimensional vector. We
refer to this method as the embedding of the attention model.
The second representation is the self-attention weights. The
attention module assigns the attention weights by calculating
the dot product of the query and key vectors following the
self-attention mechanism [26]. The attention weights indicate
the correlation among different modalities. The dimension of
the matrix with attention weights is 5 x 5, since we have five
modalities. We are using five MHA, resulting in an embedding
with a dimension of 125 (i.e., 25 x 5 = 125). We refer to this
method as weights of the attention model.

The third approach uses BeatGAN, which is an unsuper-
vised anomaly detection method proposed by Zhou et al.
[26]. Figure 2(b) shows the model, which has a generator
and a discriminator. The generator of BeatGAN consists of
an encoder (Gg(+)) and a decoder (Gp(-)) that reconstructs
the input. The discriminator is trained to decide whether
the reconstructed input is real or fake. We implement the
BeatGAN model using fully-connected layers, as described
in Zhou et al. [26]. The encoder of the generator (Gg(-)) is
implemented with five layers with 1024, 512, 256, 128, and
64 nodes, respectively. The decoder of the generator (Gp(-))



is implemented mirroring the structure of the encoder. The
discriminator (D(-)) is implemented with six layers with 1024,
512, 256, 128, 64, and 1 node, respectively. We concatenate
the data from the five modalities (i.e., CAN-Bus signals,
physiological signals, distance to nearby pedestrians, vehicles,
and bicycles) as the input, and we extract the bottleneck
embedding of the generator, 2, as the feature embedding for
the ML-KNN model. We refer to this representation as the
bottleneck of BeatGAN.

B. Interpreting Causes of the Detected Anomalies

This section describes our approach to interpreting the
cause of the detected anomalies with limited supervision.
The approach leverages the embedding of the unsupervised
driving anomaly detection model to estimate the distance
between the projection of the input video into this space
and the projection of anchors representing alternative types of
anomalies. The approach relies on the assumption that similar
driving anomalies are clustered together in the space provided
by the embedding. We use a limited number of labeled samples
as anchors (e.g., eight samples per concept), which provide
improved interpretability of the detected driving anomalies. A
strength of our approach is that it does not compromise the
accuracy of the driving anomaly detection system to improve
its interpretability, as our method is implemented after the
unsupervised model is trained.

We implement our approach using the ML-KNN algorithm.
Figure 1 illustrates the proposed approach. First, we select
as anchors abnormal driving segments from a set of samples
with the highest anomaly scores provided by the unsupervised
driving anomaly detection system (Sec. III-A). The selected
driving segments are labeled by human raters with the corre-
sponding cause of the anomalies. As shown in Figure 1, for
a given query driving segment, we find the k nearest anomaly
anchors by calculating the Euclidean distance in the feature
embedding.

We define the encoded embedding space of the driving seg-
ments as X, and the label space of potential driving anomalies
as Y ={1,2,3,...,Q}, where @ is the number of classes of
driving anomalies. With these definitions, we can represent the
segments as S = {(x1,Y1), (z2,Y2),...,(%m, Yim)}, where
x; € X,Y; € N9, and m is the number of driving segments.
The element corresponding to class I, Y;(l) with [ € ), takes
the value of 1 if [ € Y;, and 0 otherwise. The system identifies
the k nearest anchors A(x;) to x; and counts the number of
neighbors of z; labeled with class . We define the membership
counting vector as:

Co,()= > Yi(l), le. (1)
i€A(z;)

For each test instance x;, the system retrieves the k nearest
anchors A(z;), and estimate Cj,(l). The label vector Y; is
determined using the following MAP principle:

Yy(l) = argmax P(H}|EL, ), 1€ 2)
be{0,1}

where H, é represents the event that x; is related (b = 1) or
unrelated (b = 0) to class [, and Ela 1y denotes the event that
there are exactly C(I) anchors labeled with class [ among the
samples in A(x;). Using the Bayesian rule, Equation 2 can be
rewritten as

~ P(HH)P(E! H}
¥;(1) = argmax ( b) ( c,,(z)| b)
be{0,1} P (Elct(z)) 3)
= afgmaXP(Hzi)P(Elct(zﬂHzl;)
be{0,1}

Equation 3 is the final classification of the ML-KNN algo-
rithm. The prior P(H}) and posterior P(E¢,;)|H}) probabil-
ities can be obtained directly from the anchor set by counting
the label frequency. Zhou et al. [30] introduced more details
about the calculation steps.

IV. EXPERIMENTAL SETTINGS
A. Driving Anomaly Dataset

This work relies on the driving anomaly dataset (DAD)
[21], which consists of naturalistic driving recordings. The
modalities collected in this database include the vehicle’s
CAN-Bus signals, the driver’s physiological signals, the videos
of the surrounding driving environment, and the distance to
the nearby objects estimated with Mobileye technology (i.e.,
pedestrians, bicyclists, and vehicles). Our unsupervised ap-
proach uses CAN-Bus signals (speed, steering speed, steering
angle, throttle angle, brake pressure, and yaw), physiological
signals (electrocardiography, breath rate, and electrodermal
activity), and distance to nearby pedestrians, bicycles, and
vehicles. We use approximately 84 hours of urban driving
recordings from 89 sessions. The data is split into the train
(72 sessions, ~70 hours), development (3 sessions, ~4 hours),
and test (14 sessions, ~10 hours) sets. Qiu et al. [21] provides
more details on the data collection.

B. Selection of Limited Labeled Samples

For our evaluation, we need to define (1) prototypical
distractions to be used in our formulation, and (2) labeled
examples for these anomalies to be used as anchors. Since
the driving anomaly detection system considers the driver’s
physiological reaction and distance to the nearby objects, we
set five possible causes of anomalies: pedestrians, bicyclists,
motorcyclists, vehicles, and errors made by our driver. Notice
that we could define other classes of anomalies, even if they
are not observed in the training set. Our proposed approach
should be able to identify similar cases during inferences as
long as we can identify examples to be used as anchors.

While the DAD corpus has several annotations (e.g., driving
maneuvers), it does not have labels for driving anomalies.
From the test set, we selected 400 six-second segments, where
200 videos were from recordings without any annotation (e.g.,
normal driving conditions). The other 200 videos correspond
to segments with the highest driving anomaly scores provided
by the unsupervised approach proposed by Qiu et al. [25]. We
asked three participants to watch the videos, answering two
questions. First, we asked if they can see any driving anomaly
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Fig. 3: Examples of abnormal driving events that are labeled
as caused by multiple causes.

in the video (i.e., normal/abnormal). Second, we asked them
to mark all the causes of anomalies that they can recognize in
the video. The options were pedestrian, bicyclist, motorcyclist,
other cars, and bad maneuvers by our driver, selecting all the
options that apply. They were also able to indicate that there
was no anomaly shown in the video.

For the estimation of the consensus labels from the evalua-
tions, we assign a class and the possible causes of anomalies
to a video if at least two evaluators agree on a given class.
In total, we have 175 segments labeled as abnormal, and 225
segments labeled as normal. For the cause of anomalies, we
have 59 segments for pedestrian, 49 segments for bicyclist,
38 segments for motorcyclist, 94 segments for other vehicle,
25 segments for bad maneuvers by our driver and 225 seg-
ments without any anomaly. From the 175 videos annotated
as abnormal, 103 segments are evaluated to be exclusively
triggered by one cause (i.e., 27 by pedestrian, 14 by bicyclist,
8 by motorcyclist, 46 by other vehicle, 8 by bad maneuvers
by our driver), while 72 segments are labeled with multiple
causes. Figure 3 shows some examples. We use this set of 175
videos for our evaluation.

C. Selection of Anchors

From the 175 abnormal segments, we manually select for
each class eight typical abnormal driving segments with the
highest anomaly scores as the anchor examples of driving
anomalies (5 classes x 8 anchors = 40). The selected anchors
are all annotated with a single label. These 40 labeled segments
are the only supervision provided to train the ML-KNN model.
This setting is ideal for the query-by-example formulation
proposed in this study, where we only have a few labeled
samples for an anomaly class or concept.

The other 135 abnormal segments are used as a test set
to evaluate the model. These 135 segments were identified
as anomalous by our unsupervised driving anomaly detection
system. The model did not provide further information about
what was anomalous in the videos. Our approach based on the

TABLE I: Performance of the ML-KNN algorithm as a func-
tion of k using a single-label formulation.

Value of k 11 12 13 14 15 16 17

Attention Model

(Embedding) 31.9% 31.9% 43.0% 54.8% 46.7% 41.5% 35.6%
Attention Model

(Attention Weights) | 53.3% 56.3% 59.3% 37.8% 64.4% 61.5% 71.1%
BeatGAN

(z Embedding) 35.5% 43.0% 54.1% 62.2% 45.2% 36.3% 51.1%

ML-KNN algorithm uses 40 anchors to interpret the cause of
the detected anomalies in these 135 videos.

V. EXPERIMENTS AND RESULTS

The experimental evaluation consists of two part. First, we
assess the performance of the proposed model to interpret
the cause of the detected anomalies with limited supervision,
contrasting it with alternative supervised approaches using a
single class (Sec. V-A). Second, we evaluate the performance
of the proposed system by considering this task as a multi-
label problem (Sec. V-B).

A. Single-Label Evaluation

We formulate the single-label evaluation task as a clas-
sification problem to evaluate our proposed approach with
standard supervised baselines. Given an unknown driving
segment x;, our model produces a multi-label output (Y;), with
the probability for each class to be relevant. We transform this
formulation into a single-class problem by selecting the class
with the highest probability of being relevant. We select as the
evaluation metric the proportion of correct predictions referred
to as retrieval accuracy. Table I reports the retrieval accuracy
when the value of k varies from eleven to seventeen. We avoid
considering higher values for &, since we only have 40 anchors
for training (eight anchors per class).

Table I shows the results when our proposed approach is
implemented with three feature representations: the embed-
dings of the attention model, the weights of the attention
model, and the bottleneck of BeatGAN (Sec. III-A). For the
embeddings of the attention model, we achieve the highest
retrieval accuracy equal to 54.8% when the model considers
the fourteen nearest anchors. Overall, the best performance
is obtained using the weights of the attention model with a
retrieval accuracy of 71.1% when considering the seventeen
nearest anchors. This result demonstrates that the attention
weights carry representative information among different driv-
ing segments. The proposed approach implemented with the
bottleneck of the BeatGAN model achieves a retrieval accu-
racy of 62.2% when considering the nearest fourteen anchors.

We compare the proposed model with alternative supervised
approaches. Since we also rely on 40 training samples, it
is difficult and unreliable to build a classifier from scratch,
without relying on the (unlabeled) data. A straightforward
solution is to use features of the three discriminative represen-
tations considered in this study from the unsupervised driving
anomaly detection systems. We implement three supervised
systems, each of them implemented with features either from



TABLE II: Comparison of the retrieval accuracy of the pro-
posed approach and alternative supervised methods.

SVM LR RF ML-KNN
Attention Model
(Embedding) 333% 29.6% 26.9% (0.032) 54.8%
Attention Model
(Attention Weights) | 23.0% 27.4% 27.9% (0.029) 71.1%
BeatGAN
(z Embedding) 31.1% 31.61% 30.71% (0.031) 62.2%

the embeddings of the attention model, the weights of the
attention model, or the bottleneck of the BeatGAN model.
The three supervised models are SVM with Radial Basis
Function (RBF) kernel, logistic regression (LR), and random
forest (RF). These classifiers are designed for a single-label
task, but several examples have more than one label in our
task. Therefore, we consider a success when the predicted
label 3, for a driving segment T; is in the true label set
Y;. We keep the same setting, training the classifiers with
the selected 40 anchors and using the other 135 abnormal
segments for inference. For the random forest model, we run
the classification experiment 10 times and report the average
and standard deviation value of the model performance. Table
II shows the results, which indicate that the retrieval accuracies
of the baseline methods are lower than 35%. The limited
training set clearly affects these supervised models. In contrast,
the proposed ML-KNN solution leads to clear improvements
with accuracies as high as 71.1% when using the weights of
the attention models.

B. Multi-Label Evaluations

We formulate the interpretation of driving anomaly detec-
tion as a multi-label problem, where several causes can be
relevant. This section evaluates our approach using the ML-
KNN framework with metrics that are usually used in multi-
label classification problems: Hamming loss ({), ranking loss
(), and average precision (1) [32]. We indicate with the
symbol 1 when a larger value leads to better performance and
the symbol | when a smaller value leads to better performance.
The Hamming loss shows the mismatch between the relevant
classes predicted by the model and the ground truth labels.
The ranking loss indicates the average proportion of unrelated
causes that are predicted to have higher probabilities than
relevant causes. The average precision represents the average
fraction of relevant causes ranked higher than a particular label
y € Y;. Schapire et al. [32] provides the definitions of these
metrics, which are more appropriate for this task than metrics
used for single-label problems such as accuracy, precision,
recall, and F-score since multiple classes can be relevant.

Table III shows the model performance when we vary
from eleven to seventeen the number of k nearest neighbors
considered by the ML-KNN algorithm. Overall, we obtain the
best results considering the four multi-label metrics when & is
either fourteen or fifteen using the three different feature rep-
resentations. When using the weights of the attention model,
we obtain an average precision equal to 0.648, indicating that
the predicted top classes are often included in the ground
truth. The best hamming loss is 0.283, suggesting that the

TABLE III: ML-KNN performance as a function of k& under
a multi-label formulation. (HL: Hamming loss; RL: Ranking
loss; AP: Average precision; RA: Retrieval accuracy)

Feature Metric Value of k
11 12 13 14 15 16 17
Attention Model HL (}) [ 0.439 0.413 0.384 0.412 0.416 0.388 0.415
Embedding RL (}) [ 0.501 0.462 0.448 0.443 0.485 0.480 0.492
AP (1) [0.502 0.509 0.543 0.538 0.517 0.503 0.5
RA (1)]0.319 0.319 0.430 0.548 0.467 0.415 0.356
Attention Model HL ({) | 0.350 0.339 0.302 0.382 0.283 0.287 0.370
Attention Weights | RL ({) | 0.339 0.313 0.299 0.362 0.330 0.314 0.329
AP (1) [ 0.582 0.608 0.683 0.604 0.684 0.690 0.542
RA (1) ]0.533 0.563 0.593 0.378 0.644 0.615 0.711
BeatGAN HL (4) [ 0.425 0.390 0.341 0.397 0.450 0.542 0.391
z Embedding RL ({) [ 0.403 0.394 0.362 0.347 0.442 0.477 0.438
AP (1) [ 0.450 0.498 0.564 0.506 0.450 0.406 0.522
RA (1) 0.356 0.429 0.540 0.622 0.452 0.363 0.511

class predicted by the ML-KNN algorithm is most of the
time consistent with the relevant class in the ground truth
labels. When using the bottleneck of the BeatGAN mode, our
model achieves a retrieval accuracy of 0.622, and an average
precision of 0.506. The performance of our proposed approach
based on the ML-KNN algorithm demonstrates that the driving
anomalies triggered by similar causes are located closer to
each other in the feature embedding space generated by
the unsupervised driving anomaly detection approaches. Even
though the unsupervised approach was trained without any
labeled sample, the models learn representative features that
are characteristic of the types of driving anomalies considered
in this study. Our proposed ML-KNN approach efficiently uses
a few anchors per target class to increase the interpretability
of the detected driving anomaly.

VI. CONCLUSIONS

The work proposed an example-based query system for
retrieving possible causes of driving anomalies detected by
unsupervised driving anomaly approaches, increasing the in-
terpretability of their results. The approach uses an embedding
from an unsupervised anomaly detection approach, which
is combined with the ML-KNN algorithm to identify the
potential cause of driving anomalies under the assumption
that similar anomalies cluster close to each other in this
embedding space. We show that the proposed approach is
flexible, implementing the ML-KNN framework using three
feature representations extracted from two different unsu-
pervised anomaly detection models. The proposed solution
effectively uses limited labeled samples (i.e., eight samples
for each of the five classes considered in our evaluation),
providing results that are better than supervised approaches
trained with few samples. Our evaluation with single-label
and multi-label formulations demonstrates the strengths of
the proposed approach, increasing the interpretability of the
anomalous segments detected by unsupervised approaches.

While the approach was trained with two particular unsu-
pervised driving anomaly detection systems, our formulation
is flexible and can be implemented with other methods as
long as we can identify an appropriate feature embedding.



The increase in the interpretability of the results from the
unsupervised driving anomaly detection model broadens the
application of unsupervised methods for downstream tasks.
Our proposed approach can be used to create actionable safety
measures when a given type of anomaly is detected. The
approach is also flexible. If a new type of anomaly is required,

we

only need to annotate a few examples to be used as

anchors (e.g., using cellphone when driving). Furthermore, this
method provides a possible solution to facilitate the automatic
annotation of large databases, where our formulation can be
used to retrieve potential candidate segments that are similar
to a predefined type of anomaly. The choice of anchors can be
important for the success of the k-NN classifier. Therefore, we
will evaluate the sensitivity to the proposed approach on the
selected anchors. We can randomly change or remove some
anchors from each class and measure the impact on the results.
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