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Abstract— Modern advanced driver assistant systems (ADAS)
rely on various types of sensors to monitor the vehicle status,
driver’s behaviors and road condition. The multimodal systems
in the vehicle include sensors, such as accelerometers, pressure
sensors, cameras, lidar and radars. When looking at a given
scene with multiple modalities, there should be congruent in-
formation among different modalities. Exploring the congruent
information across modalities can lead to appealing solutions to
create robust multimodal representations. This work proposes
an unsupervised approach based on contrastive multiview coding
(CMC) to capture the correlations in representations extracted
from different modalities, learning a more discriminative rep-
resentation space for unsupervised anomaly driving detection.
We use CMC to train our model to extract view-invariant
factors by maximizing the mutual information between mul-
tiple representations from a given view, and increasing the
distance of views from unrelated segments. We consider the
vehicle driving data, driver’s physiological data, and external
environment data consisting of distances to nearby pedestrians,
bicycles, and vehicles. The experimental results on the driving
anomaly dataset (DAD) indicate that the CMC representation
is effective for driving anomaly detection. The approach is
efficient, scalable and interpretable, where the distances in the
contrastive embedding for each view can be used to understand
potential causes of the detected anomalies.

I. INTRODUCTION

Modern advanced driver assistant systems (ADAS) are in-
creasingly emphasizing driver/passenger-centric safety func-
tions of smart cars. The detection of abnormal driving
behaviors, as a primary function, has become an important
research area. Monitoring the driver’s behavior and the en-
vironment are crucial to detect as early as possible potential
operating errors or hazard road scenarios. Timely warning
can help the driver to alter the driving plan to maintain safety
conditions and avoid traffic accidents. Studies have proposed
several abnormal driving behavior detection alternatives.
Some studies have proposed the use of images [1], [2],
videos [3], [4] or physiological data [5], [6] from wearable
sensors describing the drivers to detect their behaviors or
intentions. Other studies detect abnormal driving behaviors
using the vehicle’s driving information (e.g., acceleration
and angular velocity), either based on threshold rules [7]–
[10] or relying on pattern recognition solutions [11]–[14].
However, the road environment and driving scenarios are
very complex and non-stationary, which makes it almost
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impossible to list in detail possible actions or situations
that deviate from ordinary driving situations. Therefore, it
is appealing to formulate abnormal driving behavior as an
unsupervised binary discrimination task by distinguishing
between expected driving behavior (i.e., normal situations)
and unexpected driving behavior (i.e., abnormal situations).

Qiu et al. [15] showed that statistic features derived from
the vehicle’s controller area network (CAN)-Bus and driver’s
physiological signals can be used for anomaly driving detec-
tion. They proposed an unsupervised multi-modality driving
anomaly detection approach based on conditional generative
adversarial networks (GANs). The approach automatically
identifies the driving segments that deviate from expected
driving patterns by generating predictions of the upcoming
signals, conditioned on the observed data. The predictions
were compared with the actual data to quantify the deviation.
Anomalies were defined as deviations from predicted pat-
terns. While this study demonstrated an insightful principle
for anomalous driving detection, the approach has several
limitations: (1) it is not scalable to more modalities, (2)
the system only responds when the driver is aware of the
anomaly, since it relies only on the physiological and CAN-
Bus signals, and (3) it is not easy to interpret the results (i.e.,
what event or action makes this segment abnormal?). We
propose an unsupervised approach that keeps the principle of
defining driving anomaly as a deviation of predicted patterns,
but solves in a principled way these three limitations.

This study proposes a method to predict driving anomalies
by relying on the contrastive multiview coding (CMC) frame-
work [16]. CMC is a self-supervised learning method that
assumes that an instance can be viewed through various sen-
sory channels (e.g., visual and audio), where some important
factors are shared across all views. CMC aims to learn the
so-called view-invariant factors as a powerful representation
using a contrastive loss function. The approach maximizes
the commonality of the representations of different views of
the same input sample, while minimizing the agreement of
the representations of different views of unrelated samples.
This approach is appealing for driver anomaly detection as
it provides a natural formulation to incorporate views from
different modalities using self-supervised learning. Signals
from each modality can describe the driving scenarios from
different views, even when each view is noisy and incom-
plete. Therefore, we can expand the modalities to improve
the robustness in the predictions.

We implement our approach by considering environmental
information, which includes the distance to nearby objects
as different views of a driving segment. In particular, we



consider the distance to nearby pedestrians, bicycles and ve-
hicles, which are automatically obtained. We combine these
three environmental signals with the driver’s physiological
data and the vehicle CAN-Bus data, aiming to identify possi-
ble causal relationships between abnormal driving behaviors,
driver reactions and the road environment around the vehicle.
The distance information from nearby objects directly im-
pacts the vehicle’s CAN-Bus signals and driver’s physiologi-
cal signals. The CMC framework exploits these relationships,
leading to more robust discrimination. We implement the
CMC frameworks by extracting views from the same video
segments and from unrelated video segments. The feature
embeddings across views of the same driving segment should
be close, while the feature embeddings across views from
two different driving segments should be far away. Following
the ideas in Qiu et al. [15], the core module for feature
extraction depends on conditional GANs. For each modality,
we build one conditional GAN, where its generator (G) is
trained to generate the predictions of the upcoming signals,
and the discriminator (D) is trained to decide if the data
is real or created by G. Then, we extract the embedding
of the penultimate layer of D as the representation of the
modality. Each modality is then projected into the contrastive
embedding space, where the projections are implemented
with fully-connected layers. The contrastive embedding of
each modality is used to indicate the relative relationships
among different modalities, providing important information,
not only for determining whether a given segment is abnor-
mal, but also for interpreting the possible causes of anomaly.
This approach addresses the scalability issue, since separate
models can be built for different modalities, which are later
combined with the contrastive formulation. By considering
features related to the road environment, the system can
respond even if the driver is not aware of the anomaly (e.g.,
a pedestrian crossing the street). Likewise, the distance in the
feature representation can indicate the modalities that deviate
from the predicted patterns, improving the interpretability of
the approach. The contrastive loss in the CMC framework
enables our approach to be trained in an unsupervised learn-
ing fashion, with unlabeled naturalistic driving recordings
proving clear benefits.

We evaluate our approach with the driving anomaly
dataset (DAD) [15], [17]. We conduct subjective perceptual
evaluations on videos of the driving segments, and ask the
annotators to rate the risk, familiarity, and anomaly levels
in the videos. We also ask them to identify the causes of
anomalies of the driving scenarios. The experimental results
indicate that the proposed method outperforms the GAN-
based method presented by Qiu et al. [15]. We also evaluate
how the contrastive representations can be used to interpret
the possible causes of driving anomalies.

This study is organized as follows. Section II introduces
related studies addressing the detection of driving anomalies.
It also describes background information to understand the
proposed architecture. Section III describes the details of our
proposed model. Section IV introduces the dataset used in
this study, and the implementation of the approach. Section

V evaluates the discriminative performance of our proposed
multimodal system. Finally, Section VI summarizes the con-
tributions of this work, discussing future research directions.

II. RELATED WORK

A. Driving Anomaly Detection
Many approaches have been proposed for the anomaly

driving detection task, either based on the driver’s behaviors
[18]–[24], or the surrounding traffic environment [25]–[28].
Most of the studies in this area utilize the vehicle’s driv-
ing information (e.g., speed, acceleration and yaw angle)
to describe the vehicle’s driving behavior. Some of these
studies detect target abnormal driving events by either setting
thresholds on the vehicle’s driving information [7]–[10] (e.g.,
speed above a given value), or calculating key performance
indicators (KPI) associated with driving behavior using pre-
defined formulas [29]–[32]. Other approaches determine ab-
normal driving conditions utilizing pattern recognition meth-
ods, including hidden Markov model (HMM) [33], Bayesian
classification [34], support vector machine (SVM) [11]–[13],
and neural networks [14]. Chen et al. [12] extracted statistic
features from the vehicle’s acceleration and orientation,
which were used to train a SVM to identify six abnormal
driving patterns (i.e. weaving, swerving, side-slipping, fast
U-turn, turning with a wide radius, and sudden braking).
Some studies have utilized driver’s information, such as
physiological signals [5], [15], [17], eye gaze information
[1], [2], [35], facial expressions [36] and driving gestures
[3], [4] to identify driving anomalies.

Another common approach to identify driving anomalies
is by considering environmental information about the traffic
scenarios [25]–[28]. Yao et al. [27] proposed a traffic acci-
dent prediction approach based on a video anomaly detec-
tion (VAD) algorithm. This approach used videos of traffic
scenes collected by a dashboard-mounted camera, which
were manually annotated as either normal or anomaly. The
approach localizes detected traffic participants in the videos
(e.g., other vehicles and pedestrians) using bounding boxes,
predicting the moving trajectories of the boxes based on
previous frames. It detects driving anomalies by computing
the deviations of the boxes’ movements from the correspond-
ing predicted behaviors, assuming that moving trajectories in
traffic accidents deviate from expected trajectories.

B. Multi-view Contrastive Learning
Multi-view contrastive learning is a branch of contrastive

learning, where the core idea is to use a contrastive loss
to build the feature embedding space using positive pairs
and negative pairs. The contrastive loss draws the instances
from the same class closer together, while pushing apart
the instances with different labels. In multi-view contrastive
learning, representations from various views of a same in-
stance (i) are considered as positive pairs (e.g., v1i and v2i ),
while the representations from different instances (i and j,
with i 6= j) are regarded as negative pairs (e.g., v1i and v2j ).
The motivation is inspired by the mechanism that humans
can view an object through multiple sensory channels (e.g.,



vision, sound and touch), obtaining complementary informa-
tion from these views to robustly discriminate an object.

Tian et al. [16] proposed the contrastive multiview coding
(CMC) framework to learn a deep representation across
multiple sensory channels (i.e., views), such as RGB and
RGBD data. CMC brings views of the same scene together
in the embedding space, while pushing views of different
scenes apart. They assigned one encoder for each view to
extract embeddings, and concatenated them to form the full
representation of a scene. They illustrated that better repre-
sentation can be learned from more views. CMC has been
adopted by studies in various research areas [37], [38]. Yang
et al. [37] applied CMC for online knowledge distillation
(ODK). They assigned multiple encoders to extract features
from the same input images, and considered the output of the
encoders as different views. They used CMC to capture the
correlations among the encoded feature embeddings. Their
results showed that the CMC-learned representation space
was more effective for classification. In this study, we adapt
CMC to train our model to learn representative embeddings
from the vehicle’s CAN-Bus data, driver’s physiological data
and traffic environmental data, which are collected from the
same driving segments. We aim to learn a more discrimina-
tive representation by considering additional environmental
information.

III. PROPOSED METHOD

This study proposes a novel unsupervised driving anomaly
detection framework based on CMC, in which conditional
GANs are used to extract feature embeddings from multiple
modalities. Figure 1 shows an overview of our framework.
The modalities are integrated through a self-supervised
learning method without the need of labels. Our proposed
implementation considers five modalities: the vehicle’s CAN
bus signals, the driver’s physiological signals, the distance
to nearby pedestrians, the distance to nearby bicyclists, and
the distance to nearby vehicles. By combining the condi-
tional GANs and the contrastive multiview coding (CMC)
mechanism, our proposed multimodal system is (1) scalable,
where more modalities can be easily included when needed,
(2) sensitive to driving anomalies, even when the driver
is not aware of a hazard situation, and (3) interpretable,
revealing the factors contributing to the predictions made by
the proposed method. This section details the components of
our proposed method.

A. Feature Extraction Using Conditional GANs
The first step of our proposed method is to extract a

discriminative feature representation for each modality with
encoders. These blocks are represented as parallel encoders
in Figure 1. Instead of adopting an early fusion approach by
inputting all the multimodal signals to one encoder, we adopt
a model-level fusion approach by building separate parallel
encoders for the modalities, which are later fused using the
CMC mechanism.

We implement the encoders using conditional GAN, in-
spired by the framework presented by Qiu et al. [15]. The
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Fig. 1: Proposed unsupervised scalable contrastive multi-
view driving anomaly detection system. The approach creates
a contrastive space that draws close the representations
across views of the same segment, while pushing away the
representations across views of unrelated segments.

key principle of using GAN for this task is to generate
predictions that are compared with the observed signals. For
each modality, we build a generator (G) and a discriminator
(D) with convolutional neural networks (CNNs) and long-
short term memory (LSTM) cells. The CNNs extract feature
embeddings from the original input signals without relying
on hand crafted features. The LSTM network takes the output
of the CNNs to leverage temporal information in the time
series sequence. Section IV-C describes the implementation
details of these networks. For each modality, G predicts
plausible signals of the upcoming six-second driving seg-
ments based on the previous 30-second signals, providing
enough context for the LSTMs. D determines whether the
input signal is real or fake. Equations 1 and 2 show the
adversarial loss function for training the conditional GAN,
where x is the data sample, z is the noise sample, pdata is
the data distribution, and pz is the noise distribution.

max
D

V (D) =Ex⇠pdata(x) [logD(x)]

+ Ez⇠pz(z) [log(1�D(G(z)))]
(1)

min
G

V (G) = Ez⇠pz(z) [log(1�D(G(z)))] (2)

From each conditional GAN model, we extract the em-
bedding of the penultimate layer of D as the representative
feature of the modality. Our proposed system is scalable
when more modalities are available or needed. We only
need to build more separate parallel GAN models for the
new modalities, obtaining complementary views of the same
driving segment.

B. Metric Learning with CMC
CMC is motivated by the idea of learning effective

representations of an instance using pairwise contrastive
learning across different views. In this section, we start
from two views to introduce our implementation of CMC,
where the views are denoted by V 1 and V 2, respectively.
We define a set of N driving segments as s1, s2, . . . , sN ,
where each segment si consists of two views, si = {v1i , v2i },
containing signals of different modalities. We extract feature



embeddings of each view using the D of parallel conditional
GANs as the encoders, e1i = E1(v1i ), e2i = E2(v2i ), where
E1(·) and E2(·) are the encoders (Fig. 1). We project e1i and
e2i into the contrastive learning space, as shown in Figure
1. The projection networks P1(·) and P2(·) are implemented
with three fully connected layers, producing the contrastive
representations, h1

i = P1(e1i ) and h2
i = P2(e2i ). The model

is trained to draw together the contrastive representations
of views coming from the same segment (i.e., h1

i and h2
i ),

while pushing apart contrastive representations of views from
different segments (i.e., h1

i and h2
j , with i 6= j). We achieve

this goal by minimizing the contrastive loss in Equation 3,
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where view v11 is the anchor, view v21 is the positive sample,
views v22 to v2k+1 are the k negative views, and E is the
expected value. The function s(·, ·) in Equation 4 is the
discriminative score, which calculates the cosine similarity
of the contrastive representations.
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Similar to Equation 3, we symmetrically calculate the
contrastive loss function LV 2,V 1

contrast by treating view V 2 as the
anchor. The final loss function sums the two-view losses.

LV 1,V 2

= LV 1,V 2

contrast + LV 2,V 1

contrast (5)

We consider five views of a driving segment: CAN-Bus
information, physiological information, distances to nearby
pedestrians, distances to nearby bicyclists and distances
to nearby vehicles. The first two modalities describe the
maneuvers and reactions from the driver, and the last three
modalities describe the road environment. The approach
described in this section can be easily extended to more
than two views. We extend Equation 5 to more views by
considering the relationship among them.

The distance information about nearby objects is expected
to relate to the vehicle’s CAN-Bus signals and driver’s phys-
iological signals (e.g., braking when a pedestrian crosses the
road, increasing heart rate when a car abruptly crosses into
her/his lane). Therefore, to explore the relationship between
the traffic environment and the driver, we build the pairwise
loss functions between (1) CAN-Bus and physiological infor-
mation, (2) CAN-Bus and environmental information, and (3)
physiological signals and environmental information. If V 1,
V 2, V 3, V 4, and V 5 corresponds to the views of CAN-Bus
data, physiological signals, distance to nearest pedestrians,
distance to nearest bicyclists, and distance nearest vehicles,
respectively, the loss function is defined in Equation 6.

L = LV 1,V 2

+ LV 1,V 3

+ LV 1,V 4

+ LV 1,V 5

+LV 2,V 3

+ LV 2,V 4

+ LV 2,V 5 (6)

Since the detection of a pedestrian on the road does not
necessarily signal the detection of bicyclists or vehicles, we

exclude the pairwise loss functions among the environmental
information (i.e., LV 3,V 4

, LV 3,V 5

and LV 4,V 5

).

C. Inference with CMC Metric
We use the strategy shown in Figure 2 during inferences.

For a given driving segment st, we first use G of the parallel
conditional GANs to make predictions of the upcoming six-
second signals of each modality, denoted by st⇤, conditioned
on the previous 30-second data. As shown in Figure 2, we
use the parallel encoders and projectors to extract contrastive
embeddings of each modality from both st and st⇤. Then,
we calculate the pairwise cosine similarity between the
contrastive embeddings of the same view for the projections
of the predicted and actual signals (i.e., h1

t and h1
t⇤ for

view 1). We use the discriminative function s(·, ·) shown
in Equation 4 as the similarity score for the corresponding
modalities. Let us consider the view l. If the predicted signal
is accurate, the vectors hl

t and hl
t⇤ will be similar, so the

angle between the vectors will be close to zero. Therefore,
the cosine will be near one and s(hl

t, h
l
t⇤) ⇡ exp (Eq. 4). If

the predicted signal differs from the actual value, the value
for s(hl

t, h
l
t⇤) will decrease. Therefore, a small value of this

similarity score indicates that the predictions are less similar
with high deviations from the actual signals, highlighting
potential driving anomalies. For a given driving segment,
if the driver’s maneuver or reaction was influenced by the
road environment, say a close pedestrian on the road, the
similarity score for that modality is expected to be smaller
than the score for other segments. We add the similarity
scores of the five modalities as the anomaly score of a
driving segment manomaly (Eq. 7). A smaller anomaly score
indicates a more abnormal driving segment.

manomaly =
5X

l=1

s(hl
t, h

l
t⇤) (7)

IV. EXPERIMENTAL SETTINGS

A. Driving Anomaly Dataset (DAD)
The experiments in this study rely on the driving anomaly

dataset (DAD) collected by Honda Research Institute (HRI)
[15] in an Asian city. The dataset contains 250 hours of
naturalistic driving recordings, where 88 hours are used in
this study. The data is partitioned into train (approx. 70 hrs),
development (approx. 4 hours) and test (approx. 10 hours)
sets. This dataset includes signals from the vehicle’s CAN-
Bus system, the driver’s physiological signals using wearable
devices, and the road information detected with Mobileye
technology. Qiu et al. [15], [17] introduces more details about
this dataset. In this work, we consider six CAN-Bus signals:
vehicle’s speed, yaw angle, steer angle, steer speed, pedal
pressure and pedal angle. The CAN-Bus signal is represented
with a six dimensional vector per frame. We also use three
driver’s physiological signals: heart rate (HR), breath rate
(BR) and electrodermal activity (EDA). The physiological
signal is represented as a three dimensional vector per frame.
From the Mobileye data, we obtain the distances to the
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Fig. 2: Inference of the proposed unsupervised scalable con-
trastive multi-view driving anomaly detection system. The
views are projected into the constrastive space to measure
similarities between the predicted and actual views.

nearest two pedestrians, the distances to the nearest two
bicyclists and the distances to the nearest two vehicles. We
separately consider these three distances. For each detected
object, there are two values representing the distance to the
ego car, one for the lateral axis and another one for the
longitudinal axis. Therefore, for each distance, we create a
four dimensional vector. The data from different modalities
are synchronized at 30Hz.

B. Subjective Perceptual Evaluation
Our proposed approach does not require labels. However,

we need labeled data to evaluate the models. While the
DAD corpus has been manually annotated with maneuvers
and driving events (see Qiu et al. [15]), the database does
not include labels for normal or abnormal driving behaviors.
Therefore, we conduct a subjective perceptual evaluation on
selected driving segments. We selected 200 videos at random
from segments that do not overlap with any annotation in
the corpus. We selected 200 videos from segments annotated
with labels that are likely associated with driving anomalies:
avoid on-road pedestrian; avoid pedestrian near ego-lane;
avoid on-road bicyclist; avoid bicyclist near ego-lane; avoid
on-road motorcyclist; avoid parked vehicle; and traffic rule
violation. All the selected videos have a duration of six
seconds and were randomly presented to the evaluators.
Three annotators participated in the perceptual evaluation,
and each of them evaluated the 400 recordings. For each
driving segment, the raters are asked to watch the video
recording of the segment, and answer four questions about
the driving scenario shown in the video: (1) how risky is
the driving condition in the video? (safe; slightly risky;
risky; very risky), (2) how often do you see similar driving
condition on the road? (never; almost never; sometimes;

quite often; regularly), (3) is the driving condition in the
video normal or abnormal (normal; abnormal), (4) what
causes the anomaly in the video? (pedestrian; bicyclist;
motorcyclist; other vehicle; bad maneuver of our driver; no
anomalies). The first three questions are single choice, while
the last question is multiple choice, allowing the annotators
to select multiple options as possible causes of driving
anomalies. According to the answers to the third question,
we regroup the selected 400 driving segments into two sets:
normal and abnormal. We derive the consensus labels by
using the majority rule, where a class is selected if at least
two out of three annotators selected that class. In total, we
have 175 segments labeled as abnormal, and 225 segments
labeled as normal. We use the last question to understand
the possible cause of anomaly. We assign a video to a given
category if two or more of the annotators selected that option.
Since the annotators were allowed to mark more than one
answer, some segments may belong to more than one cause.
In total, we have 60 segments for pedestrian, 51 segments
for bicyclist, 39 segments for motorcyclist, 83 segments for
other vehicle, 21 segments for bad maneuvers of our driver,
and 225 segments for no anomalies.

C. Implementation

In this study, we build G and D of the conditional GANs
using CNNs and LSTMs. For G, the CNNs consist of ten
convolutional layers with filter sizes 15, 10, 8, 6, 4, 4, 6, 8,
10, and 15, with strides 5, 3, 3, 2, 2, 2, 2, 3, 3, and 5. The
number of channels are 64, 128, 256, 512, 1024, 512, 256,
128, 64, and 1. The LSTM network consists of two layers,
each of them implemented with 64 hidden nodes. Similarly,
we build D with five convolutional layers with filter sizes
15, 10, 8, 6, and 4, and with strides 5, 3, 3, 2 and 2. We also
add two layers of LSTM, each of them implemented with
64 nodes. We add a fully connected layer with 1,024 hidden
units with leaky rectified linear unit (ReLU) activation.

Each projector consists of three fully-connected layers,
with 1024, 512, and 256 nodes, respectively. We use leaky
ReLU as the activation function. We first train the parallel
conditional GAN models (i.e., Ei) for 10 epochs using
ADAM with a learning rate 0.001. Then, we freeze the GANs
parameters and train the CMC networks for 10 epochs.
Finally, we update all the parameters for another 10 epochs.

D. Baseline

We compare our approach with the conditional GAN
model proposed by Qiu et al. [15]. This approach has a single
generator, and a single discriminator, which are both con-
strained by the features of the previous six second segments.
The generator predicts the data of the upcoming six-second
segment, based on the previous six-second segment. During
inference, the real and predicted sequences are fed into the
discriminator obtaining the outputs SR for the real sequence,
and SF for the fake/predicted sequence. The anomaly score
is defined as mbaseline = |SR � SF |.

We implement the approach according to the description
provided in Qiu et al. [15]. The model is implemented with



Fig. 3: The DET curves for the models by formulating the
problem as a binary classification task (abnormal versus
normal sets).

the driver’s physiological data (i.e., HR, BR and EDA) and
the CAN-Bus data (i.e., vehicle’s speed, yaw angle, steer
angle, steer speed, pedal pressure and pedal angle). We
extract hand crafted features from both signals. For the CAN-
Bus and physiological signals, we extract the maximum, min-
imum, mean, and standard deviation of the values over the
six second segments (i.e., 4⇥9 = 36 features). For the phys-
iological data, we also estimate the energy in the frequency
bands [0-0.04 Hz], [0.04-0.15 Hz], [0.15-0.5 Hz], [0.5-4 Hz],
and [4-20 Hz] (i.e., 5 ⇥ 3 = 15 extra features). Altogether,
the dimension of the feature vector is 51. The generator
is implemented with five fully-connected layers, with 180,
60, 18, 60, and 180 nodes, respectively. The discriminator
also has five fully-connected layers with 51, 34, 17, 6, and
1 nodes, respectively. All the layers of the generator use
a ReLU as the activation function, except for the output
layer, which uses Tanh. The layers of the discriminator are
implemented with the Leaky ReLU function, with the slope
of the leak set at 0.2. The output layer of the discriminator
is implemented with a Sigmoid function. Since the approach
concatenates the features extracted from different signals, the
model cannot be easily scaled to incorporate new modalities.
We refer to this method as the conditional GAN model.

V. RESULTS

A. Driving Anomaly Detection
We compare the performance of the proposed approach

with the baseline described in Section IV-D. We evaluate the
separation between anomaly scores of driving segments from
the abnormal and normal sets. All methods give a score,
where a threshold is needed to associate the segment with
either of the classes. We formulate this problem as a binary
classification task, finding the false positive rate (FPR) and
false negative rate (FNR) as a function of this threshold.

Figure 3 shows the detection error tradeoff (DET) curves
of the proposed CMC model and the baselines. The dashed

Fig. 4: Ablation study to evaluate the contribution of different
views. The DET curves show the discriminative performance
of the modal trained with different modalities. The best
performance is obtained with all the five views.

line corresponds to the operation point where both error
rates are equal. A DET curve that lies closer to the axes
indicates a better binary classifier (i.e., lower error rates).
Figure 3 shows that the proposed model using the CMC
framework outperforms the baseline. With the exception of
operation points with FPR over 80%, the figure shows a
consistent separation between the curves of our method and
the baseline, suggesting clear benefits of the CMC method.

B. Contribution of Individual Modalities

This section presents an ablation study to quantify the
performance of the system when we consider a subset of the
modalities. The first model is a system trained with CAN-Bus
and physiological signals, without any road information. This
system relies on the same modalities used by the conditional
GAN model (Sec. IV-D). Then, we built three systems by
adding to the CAN-Bus and physiological signals the nearby
pedestrian, bicycle, or vehicle distances. The fifth system
only considers contextual road information. The analysis
compares these models with our full model with all 5 views.

Figure 4 shows the DET curves of the models. The figure
shows that adding the five views lead to clear improvement
in the performance of the system. Adding road information is
really useful since it not only improves the discrimination of
the system, but also captures events even when the driver may
not be aware of their presence. While some modalities reduce
the performance of the system when added to the model
trained with CAN-Bus and physiological signals (e.g., pedes-
trians’ distance), they provide valuable information when
the model is trained with the five views. The system train
with only contextual road information (distance to pedestrian,
bicyclist, and vehicle) has competitive performance only for
small FPR. The EER is worse than the EER achieved by
approach built with all the modalities.



TABLE I: Mean of the similarity scores for the target
modality for videos where the cause of anomaly was an-
notated to be pedestrian, bicyclist, and vehicle. The standard
distribution is provided in brackets.

Anomaly caused by Pedestrian Other anomalies
Pedestrian’s Score -0.7714 (1.1062) 0.3077 (1.1221)

Anomaly caused by Vehicle Other anomalies
Vehicle’s Score -0.1369 (0.9733) 0.0349 (1.1166)

Anomaly caused by Bicyclist Other anomalies
Bicyclist’s Score 0.3954 (1.6437) 0.1079 (1.1671)

C. Interpretation of Anomaly Causes
We ideally want our unsupervised approach not only to

tell us that something is unexpected, but also to identify the
reason behind the driving anomaly for the car or driver to
take appropriate measures to mitigate the risk. Our approach
can naturally and effectively achieve both goals. As men-
tioned in Section III-C, we combine the similarity scores of
the modalities to obtain our anomaly score. This section uses
these similarity scores to interpret the relationship between
the input modality and the possible causes of the anomaly.
We expect the similarity scores to be low if the corresponding
input modalities are evaluated as the possible causes of the
anomalies (see discussion on Sec. III-C). For example, if a
driving segment is evaluated as abnormal and the anomaly
is caused by nearby pedestrians on the road, we expect the
similarity score of the pedestrian modality to be lower than
the scores observed for other segments. For each modality,
we calculate the mean (µ) and standard deviation (�) of
the similarity scores of the driving segments in the training
set. These statistics are then used to normalize the modality
similarity scores on the test set using the Z-normalization
(z = x�µ

� ).
As shown in Table I, for the abnormal driving segments

where the cause is nearby pedestrians, the mean of the
normalized similarity scores for the pedestrian modality (-
0.7714) is lower than the normalized similarity score for
segments that are caused by other anomaly classes (0.3077),
while the standard deviations are close (1.1062 vs. 1.1221).
For the anomaly caused by nearby vehicles, the mean
and standard deviation values of the normalized similarity
scores for the vehicle modality are -0.1369 (0.9733), which
are lower than the corresponding values for the segments
caused by other anomalies 0.0349 (1.1166). This pattern is
not observed for the videos labeled as nearby bicyclists,
where the mean and standard deviation values are higher
than the corresponding values obtained from videos labeled
with other anomaly classes. One possible reason of this
unexpected result is that the proportion of bicyclist events
(3.23%) is lower compared to pedestrian events (9.86%)
and vehicle events (50.23%) in the training set. Our model
learns from real data and make forecasts of the upcoming
signals based on the observed data. We use the discriminator
to determine segments with signals that deviate from the
observed patterns. With the low occurrence of bicyclist-
related driving segments, it might be more difficult for our

model to learn the discriminative representations for bicyclist
modality, thus leading to the unexpected results on segments
labeled as nearby bicyclists.

D. Exclusion of Terms on Cost Function
As mentioned in Section III-B, three terms are excluded

from the cost function in Equation 6 (i.e., LV 3,V 4

, LV 3,V 5

and LV 4,V 5

), since the presence of a car, bicycle or pedes-
trian does not implies the presence of other road objects.
This section verifies that removing these terms leads to better
performance. We compare our proposed approach with an
implementation of the system using all the losses, including
these 3 terms. The results show that excluding these terms
reduces the EER in 2.8%, confirming our assumption that
these terms are not needed.

VI. CONCLUSIONS

This study introduced an unsupervised scalable multi-
modal driving anomaly detection system based on contrastive
multiview coding (CMC). We built the approach with parallel
encoding models that take different modalities or views,
training the approach with a contrastive loss function that
projects the modalities into a common subspace. This con-
trastive subspace is built such that the distances between
views for the same video segment are reduced and the
distances between views for unrelated video segments are
increased. The encoder builds a separate conditional GAN
model for each available modality, where the generator
predicts the features in the future constrained by the data
observed in previous frames. Our experimental results in-
dicated that the proposed model outperforms the baseline
in discriminating normal versus abnormal driving segments.
The similarity scores can be useful to interpret the relation-
ship between the input modalities and possible causes of the
detected driving anomaly.

The approach is scalable when new modalities are avail-
able, without the need of significantly increasing the com-
plexity of the model. Adding a modality requires us to build
a separate conditional GAN for the new modality, and train
the contrastive space with extra terms in Equation 6. By
using features from the road environment, the system is able
to detect the driving anomaly even when the driver is not
aware of the hazard situation (e.g., presence of a pedestrian
on the road). Finally, the formulation provides an intuitive
and effective approach to identify the potential cause of
the anomaly by observing the similarity score associated
with each of the modalities. These features of the proposed
approach make this framework superior to previous methods.

Our future work includes identifying new modalities that
can provide complementary information to improve the
discrimination power of our existing model, leveraging the
scalability of the system to incorporate more views. We also
plan to explore mechanisms to incorporate supervised terms
in the cost function to improve the model when limited
labeled data is available. The proposed approach can be used
to select segments to be annotated, reducing the effort of
annotating videos with driving anomaly scores.
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